
SNU 4541.574

Programming Language Theory



Acknowledgment



Slides

A combination of

I Prof. Benjamin Pierce’s slides (70%)

I and mine (30%)



Course Overview



What is “programming language theory”?

“Programming language theory” (or “software foundation”) is the
mathematical study of the meaning of programs.

The goal is finding ways to describe program behaviors that are
both precise and abstract.

I precise so that we can use mathematical tools to formalize
and check interesting properties

I abstract so that properties of interest can be discussed clearly,
without getting bogged down in low-level details



Why study software foundations?

I To prove specific properties of particular programs (i.e.,
program verification)

I Important in some domains (safety-critical systems, hardware
design, security protocols, inner loops of key algorithms, ...),
but still quite difficult and expensive

I To develop intuitions for informal reasoning about programs

I To prove general facts about all the programs in a given
programming language (e.g., safety or isolation properties)

I To understand language features (and their interactions)
deeply and develop principles for better language design
(PL is the “materials science” of computer science...)



What you can expect to get out of the course

I A more sophisticated perspective on programs, programming
languages, and the activity of programming

I How to view programs and whole languages as formal,
mathematical objects

I How to make and prove rigorous claims about them
I Detailed study of a range of basic language features

I Deep intuitions about key language properties such as type
safety

I Powerful tools for language design, description, and analysis

Most software designers are language designers!



What this course is not

I An introduction to programming

I A course on HOT(higher-order & typed) programming
(though we’ll be doing some HOT programming along the
way)

I A comparative survey of many different programming
languages and styles (boring!)

I A seminar on programming language research



Approaches to Program Meaning

I Denotational semantics and domain theory view programs as simple
mathematical objects, abstracting away their flow of control and
concentrating on their input-output behavior.

I Program logics such as Hoare logic and dependent type theories
focus on logical rules for reasoning about programs.

I Operational semantics describes program behaviors by means of
abstract machines. This approach is somewhat lower-level than the
others, but is extremely flexible.

I Process calculi focus on the communication and synchronization
behaviors of complex concurrent systems.

I Type systems describe approximations of program behaviors,
concentrating on the shapes of the values passed between different
parts of the program.



Overview

In this course, we will concentrate on operational techniques and
type systems.

I Part -1: Preliminaries
I Inductive definitions
I Inductive proofs
I Inference, logic
I Abstract syntax
I Operational semantics

I Part 0: Higher-order & typed programming
I A taste of OCaml
I HOT programming style
I Implementing programming languages

I Part I: Modelling programming languages
I Syntax and operational semantics
I The lambda-calculus
I Syntactic sugar; fully abstract translations



Overview

I Part II: Type systems
I Simple types
I Polymorphic types
I Type inference
I References
I Recursive type


	Acknowledgment
	Course Overview

