
SNU 4541.664A Program Analysis, Spring 2009

Final Exam

06/15/2009, 19:00-22:00

Problem 1 (5 pts) ��A� l��í&h���� ì�r$3� ·ú��¦o�7£§_� ��� ñß��̀¦ BjË̈r��̧

Tabulate(F̂ : (Code → D̂)→ (Code → D̂), C : Code)

T, T ′ : Code → D̂;

begin

∀Ci of C : T (Ci) := T ′(Ci) := ⊥
D̂

;

repeat

T ′ := T ;

∀Ci of C : T (Ci) :=

until T v T ′ (* no more increase *)

end

Problem 2 (10 pts)��A�ì�r$3�·ú��¦o�7£§_����ñß��̀¦BjË̈r��̧. V,�y�l�(widening)õ�a%vy�l�(narrowing)\�¦

��6 xK��� ���H �â
Äºs���.

Tabulate
4
5

(F̂ : (Code → D̂)→ (Code → D̂), C : Code)

T, T ′ : Code → D̂;

d : D̂;

begin

∀Ci of C : T (Ci) := T ′(Ci) := ⊥
D̂

;

repeat

T ′ := T ;

∀Ci of C :

d := F̂ (λx.T (x)) Ci;

until T v T ′ (* no more increase *)

repeat

T ′ := T ;

∀Ci of C : T (Ci) :=

until T ′ v T (* no more decrease *)

end

Problem 3 (10 pts) ��A� ì�r$3� ·ú��¦o�7£§_� ��� ñß��̀¦ BjË̈r��̧. ½+É{9�ëß� �l�(worklist) ~½Ód��s�

�¦, V,�y�l�(widening)õ� a%vy�l�(narrowing)\�¦ ��6 x½+É ��¹כ��9 \O���H �â
Äºs���.

1

Tabulate(F̂ : (Code → D̂)→ (Code → D̂), C : Code)

T : Code → D̂, y : D̂, W : 2Code , w : Code

f(c : Code) : D̂

begin

record that evaluation of w requires that of c;

return T (c)

begin

∀Ci of C : T (Ci) := T ′(Ci) := ⊥
D̂

;

W := {Ci | Ci ∈ C}

repeat

w := Select(W)

y :=

if then

T (w) := y

∀w′ whose evaluation needs that of w :

W := Add(W, w′)

until W = {}

end

Problem 4 (20 pts) ��6£§_� ���#Q�Ð &ñ
�÷&��H áÔ�ÐÕªÏþ�� ¦¹���K�$3��̀כ

e → z | e+e | -e | if e e e

��A�_� �BNçß/���¹כ

2Z
−→←−
α

γ
Â = {⊥, +, -, 0, 0+, -0,>}

\�"f &ñ
_���¦ Õª &ñ
_��� z�́]j _�p�\�¦ �̧¿º �í[O�ô�Ç����H �¦̀�	כ �_�¹���K�$3כ d�¦\�"f 7£x"î
���.

γ ⊥ = ∅

γ 0 = {0}

γ - = {z ∈ Z | z < 0}

γ + = {z ∈ Z | z > 0}

γ -0 = {z ∈ Z | z ≤ 0}

γ 0+ = {z ∈ Z | z ≥ 0}

γ > = Z

Problem 5 (85 pts) Consider the following imperative language C--:

program pgm → c

command c → x := e | x ∗ := e | c ; c

| if e then c else c

| repeat c until e

expression e → z | true | false

| x | x ∗ | e + e | e - e

| x < e | x ∗ < e | malloc | readint

Command changes the memory. Expression computes a value. Command assigns a value

to a memory location denoted (x) or dereferenced (x*) by a variable, does a sequence of

2

commands, branches based on a boolean condition, and repeats until a condition is true.

Expression value is either an integer, a location, or a boolean. Expression reads an integer

(readint) from the outside world, is a constant integer, is the value at a location denoted (x)

or dereferenced (x*) by a variable, is the result of the usual integer or boolean operations, or

is a freshly allocated (malloc) integer-sized location.

The C-- has been used to program the inertia navigation system of the Korean liquid-fuel

rocket KSR-XII. The C-- program controls the KSR-XII rocket until it reaches its orbit.

Because KSR-XII’s engineers have experienced many failures of the predecessor rockets

soley because of software errors, this time they want to make sure that their software is

completely bug-free. KSR-XII’s definition of bug-freeness is:

• every integer variable must have values within particular ranges. For example, some

variable that determines the rocket’s throttle valve must not exceeds some limit.

• every location variable must store at most one location throughout the program exe-

cution.

Your company offered them the software technology for the problem: static analysis.

Design your analyzer(25 pts) including the three semantics (standard/collecting/abstract se-

mantics), prove that the design is correct(30 pts), and roughly show the fixpoint steps(30) for

the following example programs to demonstrate its reasonable accuracy.

• Example 1

x := 0;

repeat

x := x+1;

until x < 1000

• Example 2

x := malloc; x* := 0; y := x

repeat

x* := x* - 1; y* := y* + 3

until x < 1000

• Example 3

x := malloc; x* := 1; y := x; z := 0; i := readint;

if i < 0

then x* := x* + y*; z := 1 else (x* := x* - y*; z := 3)

x* := x* + z

• Example 4

x := malloc; x* = 0; y := malloc; y* = 1; i := readint;

repeat

if i < 0

then y := x else x := y;

x* := y*+1;

until x* < 10

END

3

