
K a r e n F r e n k e l :

Please describe, in the simplest terms
possible, the essence of Logical for Com-
putable Functions (LCF).

R O b i n M I I n e r :

I came quite late to research. I taught
for five years in Ci ty Universi ty in
London, and before that I 'd worked
for three years for Ferranti Com-
puters, where I did some program-
ming. While I was teaching at Ci ty
University, I became interested in
artificial intelligence, but also in
what p rogramming means. I also
got interested in mathemat ical logic,
but all of these were separate threads.
K F : That would have been in the late
1960s?

A n i n t e r v i e w w i t h
R M : Yes, from 1960 to 1963, I was
at Ferranti , and from 1963 to 1968,
I was at City University. Then I got
a chance to do a full-time research
post with David Cooper who was head
of the computer science depar tment
at Swansea College in the Universi ty
of Wales. U n d e r the stimulus of
David, I worked on unders tanding
p rogramming and p rogram verifica-
tion. I wrote myself a small theorem-
proving program. At that time,
there was a t remendous research
effort in mathemat ical theorem prov-
ing, t rying to do automatical ly what
mathemat ic ians have done with deep
thought over the centuries.

Another thread was st imulated by
the work of Michael Paterson, who
had writ ten a wonderful thesis on
program schemato logy- -pa r t of his
joint work with David Luckham and
David Park. That thread was the
study of the shapes of different pro-
grams as opposed to their content,
or put another way, s tudying the
general shape of their evaluation
structure as opposed to the actual
numbers that they were processing.
The work of Paterson and Cooper
made me want to unders tand how
you could verify computer programs.
Pioneering work had recently been
done by Bob Floyd at Stanford and
by Tony Hoare in Britain.

~ 0 January 1993/Vol.36, No.l /COMMUNICATION| OP T N i A C M

n i l n e r

COImlmUlUC~T|ONSOFTHIEAClm/~anuary 19931Vol.36, No.l ~ J

w e u s e
t h e t e r m

" ' m e t a l a n g u a g e ' "
f o r a

l a n g u a g e
t h a t t a l k s

a b o u t O t h e r
l a n g u a g e s .

T h a t ' s w h y M L
c a m e i n t o
e x i s t e n c e .

My first a t tempt was to take a sim-
ple p r o g r a m - - m a n y people were
doing similar work at that t i m e - - a n d
extract from it what you would need
to prove that it was working prop-
erly. Those were called verification
conditions. They were fed into an
automatic theorem-proving p rogram
that would then prove that the origi-
nal p rogram was working properly.
This ran into the sand because it is
far too difficult for a compute r to do.
Human intelligence must accompany
the business of verifying that pro-
grams, which are human construc-
tions, actually work. So, I wasn't sure
how human assistance could be
brought to bear on this in a r igorous
w a y .

Then I learned of Dana Scott,
who, with Chr is topher Strachey,
went into the foundat ions of pro-
g ramming languages. I not only had
some discussion with Strachey about
p rogramming languages, I also lis-
tened to Scott's lectures while he was
visiting Oxford University and read
his writings. It was a very exciting
time, because together they began to
work out the mathematical meaning
of p rog ramming languages.

I hoped to start f rom the very rock
bot tom with the mathematical mean-
ing of languages, and use that as a
f irm foundat ion for reasoning about
compute r p rograms that anyone
might have written. I wondered how
one might do this. And Scott actually
gave the hint by building, so to speak,
some of his mathematical models
into a formal logical system that
could be used as a basis for compute r
assistance. When you want to get a
compute r to assist with something, it
has to be formal; it has to be exact.
The way it's going to help must be
absolutely formal. Scott d idn ' t actu-
ally call it the Logic for Computable
Functions. I called it that. But he
embedded some of his mathematical
unders tanding in this formal, logical
system.

I was very excited about this. I
went to Stanford University in 1971,
and got the chance to work with John
McCarthy in his artificial intelligence
lab. When I arrived, it was quite
amusing because they wanted to do
this kind of work, but they were also
very keen to do some practical work.
The re was a lot of work on founda-

tions of computer science, or mean-
ings of p rogramming languages,
along with the artificial intelligence.
But we all need, in o rde r to satisfy
our funding agencies, something
that actually runs and buzzes and
whistles, something that actually con-
vinces them that not only are we try-
ing to unders tand computers but
[that] we're also using them; you
have to make your work concrete in
o rde r to get credibility. I r emember a
meet ing in McCarthy's AI lab where
we were all wonder ing what imple-
mentat ion should be done next to get
machines to help in unders tanding
our own software activities. I was the
new boy, and I actually wanted to do
the next implementat ion because I
realized that Scott's work was jus t
waiting to go into a computer pro-
gram that would then help us to rea-
son about o ther computer programs.
So I said, "I'll implement Scott's
logic." Tha t was exciting because
Scott had created something more
general than most people realized.

We worked on proving that a com-
piler was correct. I f you write a pro-
gram in a high-level p rog ramming
language, it's then converted by the
compiler into a low-level program.
Tha t shouldn ' t change the meaning.
I f it does, that 's a disaster. So one of
the first things you must do is show
that the translation is correct. Mc-
Carthy and his students had done
some initial case studies on this. And
we proved with LCF the correctness
o f a more complex compiler , which
worked with a r icher language. I
hadn ' t realized that was going to be
possible. To me, it was par t of the
general activity o f eventually reach-
ing something that ord inary pro-
g rammers could use to check out
their own programs.

Designing ML
K F : Did you try your proof techniques on
certain languages already in existence
when you were ~zt Stanford?
R M : Yes, and I 'd also tr ied that at
Swansea, but I rapidly began trying
to prove proper t ies of whole lan-
guages, so I wasn't focused on a par-
ticular language. McCarthy, (Allan)
Newell, and (Herb) Simon's lan-
guage, LISP, was a wonderful tool
with which to write all the software
that would eventually do this verifi-

9 2 January 1993/Vol.36, No.l /COMHUNICATIONSOPTHBACiR

cation. So McCarthy's laboratory and
McCarthy himself were a wonderful
liaison for me because LISP process-
ing was a wonderful vehicle for what
you might call nonnumerical pro-
g r a m m i n g - - p r o g r a m m i n g which
realizes different forms of thinking
than numerical mathematics. That
was a vehicle for doing all my work.
In fact, LISP led to the design of
Metalanguage (ML).

I left Stanford after two years,
having had reasonable success with
this reasoning tool. But it was very
rigid. That is, the way I could inter-
act with this machine in helping me
to reason, was that I could ask it to do
certain formal transformations, and
it would do them correctly. By the
way, the real pioneer of machine-
assisted reasoning was deBrui jn in
Hol land who invented his Automath
system before this; I d idn ' t know
about it at the time.

But the way that I wanted LCF to
help in the reasoning business was
this: I f you've got a machine helping
you, you want to not only get it to
check what you ' re doing, but to be
able to communicate to it certain
general strategies for reasoning. I
needed a medium by which I could
communicate to the machine certain
general procedures for reasoning
that it would later invoke, at my be-
hest, on part icular problems. I would
not have to lead it through the ele-
mentary steps every time. I wanted to
be able to give it larger and larger
chunks of reasoning power, built up
from the smaller chunks. So I would
have to have a language by which I
could communicate to the machine
these tactics or strategies.

Then, you come back to the prob-
lem of building houses on sand be-
cause the more languages you bring
into your process, the more possibili-
ties you have for appear ing to talk
sense but are actually talking non-
sense. So the language we needed to
express the reasoning capabilities
had to be very robust. We use the
term "metalanguage," for a language
that talks about o ther languages.
That ' s why ML came into existence.
It was the metalanguage with which
we would interact with the machine
in doing verification. It had to have
what we call a r igorous type structure
because that's the way p rogramming

languages avoid talking certain kinds
of nonsense. But it also had to be
very flexible because it was actually
going to be used, and I d idn ' t want to
design a language that would slow
me down. It had to have certain fea-
tures that were at the front ier o f pro-
g ramming language design, such as
h igher -order functions of the great-
est possible power, and also side ef-
fects and exceptions. An exception is
jus t a way o f getting out of something
that you shouldn ' t be doing because
it's not working. Since strategies
don ' t work every so often, you use an
exception to say, "Wrap this up. I 'm
going to try something else." In a
p rogramming language, an excep-
tion is absolutely vital. And it was
vital for this part icular application.

All of this directed the design of
ML, which occurred in Edinburgh
with other colleagues from 1974
onward.
Xlm: That was a 12-year project?
H a : Yes, ML began jus t as a vehicle
for communicat ing p roof strategies
within the LCF work. Malcolm
Newey and Lockwood Morris, both
of whom I had met at Stanford, and
later Chr is topher Wadsworth and
Mike Gordon came to work with me,
and we created this language and
some mathematical unders tanding
for it.

The LCF system at Edinburgh
then became the language ML with
some part icular reasoning power
expressed within that language.
Gradually, the language became
more and more important .

A Longtlme Collaboration
K F : What was it like to collaborate with
people on developing a language over the
course of more than a decade? How did
you work together?
RM= That was a wonderful experi-
ence. I t came together in ways that
could not be predicted or planned.
When I got to Edinburgh, I had a
research project funded by the Sci-
ence and Engineer ing Research
Council (the British equivalent of the
NSF). The first to jo in me were
Newey and Morris. We weren' t quite
clear what the language should be,
and we tossed ideas a round among
ourselves. I r emember Morris wrote
the first compiler for ML and left it
behind in Edinburgh six weeks after

he 'd finished it. Nobody ever found
any mistakes in it. I t was the first
implementat ion o f ML. And Newey
and I worked on other parts of the
implementat ion as well.

When Wadsworth and Gordon
came, we developed the language
more carefully so that it could serve
as a basis for really big reasoning
projects. At that point, the project
divided; the reasoning work went on
along one line, and language devel-
opment of ML itself went along an-
other. ML went from being a special
language for this part icular task to a
general language. And that hap-
pened in a beautiful, but unplanned
way. One now-famous contr ibutor
was an Italian graduate student,
Luca Cardelli, who wanted a lan-
guage for his Ph.D. work, so he im-
p lemented an extension of ML.
Then somebody else discovered this
was a good language to teach to stu-
dents. It then began a life as a gen-
era l -purpose language because we
started teaching it to second-year
underg radua te students. I t tu rned
out to be a way of learning to pro-
gram.
KI~: Was that one of the surprises?
H i : Yes, one of the reasons it
tu rned out to be genera l -purpose
was because the demands of the ap-
p l i c a t i o n - t h e LCF w ork - -we re so
s trong that if a language could do all
of that, then it would also do a lot of
o ther things as well. Tha t happened
in an uncontrol led way for a while.
People used dif ferent dialects ei ther
because they liked exper iment ing in
language design, or because they
wanted it for teaching more clearly, I
suppose.

About 1983, on suggestion of Ber-
nard Sufrin at Oxford, I felt we
ought to pull the threads together to
see if there was a bigger language
that comprised all the ideas people
had been tossing about. I p roduced a
proposal for s tandardizing this lan-
guage. We began to have very intense
discussions because language design
isn't easy, and people disagree about
it. But we acquired a g roup o f about
15 people who worked via email. We
had a distr ibuted effort involving
David MacQueen at Bell Labs. So we
began to play with the design and
tried to f irm it up.

Then another splendid thing hap-

COHHUNICA'Ir lONIIOIBTHI ACH/~anuar F 1993/'Vo|.36, NoA ~

T h e g r e a t
c h a l l e n g e a n d

g r e a t e s t
e x c i t e m e n t

w a s t h a t
w e w e r e
a l w a y s

i n t e r a c t i n g
w i t h t h r e e
t h i n g s : t h e

d e s i g n o f t h e
l a n g u a g e , i t s

i m p l e m e n t a t i o n ,
a n d t h e
f o r m a l

d e f i n i t i o n
i t s e l f .

pened. MacQueen invented a new
uppe r level to the language that
made it more appropr ia te for large
p rogramming exercises. This en-
abled you to write large modular
programs and assist "p rogramming
in the large." MacQueen had been in
Edinburgh working with Rod
Burstall, who had a mathematical
project which actually led to Mac-
Queen 's idea of modules of ML. So
some of the mathematical , or the the-
oretical research, fed into the design
of the language in that way.

For the next four to five years we
were s tandardizing this language. I t
went th rough design after design. In
1989 we still d idn ' t all completely
agree, but those charged with writing
the formal definit ion of the language
published it with MIT Press.
KP: What was the greatest challenge in
those 12 years?
R M : In terms of the language de-
sign, for me it was creat ing the for-
mal definition, because the design
had to be enshr ined in an absolutely
r igorous definition.
K F : Enshrined?
a M : Yes, it had to be expressed
completely rigorously. Not many lan-
guages have had that completely rig-
orous definition. Others have had it
in part. Our aim was to have not only
a definit ion that was completely rig-
orous, but was also quite small. The
language was supposed to be power-
ful but so harmonious and so well
s t ructured that it d idn ' t take many
pages to write down the definit ion of
everything you could do in it. Even-
tually it took 100 pages, which is per-
haps an o rde r of magni tude smaller
than for some powerful languages
like ADA, for which the formal defi-
nition is not easy.

For me, the greatest challenge and
the greatest exci tement was that we
were always interacting with three
things: the design of the language, its
implementat ion (because it always
was being implemented exper imen-
tally), and the formal definit ion it-
self. You would design something,
and then you would find out that you
could implement it well, perhaps, but
that you couldn ' t write down the for-
mal definit ion very clearly because
the formal definit ion showed there
was something missing in the design.
So you'd go back to the design. Or

you might go back to the design be-
cause something was not imple-
mented very well.

Concurrency and Parallelism
KID: Let's move on to Calculus for Com-
municating Systems (CCS).
R M : The deve lopment of CCS also
went on for a long time. As Stanford,
I got interested in trying to under-
stand concurrent comput ing and
parallel comput ing programs. I t r ied
to express the meaning o f concur-
rent comput ing in terms that had
been used for o ther p rog ramming
languages that were sequential. I
found it wasn't easy, and I felt that
concurrency needed a conceptual
framework, which we did not have.
And I d idn ' t know what it should be.

Of course, I d idn ' t know about his
work, but Car l -Adam Petri had al-
ready pursued such a goal. But my
motivation was actually to show how
you could build concurrent sys tems- -
how you could create a conceptual
f ramework in which you could com-
pose and synthesize larger and larger
concurrent systems from smaller
ones and still retain a handle on what
it all means. That ' s why I eventually
approached the algebraic method.
Algebra is about combining things to
make other things and the laws that
govern the ways you stick things to-
gether. In multiplication, A × B is a
more complicated thing than A or B.
Multiplication has certain laws. Tha t
was exactly the same as parallel com-
position. Two programs, P in parallel
with Q, give you a more complicated
program, and that parallel composi-
tion obeys some algebraic laws. So
CCS was an a t tempt to algebraicize
the primitives of concurrency.

Concurrency Theory and
Hardware
K F : To what extent does the hardware
affect the theory of concurrency? Doesn't
it matter the way the processors are linked
and whether the machine is fine- or
coarse-grained ?
R i l l : Yes, that 's a big question be-
cause there are two things you might
be trying to do when you ' re studying
parallelism. You might be studying
the meaning o f a parallel p rogram-
ming language that is going to run
on some hardware. Or you might be
trying to describe a concurrent sys-

g4 January 1993/Vo1.36, No.l / C O M M U N I C A T I O N S O F T H E A C M

tem that is a piece o f hardware. What
I was really aiming at was not jus t a
theory of p rogramming , but a way to
describe concurrent activity of any
kind. And the machine is jus t one
example of something that has
highly concurrent activity. So there
must be a theory of concurrency that
can describe the machines on which
you might run a parallel program-
ming language. You must be able to
apply your theory at these different
levels. Parallel p rogramming is jus t
one kind of concurrent activity.

It does mat ter from the point of
view of efficiency, and even feasibil-
ity, on what hardware you will run a
parallel language. Some languages
will be much easier to run on some
hardware than others. But that very
match, that very question, "What is it
about a machine that makes it pos-
sible or impossible to run a certain
p rogramming language?" should be
part of the theory o f computer sci-
ence. Compute r science should be
able to address that machine-
language link, jus t as it addresses the
language itself.

The theory should also address
interaction between humans and in-
teraction in any organization. The
p rogramming language is a small
part o f concurrent activity. So one is
aiming for a theory that is actually
broader than computer science.
K F : Do you think the interrelationship
between a parallel language and a paraL
lel machine is more problematic than that
of sequential languages and sequential
machines?
R i m : Yes, I do. I don ' t think it's
more problematic jus t because it's
one step up. It's more problematic
because it has a larger number of
degrees of freedom. The only limita-
tion in trying to unders tand concur-
rency in the way that computer scien-
tists do, is that we're trying to
unders tand it discretely ra ther than
continuously. On the whole, we're
interested in discrete events in com-
puting, ra ther than continuous ones.
At least that's been the fashion for
the last three decades.

There are also so many different
ways by which you might tackle the
problem. Sequential comput ing was
a wonderful beginning for us. The
normal way you would write a pro-
gram from the very beginning would

always be sequential, and that gave us
an inroad into unders tanding com-
puting.

But back to concurrency, I needed
a new conceptual framework. When
I went to Denmark in 1979 and 1980,
I gave some lectures in which it came
together ra ther well. I wrote the
book on CCS (A Calculus of Communi-
cating Systems), which was essentially a
ramification of 10 lectures I gave
there. For the next five or so years, I
jus t s tudied CCS. Between 1980 and
1985 I began to develop the mathe-
matics to see whether you could find
some abstract mathematical under-
s tanding undernea th it.

CCS was obviously not perfect, but
it existed as a concrete language and
method of description. It had an al-
gebraic theory, and you could go
undernea th it as I began to see
whether it could be explained more
smoothly, more abstractly mathemat-
ically. But then it could also be used
in design studies. Tha t is, it could be
used as a way of unders tanding com-
munications protocols, how traffic
lights work for example, or simple
concurrent systems in practice.

CCS was used to explain the speci-
fication language LOTOS, which is a
way of describing communications
protocols and which is very widely
used now. CCS was at a level that
enabled you to dig below for seman-
tic unders tanding, but you could also
build on top o f it to get more useful
things in the field.

Dur ing the 1980s, Tony Hoare 's
work was going along in parallel.
And he had similar ideas to mine. He
invented the language CSP before I
d id the algebraic work on CCS.
Later, he pursued the theory of CSP
in a way that was complementary to
my algebraic theory. So the algebraic
field became very rich. His ideas
were very different and very impor-
tant. Then there began a search for a
general f ramework that encom-
passed his ideas and those in CCS
and o ther process algebras, notably
those o f Jan Bergstra and Jan Willem
Klop in Hol land on ACP. And that,
in turn, was used on a lot of applica-
tions.

We've been looking at these differ-
ent approaches for many years, try-
ing to subsume them into a whole.
We sometimes succeed, and we

sometimes fail. Actually, researchers
in these three algebraic endeavors
have been collaborating lately to iron
out some differences. But it keeps
exploding because no sooner do you
try to br ing them together than you
discover that there are extra things
that you want to add. In the begin-
ning, we d idn ' t talk about real time
or probability. We wanted to attach
probabilities to the possibilities that
are expressed in these process alge-
bras.

One line o f development that links
the algebraic concurrency endeavor
and the already existing and very
fruitful work of Petri on Petri nets
has become ra ther promising and yet
difficult because the conceptual basis
in the two cases doesn ' t line up per-
fectly. So the theory of concurrency
is enriched by having these different
approaches and then looking for
what it takes to commonize them, to
actually find out that they're not con-
tradictory and that they're about dif-
ferent aspects of essentially the same
problem. This field has become
enormously rich in the last decade.

Object-Oriented Programming
K F : There are three characterizations of
programming methods: imperative or
structured, functional, which is what you
started out doing, and object oriented.
Can you comment on the strong trend
toward object-oriented programming in
the U.S. ?
R M : Object-oriented p rogramming
is a wonderful example of how fruit-
ful things don ' t happen very pre-
cisely. Tha t is, the p rogramming
community has come up with this
tantalizing, powerful, and productive
way of thinking that is obviously with
us to stay because it gives people jus t
what they want. But at the same time
it's very difficult to unders tand
mathematically and semantically.
People at the forefront of object-
or iented p rogramming are aware
that it's impor tant and powerful.
And they want to deepen semantic
unders tanding of it.

It's a challenge to somebody who
wants to develop a theory to make
sure it will actually contribute to that
unders tanding. Different computer
science theories are needed to ex-
plain object-oriented p rogramming
because it is partly about concur-

¢OMNUNI¢IliYIONIIII O1~ TllUl ACM/J anuary 1993/Mol,36, No.l ~

C o m p u t e r
s c i e n c e

is n o t o n l y a
s t u d y o f

a b a s i c t h e o r y ,
a n d i t i s n o t

j u s t t h e
b u s i n e s s o f

m a k i n g t h i n g s
h a p p e n . I t ' s

a c t u a l l y a
s t u d y o f

h o w t h i n g s
h a p p e n .

rency. I t naturally talks about objects
that coexist and must therefore be
allowed to behave simultaneously.
That ' s parallelism or concurrency.

It's also about the classification of
objects: the type structure, how ob-
jects inheri t methods from the class
to which they belong. I f you define
new subclasses, then you can add
new methods. An object's methods
de te rmine how it may be used. You
want to insert some fire walls into a
p rog ramming language design so
people will stop trying to subject an
object to operat ions that are mean-
ingless for that object. That ' s what
type s t ructur ing is all about.

One theory that is contr ibut ing a
lot to object-oriented p rog ramming
is the deve lopment of a type struc-
ture. Tha t part does not primari ly
have to do with concurrency. On the
other hand, the dynamic part, or the
behavioral aspect of object-oriented
programming , part icularly concur-
rent object-oriented p rogramming , is
precisely what we should try to un-
ders tand from the point of view of
concurrency because concurrency is
about independen t objects. These
may work together, cooperate, or
confuse one another. So you have to
be able to explain object-oriented
p rogramming of the concurrent kind
in terms of a basic concurrency the-
ory. Otherwise that theory isn't any
good.

The re have been some very excit-
ing initiatives to create that under-
s tanding on the basis of theories we
have currently. Carl Hewitt comes in
here because his notion of Actors,
which he invented 20 years ago, was
a great stimulus in providing the
conceptual f ramework for object-
or iented programming. We need to
unde rp in both object-oriented pro-
g ramming and the Actors model
with something more formal or more
basic. That ' s where may process alge-
bra work (with Joachim Parrow and
David Walker) is going now. In my
lecture I discuss the dynamic behav-
ior of objects in object-oriented pro-
gramming. Very interest ing work by
Japan ' s Kohei Honda and Mario
Tokoro bridges between our process
algebra work and concurrent object-
or iented programming . It shows how
one can be adap ted or t rained to
explain the other. That ' s a very active

field.
My present concurrency research

is in developing a mathematical the-
ory of this model, constantly testing it
(either myself or asking others to) in
various, more practical frameworks,
like object-oriented programming ,
logic p rogramming , even functional
or imperat ive p rogramming , to make
sure it can under l ie all o f these
things. I f it can't, then it's the wrong
approach.

I 'm not saying everybody wants to
think at this low level. But if you ' re
ever going to run a functional pro-
gram on a big concurrent machine
while runn ing an object-oriented
p rogram on the same machine, and
even communicate between them,
then you 'd have to have some com-
mon theoretical f ramework in which
they can both be explained. Other-
wise, it's awful. We have total incom-
prehension. We do have these heter-
ogeneous systems with one par t
unders tood in terms of functional
p rog ramming or some dif ferent
model, and o ther parts in object ori-
ented. But you must be able to un-
derp in them all. Reliability really is
terribly important .

The theory is still not as clean as it
should be. The re is a basic theory
waiting to be revealed more clearly.
It has elements o f Petri net theory; it
has elements of the impor tan t no-
tions of reference and naming.

This theory is gu ide d - - i t ' s not
wander ing along in a trackless fash-
ion. It's being submit ted to the math-
ematical test all the time: Can we
really work with it? Is it tractable
mathematically? Does it really under-
pin all o f the d i f ferent things that
people are doing in practice? I f it
tries to escape from these criteria
then we shall notice. And then, it
should cease to be interesting.
K P : The title of a paper you wrote in
1987, "'Is Computing an Experimental
Science?" raises a very interesting ques-
tion. What prompted you to write it at the
time ?
R M : It resulted from ideas that had
been a round for a long time coming
together with a part icular practical
need. We had good funding from
our Science and Engineer ing Coun-
cil. In the middle of the 1980s, the
Alvey Program was supposed to
stimulate industry and jo in it onto

S 6 January 1993/Vol.36, No.l / ¢ O U M U N I C A T I O N S O F T H R ACre

academic research. We feared the
effort would be dra ined from the
theoretical part of the research and
that funding would be devoted to
shorter- term activities. These are
highly necessary, but we d idn ' t want
that to happen to the de t r iment o f
theoretical work. The trouble with
computer science is that it's so appli-
cable you can be blamed if you're not
doing immediately applicable re-
search. The re is such a demand for
application research that if you are
doing something with longer- term
implications, you can be criticized for
not doing the most urgent thing.
That ' s a great danger , because com-
puter science is so broad that if it
doesn' t have a basic theory, we will be
lost. There ' s so much going on, so
much computing, so much commu-
nications. How could it be that this
doesn' t have a theory? It has to go
alongside the practice.

Therefore , the more you respond
to shorter term, however necessary
and impor tant the demands, the
more you run the risk that you're
starving the basic science, which
should be growing up at the same
time. We asked the Alvey Directorate
to r emember that the basic research
p rogram is pretty s trong in Britain
and argued it should not be a casu-
alty of this new and exciting effort.
We asked them to recognize us as a
laboratory that would link between
the theoretical research and indus-
trial practice. They responded gen-
erously.

My colleagues and I decided to
make the case that the relationship
between us and the Alvey initiative
should be bidirectional. You don ' t
jus t take things out of academia and
apply them. You use the industrial
experience as a guide. That 's the
experiment . That ' s what computer
science is at the m o m e n t - - o n e large
experiment . And it's a very uncon-
trolled experiment .

So the questions are, "Is that abso-
lute nonsense? Is it an experiment?
Or is that jus t a crazy thing to say?"
Some will say it's c razy- -a l l that com-
puter science is is a bag of tricks. You
use computers, and you use them in
different ways, jus t as you use water
for different purposes.

In the paper which I gave at the
inaugurat ion of our laboratory, I

made the case that if you look deeply,
you find less difference between
computer science and o ther estab-
lished sciences than you might ex-
pect. The exper iments we do in com-
puter science are not that much
dir t ier or fuzzier than some experi-
ments in o ther sciences. Of course,
physics is the queen of the sciences,
and the exper imenta l discipline is
extremely sophisticated. We can't
match physics in the ref inement of
our exper imental discipline, but that
isn't to say we're not an exper imental
discipline. When you test a piece of
software to see whether it works,
that 's some kind of exper iment . And
in testing a piece of software, what
are you testing at the same time?
You're also testing the language in
which it's written, and you're testing
the formal theory that underl ies that
language. Why can't that be called
exper imental science? I suppose the
way I say it seems defensive. Many
people would say, "Yes, of course, it's
an experiment ." But enough people
will have assumed there isn't a sci-
ence. So it is actually worth under l in-
ing that I think it is experimental .

I claimed fur ther in that paper
that there are concepts from com-
puter science that will influence
mathematics. Most people learned
about sets in mathematics when they
were children. When we unders tand
about processes as mathematical ob-
jects, school chi ldren in the second
and third decade in the twenty-first
century will actually think about pro-
cesses in the same abstract way they
now think about sets. Tha t will be
because of computer science. It's
exper imental in that you ' re drawing
concepts out of practice. Obviously,
you don' t draw concepts out which
don ' t inform the activity. Experi-
mental science is a way o f developing
a conceptual f ramework by drawing
out the concepts that actually do ap-
pear to underl ie the practice, but
testing them all the time.

Advice to Students
KIm: Do you have any advice that you
would like to give to young people who are
starting out in computer science about the
best way to prepare themselves in comput-
ing?
H a : One doesn' t want to sound
pompous. The best thing to do,

whether you ' re of a theoretical or a
practical bent, is to treat the subject
as nei ther purely theoretical or
purely practical. The worst thing you
can do is to follow your bent, which
would probably be on one of those
sides, and ignore the other side. The
whole richness o f the subject comes
from the interplay between practice
and theory.

Many will pretty soon find them-
selves ignoring one of those compo-
nents because they will naturally be-
come very applications or iented or
very basic-research oriented. But the
longer we can keep the link between
the theoretical f ront ier and the prac-
tical frontier, the better the whole
thing will be. We should encourage '
the next generat ion to respect that
link. I f you don ' t respect that, you
lose a whole degree of f reedom in
the interest of the subject.

What makes it interesting is that
the link is there. Compute r science is
actually a study of things that hap-
pen. It's not only a study of a basic
theory, and it is not just the business
of making things happen. It's actu-
ally a study of how things happen. So
the advice is: Don' t lose the link! []

About the Author:
K A R E N A. F R E N K E L is senior editor, ACM
Publications and Special Projects. Author 's Curren t
Address: ACM, 1515 Broadway, New York, NY 10036.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct comn]ercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Comput ing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© ACM0002-0782/93/0100-078 $1.50

C O M M U N I C A T I O N S O P ' I r H G ACM/January 1993/Vol.36, No.l 9 7

