SNU 010.142 #H 3
7|8l

.

=

Problem 1 [20 X (4pts, -3pts)] O/XZ H3}&}.

10.

11.

12.

13.

14.

15.

Q
[kl
fu
5]
i)
rlo
[
re
=
@
Q,
3
g
o
=
&
i)
o

% (command) 2.2 A E).
CzzafoA o5 A
EA A} BFY o]t}

CzeagANE 2L 8L e §E2 £ 4

Atk

ftlo
>
%0,
rlr
Y
rlo
)
>
o
[k

2N A int A4S A A Sbytes]]
7} g

 Q
& |M

Zzao|A int W7 A 4= Qe A4
—2310f| A} 232 0]}

e Q
o

Q

Z 2 3 A unsigned int W57} 71
4 9= 0014 232 — 10]Th

rlr

32

C Z2 oA float M4 A A3 o= 3
A8 A0 AR 2 917 WEel, C A4l 2
o =eote FEoR v YT AAE ALT £

s
C 9| A] int, char, float=, 7|2 & o7 Fo]Z d o]
el EF§) el th

C oA 712 Hor ol Bl Hitst ¢
z9 gtelel s F3te vlolets B8] AaAE

209 ool Wl A4 Yol Aok &

®

C o]l A] malloc(sizeof (int)) = 8 bytes2] W &]
sty 7 wWRee A 24E EHErh

il

OE, 12
z 1o
o lo
o
+
>,
m
[t
1)
et
>
30,
|o
v
12
V)
r
B
lo

oo O ok ot

doopot X

B9 7] %, 2006 &
A

16.

al
17. AR A C 2 AAE AGHOE 25 lojet
=2

18. g9 C Z2 2o A addE}e= o] Z0] F 717 t}h
A3 Z+zke] FEHES o wEbA A

int s;
int add(int x) { return x+1;}
void main() {
int add = 10;
s = 0;
add = add + add(s);
}

09 C ZE2ae A5 o) 68 bytes]
227} das.

typedef struct {int v;} obj;
typedef struct {obj *fst; obj #*snd;} pair;
void main() {
pair *x; obj *j; int i;
for (i=0; i<5; i++)
{x = malloc(sizeof (pair));
j = malloc(sizeof (obj));
j->v = 0; x->fst = j; x->snd = x->fst;

}
}

20. AFHE F 4+ 9t BAFNE WA H1 SE)
UAS AFEA AT BE Wz FAA
Fol= BA £9 Bk o B Azl B2 % 2
o] glth

Problem 2 [20pts] <2 The Pattern on the
Stone: the simple ideas that make computers work 2

RRolt. BE W] $EOE S07 @ woli?
wa set/3otel 9 Aol

[pp.18-19]
Naming the two signals in computer logic 0 and

1 is an example of functional —————— It lets

us manipulate information without worrying about
the details of its underlying representation. Comput-
ers are built up of a hierarchy of such functional
[each one embodied in a building block.
The blocks that perform functions are hooked together
to implement more complex functions, and these col-
lections of blocks in turn become the new building
blocks for the next level.

This hierarchical structure of [isour
most powerful tool in understanding complex systems,
because it lets us focus on a single aspect of a problem
at a time. For instance, we can talk about Boolean
functions like And and Or in the abstract, without
worrying about whether they are built out of electri-
cal switches or sticks and strings or water-operated
valves. For most purposes, we can forget about tech-
nology. This is wonderful, because it means that al-
most everything we say about computers will be true
even when transistors and silicon chips become obso-
lete.

[pp.58-59]

We are now in a position to summarize how a com-
puter works, from top to bottom. Most readers will
have lost tract of the details, but remember that it
is nmot important to remember how every step works!
The important thing to remember is the hierarchy of
functional ————.

The work performed by the computer is specified
by a program, which is written in a programming lan-
guage. This language is converted to sequences of
machine-language instructions by interpreters or com-
pilers, via a predefined set of subroutines called the
operating system. The instructions, which are stored
in the memory of the computer, define the operations
to be performed on data, which are also stored in the
computer’s memory. A finite-state machine fetches
and executes these instructions. The instructions as
well as the data are represented by patterns of bits.
Both the finite-state machine and the memory are
built of storage registers and Boolean logic blocks, and
the latter based on simple logical functions, such as
And, Or, and Invert. These logical functions are im-
plemented by switches, which are set up either in se-
ries or in parallel, and these switches control a physical
substance, such as water or electricity, which is used
to send one of two possible signals from one switch to
another: 7or 0. This is the hierarchy of:]

that makes computers work.

SashgUth SAT 2 A e w7l s

