Virtual Machine Language T

1 Syntax

Kwangkeun Yi

2011, 1996

This virtual machine’s address space is not pre-divided into registers and the main memory. A par-

ticular memory architecture is programmed by declaring memory areas (using AREA) each of which

is addressed by a pair of an area name and an offset in the area. Conventional machines that have

registers r0, rl and etc. can be mimicked by declaring an area, say, r and using locations r(0),

r(1) and so on.

A single memory location can have either an integer, a string (of any length), a label, or a location.

An abstract syntax of T is:

pgm =
decl =

mnstr

id, label

declinstr™ program

AREA id memory area declaration
MOVE m m

ADD
SUB
MUL
DIV
TOZ
JMP
JMPZ m m
JMPN m m
LAB label
READ m
WRITE m

3 33 3 3 3
3 33 3 3
3 33 3

integer | "string" | id | label
m(m)
maet

alpha-numeric identifier

For example, a summation program in T:

AREA A // sum O upto A
AREA S // S has the result
LAB START

READ A

LAB

LAB

LAB

MOVE O S

LOoP

ADD sSe Ae S
SUB A 1 A
JMPZ A@ EXIT
JMP LOOP

EXIT

WRITE S@

END

2 Semantics

Semantic objects

M €
pc €
m
l

An interpretation rule:

Mem
Loc
Val
Int
Addr
Lab

Loc =5 Val memory
Area x Int location

Loc U Int U Lab U String value
program counter
address term
label

(M, pc) = (M', pc")

indicates that a memory M changes to M’ after an instruction at pc is executed, and the next program

counter becomes pc’.

x, where its value is y.

(M, pc :
(M, pc:
(M, pc :
(M, pe :
(M, pc :
(M, pc :
(M, pc :
(M, pe :
(M, pc :
(M, pc:
(M, pc :
(M, pe :
(M, pc :

MOVE mi ﬂh)

ADD my1 mo mg

MUL mq1 mo M3

)
SUB my mg ms3)
)
)

DIV mi Mo M3

TOZ my mo)
JMP m)

JMPZ my mg)
JMPN m; mg)
READ m)
WRITE m)
LAB ¢)

LAB END)

Y

Notation M [z — y] indicates a new memory that is equivalent to M except at

M,m4)], pc +1)
M, my) @ val(M, ms)], pc + 1)
M, mq) & val(M,m2)], pc + 1)
) ()])

()])

—_— ==

M, mq) ® val(M,m2)], pc + 1
,pc+1

SEE=EEE

[val()

[val()
[val(M ms) — val
[val()

[val()

[

(

(

(

(

(

(val(M ma) — cast(val(M m1))], pc + 1)

(M, pefy(val(M,m)))

(M, if val(M,mq) = 0 then pcfy(val(M,ms)) else pc+ 1)
(M, if val(M,mq1) < 0 then pcfy(val(M,ms)) else pc+ 1)
(M[val(M,m) — input()], pc + 1)

(M, pc+1)

(M, pc+1)

(M, pc)

Auxiliary function val(M, m) indicates a value represented by an address term m at a given memory

M:

val: Mem x Addr — Val

val(M, a) = {(a,0) aread id

val(M, x) ==z integer/string/label
val(M,m1(m2)) = val(M,my1) ® val(M,ms) offset address
val(M, mQ) = M (val(M,m)) dereference

Casting function cast(v) casts a location to an integer by removing the area name from the location:
cast: Loc — Int
cast{a, z) = z.

v1 D vg is defined only when

e both v; and vy are integer. Then the & is the integer addition.

e both v; and vy are locations whose areas are identical. Then v; ® vy is the location in the area

whose offset is the sum of v;’s offsets.

e one of them is an integer and the other is a location. Then the result is the location in the same

area whose offset is incremented by the integer.
Similarly for ©,®, and @.
e “AREA sp” declares new memory area sp.
e “MOVE 2 sp” moves constant 2 to location (sp,0).
e “MOVE "cs" sp” moves string “cs” to location (sp,0).
e “MOVE sp@ sp” moves value at location (sp,0) to location (sp, 0).

e “MOVE sp(-1)@ sp” moves value at (sp, —1) to location (sp,0).

Function pcfy(£) returns a label £’s program counter value, and input() gets an integer from the
outside world.
Execution (semantics) of a program P is the sequence of states starting from an empty memory

and the initial program counter at label START:
([], pcfy(START)) = - -

Note that the end of the program is when the program counter reaches the END label. Therefore any
program must have the two labels (START and END).

