
Virtual Machine Language T

Kwangkeun Yi

2011, 1996

1 Syntax

This virtual machine’s address space is not pre-divided into registers and the main memory. A par-

ticular memory architecture is programmed by declaring memory areas (using AREA) each of which

is addressed by a pair of an area name and an offset in the area. Conventional machines that have

registers r0, r1 and etc. can be mimicked by declaring an area, say, r and using locations r(0),

r(1) and so on.

A single memory location can have either an integer, a string (of any length), a label, or a location.

An abstract syntax of T is:

pgm ::= decl+instr+ program

decl ::= AREA id memory area declaration

instr ::= MOVE m m

| ADD m m m

| SUB m m m

| MUL m m m

| DIV m m m

| TOZ m m

| JMP m

| JMPZ m m

| JMPN m m

| LAB label

| READ m

| WRITE m

m ::= integer | "string" | id | label

| m(m)

| m@+

id , label alpha-numeric identifier

For example, a summation program in T:

AREA A // sum 0 upto A

AREA S // S has the result

LAB START

READ A

1

MOVE 0 S

LAB LOOP

ADD S@ A@ S

SUB A@ 1 A

JMPZ A@ EXIT

JMP LOOP

LAB EXIT

WRITE S@

LAB END

2 Semantics

Semantic objects

M ∈ Mem = Loc fin→ Val memory

Loc = Area × Int location

Val = Loc ∪ Int ∪ Lab ∪ String value

pc ∈ Int program counter

m ∈ Addr address term

` ∈ Lab label

An interpretation rule:

(M , pc) =⇒ (M ′, pc′)

indicates that a memory M changes to M ′ after an instruction at pc is executed, and the next program

counter becomes pc′. Notation M [x 7→ y] indicates a new memory that is equivalent to M except at

x, where its value is y.

(M, pc : MOVE m1 m2) =⇒ (M [val(M,m2) 7→ val(M,m1)], pc + 1)

(M, pc : ADD m1 m2 m3) =⇒ (M [val(M,m3) 7→ val(M,m1)⊕ val(M,m2)], pc + 1)

(M, pc : SUB m1 m2 m3) =⇒ (M [val(M,m3) 7→ val(M,m1)	 val(M,m2)], pc + 1)

(M, pc : MUL m1 m2 m3) =⇒ (M [val(M,m3) 7→ val(M,m1)⊗ val(M,m2)], pc + 1)

(M, pc : DIV m1 m2 m3) =⇒ (M [val(M,m3) 7→ val(M,m1)� val(M,m2)], pc + 1)

(M, pc : TOZ m1 m2) =⇒ (M [val(M,m2) 7→ cast(val(M,m1))], pc + 1)

(M, pc : JMP m) =⇒ (M, pcfy(val(M,m)))

(M, pc : JMPZ m1 m2) =⇒ (M, if val(M,m1) = 0 then pcfy(val(M,m2)) else pc + 1)

(M, pc : JMPN m1 m2) =⇒ (M, if val(M,m1) < 0 then pcfy(val(M,m2)) else pc + 1)

(M, pc : READ m) =⇒ (M [val(M,m) 7→ input()], pc + 1)

(M, pc : WRITE m) =⇒ (M, pc + 1)

(M, pc : LAB `) =⇒ (M, pc + 1)

(M, pc : LAB END) =⇒ (M, pc)

Auxiliary function val(M,m) indicates a value represented by an address term m at a given memory

M :

val :Mem ×Addr → Val

2

val(M,a) = 〈a, 0〉 aread id

val(M,x) = x integer/string/label

val(M,m1(m2)) = val(M,m1)⊕ val(M,m2) offset address

val(M,m@) = M(val(M,m)) dereference

Casting function cast(v) casts a location to an integer by removing the area name from the location:

cast :Loc → Int

cast〈a, z〉 = z.

v1 ⊕ v2 is defined only when

• both v1 and v2 are integer. Then the ⊕ is the integer addition.

• both v1 and v2 are locations whose areas are identical. Then v1 ⊕ v2 is the location in the area

whose offset is the sum of vi’s offsets.

• one of them is an integer and the other is a location. Then the result is the location in the same

area whose offset is incremented by the integer.

Similarly for 	,⊗, and �.

• “AREA sp” declares new memory area sp.

• “MOVE 2 sp” moves constant 2 to location 〈sp, 0〉.

• “MOVE "cs" sp” moves string “cs” to location 〈sp, 0〉.

• “MOVE sp@ sp” moves value at location 〈sp, 0〉 to location 〈sp, 0〉.

• “MOVE sp(-1)@ sp” moves value at 〈sp,−1〉 to location 〈sp, 0〉.

Function pcfy(`) returns a label `’s program counter value, and input() gets an integer from the

outside world.

Execution (semantics) of a program P is the sequence of states starting from an empty memory

and the initial program counter at label START:

([], pcfy(START)) =⇒ · · ·

Note that the end of the program is when the program counter reaches the END label. Therefore any

program must have the two labels (START and END).

2

3

