
K a r e n  F r e n k e l :  

Please describe, in the simplest terms 
possible, the essence of Logical for Com- 
putable Functions (LCF). 

R O b i n  M I I n e r :  

I came quite late to research. I taught 
for five years in Ci ty  Universi ty in 
London,  and before that I 'd  worked 
for three years for Ferranti  Com-  
puters, where I did some program-  
ming. While  I was teaching at Ci ty  
University, I became interested in 
artificial intelligence, but  also in 
what p rogramming  means. I also 
got interested in mathemat ical  logic, 
but  all of these were separate threads. 
K F :  That would have been in the late 
1960s? 

A n  i n t e r v i e w  w i t h  
R M :  Yes, from 1960 to 1963, I was 
at Ferranti ,  and from 1963 to 1968, 
I was at City University. Then  I got 
a chance to do a full-time research 
post with David Cooper  who was head 
of the computer  science depar tment  
at Swansea College in the Universi ty 
of Wales. U n d e r  the stimulus of 
David, I worked on unders tanding  
p rogramming  and p rogram verifica- 
tion. I wrote myself a small theorem- 
proving program.  At that time, 
there was a t remendous research 
effort in mathemat ical  theorem prov- 
ing, t rying to do automatical ly what  
mathemat ic ians  have done with deep 
thought over the centuries. 

Another  thread was st imulated by 
the work of Michael  Paterson,  who 
had writ ten a wonderful thesis on 
program schemato logy- -pa r t  of his 
joint  work with David Luckham and 
David Park. That  thread was the 
study of the shapes of different pro- 
grams as opposed to their content, 
or put  another  way, s tudying the 
general shape of their  evaluation 
structure as opposed to the actual 
numbers  that they were processing. 
The  work of Paterson and Cooper  
made me want to unders tand how 
you could verify computer  programs.  
Pioneering work had recently been 
done by Bob Floyd at Stanford and 
by Tony Hoare  in Britain. 
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My first a t tempt  was to take a sim- 
ple p r o g r a m - - m a n y  people were 
doing similar work at that t i m e - - a n d  
extract from it what you would need 
to prove that it was working prop-  
erly. Those were called verification 
conditions. They  were fed into an 
automatic theorem-proving  p rogram 
that would then prove that the origi- 
nal p rogram was working properly.  
This ran into the sand because it is 
far too difficult for a compute r  to do. 
Human  intelligence must accompany 
the business of  verifying that pro- 
grams, which are human  construc- 
tions, actually work. So, I wasn't sure 
how human  assistance could be 
brought  to bear  on this in a r igorous 
w a y .  

Then  I learned of  Dana Scott, 
who, with Chr is topher  Strachey, 
went into the foundat ions  of  pro- 
g ramming  languages. I not only had 
some discussion with Strachey about  
p rogramming  languages, I also lis- 
tened to Scott's lectures while he was 
visiting Oxford  University and read 
his writings. It was a very exciting 
time, because together  they began to 
work out  the mathematical  meaning 
of  p rog ramming  languages. 

I hoped  to start f rom the very rock 
bot tom with the mathematical  mean- 
ing of  languages, and use that as a 
f irm foundat ion for reasoning about 
compute r  p rograms that anyone 
might  have written. I wondered  how 
one might  do this. And  Scott actually 
gave the hint  by building, so to speak, 
some of  his mathematical  models 
into a formal  logical system that  
could be used as a basis for compute r  
assistance. When  you want to get a 
compute r  to assist with something,  it 
has to be formal; it has to be exact. 
The  way it's going to help must  be 
absolutely formal.  Scott d idn ' t  actu- 
ally call it the Logic for Computable  
Functions. I called it that. But he 
embedded  some of  his mathematical  
unders tanding  in this formal,  logical 
system. 

I was very excited about this. I 
went to Stanford University in 1971, 
and got the chance to work with John  
McCarthy in his artificial intelligence 
lab. When  I arrived, it was quite 
amusing because they wanted to do 
this kind of  work, but  they were also 
very keen to do some practical work. 
The re  was a lot of  work on founda-  

tions of  computer  science, or  mean- 
ings of  p rogramming  languages, 
along with the artificial intelligence. 
But we all need, in o rde r  to satisfy 
our  funding  agencies, something 
that actually runs and buzzes and 
whistles, something that actually con- 
vinces them that not only are we try- 
ing to unders tand  computers  but  
[that] we're also using them; you 
have to make your work concrete in 
o rde r  to get credibility. I r emember  a 
meet ing in McCarthy's AI  lab where 
we were all wonder ing  what imple- 
mentat ion should be done  next  to get 
machines to help in unders tanding  
our  own software activities. I was the 
new boy, and I actually wanted to do 
the next  implementat ion because I 
realized that Scott's work was jus t  
waiting to go into a computer  pro-  
gram that would then help us to rea- 
son about o ther  computer  programs.  
So I said, "I'll implement  Scott's 
logic." Tha t  was exciting because 
Scott had created something more  
general  than most people  realized. 

We worked on proving that a com- 
piler was correct. I f  you write a pro- 
gram in a high-level p rog ramming  
language, it's then converted by the 
compiler  into a low-level program.  
Tha t  shouldn ' t  change the meaning. 
I f  it does, that 's a disaster. So one of  
the first things you must do is show 
that the translation is correct. Mc- 
Carthy and his students had done 
some initial case studies on this. And  
we proved with LCF the correctness 
o f  a more  complex compiler ,  which 
worked with a r icher language.  I 
hadn ' t  realized that was going to be 
possible. To me, it was par t  of  the 
general  activity o f  eventually reach- 
ing something that ord inary  pro-  
g rammers  could use to check out  
their  own programs.  

Designing ML 
K F :  Did you try your proof techniques on 
certain languages already in existence 
when you were ~zt Stanford? 
R M :  Yes, and  I 'd  also tr ied that at 
Swansea, but  I rapidly began trying 
to prove proper t ies  of  whole lan- 
guages, so I wasn't  focused on a par- 
ticular language. McCarthy, (Allan) 
Newell, and  (Herb) Simon's lan- 
guage, LISP, was a wonderful  tool 
with which to write all the software 
that would eventually do this verifi- 
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cation. So McCarthy's laboratory and 
McCarthy himself  were a wonderful  
liaison for me because LISP process- 
ing was a wonderful  vehicle for what 
you might  call nonnumerical  pro- 
g r a m m i n g - - p r o g r a m m i n g  which 
realizes different  forms of  thinking 
than numerical  mathematics. That  
was a vehicle for doing all my work. 
In  fact, LISP led to the design of  
Metalanguage (ML). 

I left Stanford after two years, 
having had reasonable success with 
this reasoning tool. But it was very 
rigid. That  is, the way I could inter- 
act with this machine in helping me 
to reason, was that I could ask it to do 
certain formal transformations,  and 
it would do them correctly. By the 
way, the real pioneer  of  machine- 
assisted reasoning was deBrui jn in 
Hol land who invented his Automath  
system before this; I d idn ' t  know 
about it at the time. 

But the way that I wanted LCF to 
help in the reasoning business was 
this: I f  you've got a machine helping 
you, you want to not only get it to 
check what you ' re  doing, but  to be 
able to communicate to it certain 
general  strategies for reasoning. I 
needed a medium by which I could 
communicate to the machine certain 
general  procedures  for reasoning 
that it would later invoke, at my be- 
hest, on part icular  problems. I would 
not have to lead it through the ele- 
mentary  steps every time. I wanted to 
be able to give it larger  and larger  
chunks of  reasoning power, built up 
from the smaller chunks. So I would 
have to have a language by which I 
could communicate to the machine 
these tactics or  strategies. 

Then,  you come back to the prob- 
lem of  building houses on sand be- 
cause the more  languages you bring 
into your process, the more  possibili- 
ties you have for appear ing  to talk 
sense but  are actually talking non- 
sense. So the language we needed  to 
express the reasoning capabilities 
had to be very robust. We use the 
term "metalanguage," for a language 
that talks about o ther  languages. 
That ' s  why ML came into existence. 
It was the metalanguage with which 
we would interact with the machine 
in doing verification. It had to have 
what we call a r igorous type structure 
because that's the way p rogramming  

languages avoid talking certain kinds 
of  nonsense. But it also had to be 
very flexible because it was actually 
going to be used, and I d idn ' t  want to 
design a language that would slow 
me down. It had to have certain fea- 
tures that were at the front ier  o f  pro- 
g ramming  language design, such as 
h igher -order  functions of  the great- 
est possible power, and also side ef- 
fects and exceptions. An exception is 
jus t  a way o f  getting out  of  something 
that you shouldn ' t  be doing because 
it's not  working. Since strategies 
don ' t  work every so often, you use an 
exception to say, "Wrap this up. I 'm 
going to try something else." In  a 
p rogramming  language, an excep- 
tion is absolutely vital. And it was 
vital for this part icular  application. 

All of  this directed the design of  
ML, which occurred in Edinburgh 
with other  colleagues from 1974 
onward.  
Xlm: That was a 12-year project? 
H a :  Yes, ML began jus t  as a vehicle 
for communicat ing p roof  strategies 
within the LCF work. Malcolm 
Newey and Lockwood Morris, both 
of  whom I had met at Stanford,  and 
later Chr is topher  Wadsworth and 
Mike Gordon  came to work with me, 
and we created this language and 
some mathematical  unders tanding  
for it. 

The  LCF system at Edinburgh 
then became the language ML with 
some part icular  reasoning power 
expressed within that language. 
Gradually,  the language became 
more and more  important .  

A Longtlme Collaboration 
K F :  What was it like to collaborate with 
people on developing a language over the 
course of more than a decade? How did 
you work together? 
RM= That  was a wonderful  experi-  
ence. I t  came together  in ways that 
could not be predicted or  planned.  
When  I got to Edinburgh,  I had a 
research project funded  by the Sci- 
ence and Engineer ing Research 
Council (the British equivalent of  the 
NSF). The  first to jo in  me were 
Newey and Morris. We weren' t  quite 
clear what the language should be, 
and we tossed ideas a round  among 
ourselves. I r emember  Morris wrote 
the first compiler  for ML and left it 
behind in Edinburgh six weeks after 

he 'd finished it. Nobody ever found 
any mistakes in it. I t  was the first 
implementat ion o f  ML. And  Newey 
and I worked on other  parts of  the 
implementat ion as well. 

When Wadsworth and Gordon  
came, we developed the language 
more carefully so that it could serve 
as a basis for really big reasoning 
projects. At that point, the project 
divided; the reasoning work went on 
along one line, and language devel- 
opment  of  ML itself went along an- 
other. ML went from being a special 
language for this part icular  task to a 
general  language. And that hap- 
pened  in a beautiful,  but  unplanned  
way. One now-famous contr ibutor  
was an Italian graduate  student,  
Luca Cardelli,  who wanted a lan- 
guage for his Ph.D. work, so he im- 
p lemented an extension of  ML. 
Then  somebody else discovered this 
was a good language to teach to stu- 
dents. It then began a life as a gen- 
era l -purpose  language because we 
started teaching it to second-year 
underg radua te  students. I t  tu rned  
out  to be a way of  learning to pro- 
gram. 
KI~: Was that one of the surprises? 
H i :  Yes, one of  the reasons it 
tu rned  out  to be genera l -purpose  
was because the demands  of  the ap- 
p l i c a t i o n - t h e  LCF w ork - -we re  so 
s trong that if a language could do all 
of  that, then it would also do a lot of  
o ther  things as well. Tha t  happened  
in an uncontrol led way for a while. 
People used dif ferent  dialects ei ther 
because they liked exper iment ing  in 
language design, or  because they 
wanted it for teaching more clearly, I 
suppose. 

About  1983, on suggestion of  Ber- 
nard  Sufrin at Oxford,  I felt we 
ought  to pull the threads together  to 
see if  there  was a bigger language 
that comprised all the ideas people 
had been tossing about. I p roduced  a 
proposal  for s tandardizing this lan- 
guage. We began to have very intense 
discussions because language design 
isn't easy, and people disagree about 
it. But we acquired a g roup  o f  about  
15 people  who worked via email. We 
had a distr ibuted effort  involving 
David MacQueen at Bell Labs. So we 
began to play with the design and 
tried to f irm it up. 

Then  another  splendid thing hap- 
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pened.  MacQueen invented a new 
uppe r  level to the language that 
made  it more  appropr ia te  for large 
p rogramming  exercises. This en- 
abled you to write large modular  
programs and assist "p rogramming  
in the large." MacQueen had been in 
Edinburgh working with Rod 
Burstall, who had a mathematical  
project which actually led to Mac- 
Queen 's  idea of  modules of  ML. So 
some of  the mathematical ,  or  the the- 
oretical research, fed into the design 
of  the language in that way. 

For  the next four  to five years we 
were s tandardizing this language. I t  
went th rough  design after  design. In  
1989 we still d idn ' t  all completely 
agree,  but  those charged with writing 
the formal  definit ion of  the language 
published it with MIT  Press. 
KP: What was the greatest challenge in 
those 12 years? 
R M :  In terms of  the language de- 
sign, for me it was creat ing the for- 
mal definition, because the design 
had to be enshr ined in an absolutely 
r igorous definition. 
K F :  Enshrined? 
a M :  Yes, it had to be expressed 
completely rigorously. Not many lan- 
guages have had that completely rig- 
orous definition. Others  have had it 
in part.  Our  aim was to have not only 
a definit ion that  was completely rig- 
orous, but  was also quite small. The  
language was supposed to be power- 
ful but  so harmonious  and so well 
s t ructured that it d idn ' t  take many 
pages to write down the definit ion of  
everything you could do in it. Even- 
tually it took 100 pages, which is per- 
haps an o rde r  of  magni tude  smaller 
than for some powerful  languages 
like ADA, for which the formal  defi- 
nition is not easy. 

For  me, the greatest  challenge and 
the greatest  exci tement was that we 
were always interacting with three  
things: the design of  the language,  its 
implementat ion (because it always 
was being implemented  exper imen-  
tally), and the formal  definit ion it- 
self. You would design something,  
and then you would find out  that you 
could implement  it well, perhaps,  but  
that you couldn ' t  write down the for- 
mal definit ion very clearly because 
the formal  definit ion showed there 
was something missing in the design. 
So you'd go back to the design. Or  

you might  go back to the design be- 
cause something was not  imple- 
mented  very well. 

Concurrency and Parallelism 
KID: Let's move on to Calculus for Com- 
municating Systems ( CCS). 
R M :  The  deve lopment  of  CCS also 
went on for a long time. As Stanford,  
I got interested in trying to under-  
stand concurrent  comput ing  and 
parallel  comput ing  programs.  I t r ied 
to express the meaning  o f  concur- 
rent  comput ing  in terms that had 
been used for o ther  p rog ramming  
languages that were sequential. I 
found it wasn't easy, and I felt that 
concurrency needed  a conceptual  
framework,  which we did not  have. 
And  I d idn ' t  know what it should be. 

Of  course, I d idn ' t  know about  his 
work, but  Car l -Adam Petri had al- 
ready pursued  such a goal. But my 
motivation was actually to show how 
you could build concurrent  sys tems- -  
how you could create a conceptual  
f ramework in which you could com- 
pose and synthesize larger  and larger  
concurrent  systems from smaller 
ones and still retain a handle  on what 
it all means. That ' s  why I eventually 
approached  the algebraic method.  
Algebra  is about  combining things to 
make other  things and the laws that  
govern the ways you stick things to- 
gether. In  multiplication, A × B is a 
more  complicated thing than A or  B. 
Multiplication has certain laws. Tha t  
was exactly the same as parallel  com- 
position. Two programs,  P in parallel  
with Q, give you a more  complicated 
program,  and that parallel  composi-  
tion obeys some algebraic laws. So 
CCS was an a t tempt  to algebraicize 
the primitives of  concurrency. 

Concurrency Theory and 
Hardware 
K F :  To what extent does the hardware 
affect the theory of concurrency? Doesn't 
it matter the way the processors are linked 
and whether the machine is fine- or 
coarse-grained ? 
R i l l :  Yes, that 's a big question be- 
cause there are two things you might  
be trying to do when you ' re  studying 
parallelism. You might  be studying 
the meaning  o f  a parallel  p rogram-  
ming language that is going to run  
on some hardware.  Or  you might  be 
trying to describe a concurrent  sys- 
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tem that is a piece o f  hardware.  What  
I was really aiming at was not jus t  a 
theory of  p rogramming ,  but  a way to 
describe concurrent  activity of  any 
kind. And  the machine is jus t  one 
example of  something that has 
highly concurrent  activity. So there 
must be a theory of  concurrency that 
can describe the machines on which 
you might run  a parallel  program-  
ming language. You must be able to 
apply your  theory at these different  
levels. Parallel p rogramming  is jus t  
one kind of  concurrent  activity. 

It does mat ter  from the point of  
view of  efficiency, and even feasibil- 
ity, on what hardware  you will run  a 
parallel  language. Some languages 
will be much easier to run on some 
hardware  than others. But that very 
match, that very question, "What is it 
about  a machine that makes it pos- 
sible or  impossible to run  a certain 
p rogramming  language?" should be 
part  of  the theory o f  computer  sci- 
ence. Compute r  science should be 
able to address that machine- 
language link, jus t  as it addresses the 
language itself. 

The  theory should also address  
interaction between humans and in- 
teraction in any organization. The  
p rogramming  language is a small 
part  o f  concurrent  activity. So one is 
aiming for a theory that is actually 
broader  than computer  science. 
K F :  Do you think the interrelationship 
between a parallel language and a paraL 
lel machine is more problematic than that 
of sequential languages and sequential 
machines? 
R i m :  Yes, I do. I don ' t  think it's 
more problematic jus t  because it's 
one step up. It's more  problematic 
because it has a larger  number  of  
degrees of  freedom. The  only limita- 
tion in trying to unders tand  concur- 
rency in the way that computer  scien- 
tists do, is that we're trying to 
unders tand  it discretely ra ther  than 
continuously. On the whole, we're 
interested in discrete events in com- 
puting,  ra ther  than continuous ones. 
At least that's been the fashion for 
the last three decades. 

There  are also so many different  
ways by which you might tackle the 
problem. Sequential comput ing was 
a wonderful  beginning for us. The  
normal  way you would write a pro- 
gram from the very beginning would 

always be sequential, and that gave us 
an inroad into unders tanding  com- 
puting. 

But back to concurrency, I needed  
a new conceptual framework.  When  
I went to Denmark  in 1979 and 1980, 
I gave some lectures in which it came 
together  ra ther  well. I wrote the 
book on CCS (A Calculus of Communi- 
cating Systems), which was essentially a 
ramification of  10 lectures I gave 
there. For  the next five or  so years, I 
jus t  s tudied CCS. Between 1980 and 
1985 I began to develop the mathe- 
matics to see whether  you could find 
some abstract mathematical  under-  
s tanding undernea th  it. 

CCS was obviously not perfect,  but  
it existed as a concrete language and 
method of  description. It had an al- 
gebraic theory, and you could go 
undernea th  it as I began to see 
whether  it could be explained more  
smoothly, more abstractly mathemat-  
ically. But then it could also be used 
in design studies. Tha t  is, it could be 
used as a way of  unders tanding  com- 
munications protocols, how traffic 
lights work for example,  or  simple 
concurrent  systems in practice. 

CCS was used to explain the speci- 
fication language LOTOS, which is a 
way of  describing communications 
protocols and which is very widely 
used now. CCS was at a level that 
enabled you to dig below for seman- 
tic unders tanding,  but  you could also 
build on top o f  it to get more useful 
things in the field. 

Dur ing the 1980s, Tony Hoare 's  
work was going along in parallel. 
And  he had similar ideas to mine. He 
invented the language CSP before I 
d id  the algebraic work on CCS. 
Later, he pursued  the theory of  CSP 
in a way that was complementary  to 
my algebraic theory. So the algebraic 
field became very rich. His ideas 
were very different  and very impor-  
tant. Then  there began a search for a 
general  f ramework that encom- 
passed his ideas and those in CCS 
and o ther  process algebras, notably 
those o f  Jan  Bergstra and  Jan  Willem 
Klop in Hol land on ACP. And  that, 
in turn,  was used on a lot of  applica- 
tions. 

We've been looking at these differ- 
ent  approaches  for many years, try- 
ing to subsume them into a whole. 
We sometimes succeed, and we 

sometimes fail. Actually, researchers 
in these three  algebraic endeavors 
have been collaborating lately to iron 
out  some differences. But it keeps 
exploding because no sooner do you 
try to br ing them together  than you 
discover that there are extra  things 
that you want to add.  In the begin- 
ning, we d idn ' t  talk about real time 
or  probability. We wanted to attach 
probabilities to the possibilities that 
are expressed in these process alge- 
bras. 

One line o f  development  that links 
the algebraic concurrency endeavor  
and the already existing and very 
fruitful  work of  Petri on Petri nets 
has become ra ther  promising and yet 
difficult because the conceptual basis 
in the two cases doesn ' t  line up  per- 
fectly. So the theory of  concurrency 
is enriched by having these different  
approaches  and then looking for 
what it takes to commonize them, to 
actually find out  that they're not con- 
tradictory and that they're about dif- 
ferent  aspects of  essentially the same 
problem. This field has become 
enormously rich in the last decade. 

Object-Oriented Programming 
K F :  There are three characterizations of 
programming methods: imperative or 
structured, functional, which is what you 
started out doing, and object oriented. 
Can you comment on the strong trend 
toward object-oriented programming in 
the U.S. ? 
R M :  Object-oriented p rogramming  
is a wonderful  example of  how fruit- 
ful things don ' t  happen  very pre- 
cisely. Tha t  is, the p rogramming  
community has come up with this 
tantalizing, powerful,  and productive 
way of  thinking that is obviously with 
us to stay because it gives people jus t  
what they want. But at the same time 
it's very difficult to unders tand  
mathematically and semantically. 
People at the forefront  of  object- 
or iented p rogramming  are aware 
that it's impor tant  and powerful.  
And  they want to deepen  semantic 
unders tanding  of  it. 

It's a challenge to somebody who 
wants to develop a theory to make 
sure it will actually contribute to that 
unders tanding.  Different  computer  
science theories are needed to ex- 
plain object-oriented p rogramming  
because it is partly about concur- 
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rency. I t  naturally talks about objects 
that coexist and must  therefore  be 
allowed to behave simultaneously. 
That ' s  parallelism or  concurrency.  

It's also about the classification of  
objects: the type structure,  how ob- 
jects inheri t  methods from the class 
to which they belong. I f  you define 
new subclasses, then you can add 
new methods.  An object's methods 
de te rmine  how it may be used. You 
want to insert  some fire walls into a 
p rog ramming  language design so 
people  will stop trying to subject an 
object to operat ions that are mean- 
ingless for that object. That ' s  what 
type s t ructur ing is all about. 

One theory that is contr ibut ing a 
lot to object-oriented p rog ramming  
is the deve lopment  of  a type struc- 
ture. Tha t  part  does not primari ly 
have to do with concurrency.  On the 
other  hand,  the dynamic part,  or  the 
behavioral  aspect of  object-oriented 
programming ,  part icularly concur- 
rent  object-oriented p rogramming ,  is 
precisely what we should try to un- 
ders tand from the point  of  view of  
concurrency because concurrency is 
about independen t  objects. These  
may work together,  cooperate,  or  
confuse one another.  So you have to 
be able to explain object-oriented 
p rogramming  of  the concurrent  kind 
in terms of  a basic concurrency the- 
ory. Otherwise that theory isn't any 
good. 

The re  have been some very excit- 
ing initiatives to create that under-  
s tanding on the basis of  theories we 
have currently.  Carl Hewitt comes in 
here  because his notion of  Actors, 
which he invented 20 years ago, was 
a great  stimulus in providing the 
conceptual  f ramework for object- 
or iented programming.  We need to 
unde rp in  both object-oriented pro-  
g ramming  and the Actors model  
with something more formal or  more 
basic. That ' s  where may process alge- 
bra  work (with Joachim Parrow and 
David Walker) is going now. In my 
lecture I discuss the dynamic behav- 
ior of  objects in object-oriented pro-  
gramming.  Very interest ing work by 
Japan ' s  Kohei Honda  and Mario 
Tokoro  bridges between our  process 
algebra work and concurrent  object- 
or iented programming .  It shows how 
one can be adap ted  or  t rained to 
explain the other.  That ' s  a very active 

field. 
My present  concurrency research 

is in developing a mathematical  the- 
ory of  this model,  constantly testing it 
(either myself  or  asking others to) in 
various, more practical frameworks,  
like object-oriented programming ,  
logic p rogramming ,  even functional 
or  imperat ive p rogramming ,  to make 
sure it can under l ie  all o f  these 
things. I f  it can't, then it's the wrong 
approach.  

I 'm not saying everybody wants to 
think at this low level. But if you ' re  
ever going to run  a functional pro-  
gram on a big concurrent  machine 
while runn ing  an object-oriented 
p rogram on the same machine,  and 
even communicate  between them, 
then you 'd  have to have some com- 
mon theoretical f ramework in which 
they can both be explained.  Other-  
wise, it's awful. We have total incom- 
prehension.  We do have these heter-  
ogeneous systems with one par t  
unders tood  in terms of  functional 
p rog ramming  or  some dif ferent  
model,  and  o ther  parts in object ori- 
ented.  But you must  be able to un- 
derp in  them all. Reliability really is 
terribly important .  

The  theory is still not as clean as it 
should be. The re  is a basic theory 
waiting to be revealed more clearly. 
It has elements o f  Petri net theory; it 
has elements of  the impor tan t  no- 
tions of  reference and naming.  

This theory is gu ide d - - i t ' s  not  
wander ing  along in a trackless fash- 
ion. It's being submit ted to the math- 
ematical test all the time: Can we 
really work with it? Is it tractable 
mathematically? Does it really under-  
pin all o f  the d i f ferent  things that 
people are doing in practice? I f  it 
tries to escape from these criteria 
then we shall notice. And  then, it 
should cease to be interesting. 
K P :  The title of a paper you wrote in 
1987, "'Is Computing an Experimental 
Science?" raises a very interesting ques- 
tion. What prompted you to write it at the 
time ? 
R M :  It resulted from ideas that had 
been a round  for a long time coming 
together  with a part icular  practical 
need. We had good funding  from 
our  Science and Engineer ing Coun- 
cil. In  the middle  of  the 1980s, the 
Alvey Program was supposed to 
stimulate industry and jo in  it onto 
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academic research. We feared the 
effort  would be dra ined  from the 
theoretical part  of  the research and 
that funding would be devoted to 
shorter- term activities. These  are 
highly necessary, but  we d idn ' t  want 
that to happen  to the de t r iment  o f  
theoretical work. The  trouble with 
computer  science is that it's so appli- 
cable you can be blamed if  you're  not 
doing immediately applicable re- 
search. The re  is such a demand  for 
application research that if you are 
doing something with longer- term 
implications, you can be criticized for 
not doing the most urgent  thing. 
That ' s  a great  danger ,  because com- 
puter  science is so broad that if it 
doesn' t  have a basic theory, we will be 
lost. There ' s  so much going on, so 
much computing,  so much commu- 
nications. How could it be that this 
doesn' t  have a theory? It  has to go 
alongside the practice. 

Therefore ,  the more you respond 
to shorter  term, however necessary 
and impor tant  the demands,  the 
more you run  the risk that you're  
starving the basic science, which 
should be growing up  at the same 
time. We asked the Alvey Directorate 
to r emember  that the basic research 
p rogram is pretty s trong in Britain 
and argued it should not be a casu- 
alty of  this new and exciting effort.  
We asked them to recognize us as a 
laboratory that would link between 
the theoretical research and indus- 
trial practice. They  responded  gen- 
erously. 

My colleagues and I decided to 
make the case that the relationship 
between us and the Alvey initiative 
should be bidirectional.  You don ' t  
jus t  take things out  of  academia and 
apply them. You use the industrial 
experience as a guide. That 's  the 
experiment .  That ' s  what computer  
science is at the m o m e n t - - o n e  large 
experiment .  And  it's a very uncon- 
trolled experiment .  

So the questions are, "Is that abso- 
lute nonsense? Is it an experiment? 
Or is that jus t  a crazy thing to say?" 
Some will say it's c razy- -a l l  that com- 
puter  science is is a bag of  tricks. You 
use computers,  and you use them in 
different  ways, jus t  as you use water 
for different  purposes.  

In  the paper  which I gave at the 
inaugurat ion of  our  laboratory, I 

made  the case that if you look deeply, 
you find less difference between 
computer  science and o ther  estab- 
lished sciences than you might ex- 
pect. The  exper iments  we do in com- 
puter  science are not that much 
dir t ier  or  fuzzier than some experi-  
ments in o ther  sciences. Of  course, 
physics is the queen of  the sciences, 
and the exper imenta l  discipline is 
extremely sophisticated. We can't  
match physics in the ref inement  of  
our  exper imental  discipline, but  that 
isn't to say we're not  an exper imental  
discipline. When you test a piece of  
software to see whether  it works, 
that 's some kind of  exper iment .  And  
in testing a piece of  software, what 
are you testing at the same time? 
You're also testing the language in 
which it's written, and you're  testing 
the formal theory that underl ies  that 
language. Why can't  that be called 
exper imental  science? I suppose the 
way I say it seems defensive. Many 
people would say, "Yes, of  course, it's 
an experiment ."  But enough people 
will have assumed there isn't a sci- 
ence. So it is actually worth under l in-  
ing that I think it is experimental .  

I claimed fur ther  in that paper  
that there  are concepts from com- 
puter  science that will influence 
mathematics. Most people learned 
about sets in mathematics when they 
were children. When we unders tand  
about processes as mathematical  ob- 
jects, school chi ldren in the second 
and third decade in the twenty-first 
century will actually think about  pro- 
cesses in the same abstract way they 
now think about sets. Tha t  will be 
because of  computer  science. It's 
exper imental  in that you ' re  drawing 
concepts out  of  practice. Obviously, 
you don' t  draw concepts out  which 
don ' t  inform the activity. Experi- 
mental science is a way o f  developing 
a conceptual  f ramework by drawing 
out the concepts that actually do ap- 
pear  to underl ie  the practice, but  
testing them all the time. 

Advice to Students 
KIm: Do you have any advice that you 
would like to give to young people who are 
starting out in computer science about the 
best way to prepare themselves in comput- 
ing? 
H a :  One doesn' t  want to sound 
pompous.  The  best thing to do, 

whether  you ' re  of  a theoretical or  a 
practical bent,  is to treat  the subject 
as nei ther  purely theoretical or  
purely practical. The  worst thing you 
can do is to follow your bent, which 
would probably be on one of  those 
sides, and ignore the other  side. The  
whole richness o f  the subject comes 
from the interplay between practice 
and theory. 

Many will pretty soon find them- 
selves ignoring one of  those compo- 
nents because they will naturally be- 
come very applications or iented or  
very basic-research oriented.  But the 
longer we can keep the link between 
the theoretical f ront ier  and the prac- 
tical frontier,  the better  the whole 
thing will be. We should encourage ' 
the next generat ion to respect that 
link. I f  you don ' t  respect that, you 
lose a whole degree  of  f reedom in 
the interest of  the subject. 

What  makes it interesting is that 
the link is there. Compute r  science is 
actually a study of  things that hap- 
pen. It's not only a study of  a basic 
theory, and it is not  just  the business 
of  making things happen.  It's actu- 
ally a study of  how things happen.  So 
the advice is: Don' t  lose the link! [ ]  
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