Transitional Semantics

State transition sequence

 $s_0 \hookrightarrow s_1 \hookrightarrow s_2 \hookrightarrow \cdots$

where \hookrightarrow is a transition relation between states \mathbb{S}

 $\hookrightarrow \subseteq \mathbb{S} \times \mathbb{S}$

A state $s \in S$ of the program is a pair (l, m) of a program label l and the machine state m at that program label during execution.

Concrete Transition Sequence

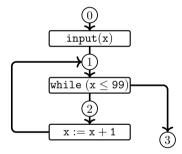
Example

Consider the following program

input(x);
while
$$(x \le 99)$$

 $\{x := x + 1\}$

Let labels be "program points."

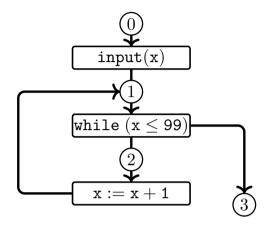


Let the initial state be \emptyset . Some transition sequences are:

 $\begin{array}{lll} \text{For input 100:} & (0, \emptyset) \hookrightarrow (1, x \mapsto 100) \hookrightarrow (3, x \mapsto 100). \\ \text{For input 99:} & (0, \emptyset) \hookrightarrow (1, x \mapsto 99) \hookrightarrow (2, x \mapsto 99) \hookrightarrow (1, x \mapsto 100) \hookrightarrow (3, x \mapsto 100). \\ \text{For input 0:} & (0, \emptyset) \hookrightarrow (1, x \mapsto 0) \hookrightarrow (2, x \mapsto 0) \hookrightarrow (1, x \mapsto 1) \hookrightarrow \dots \hookrightarrow (3, x \mapsto 100). \end{array}$

Kwangkeun Yi (Seoul National U)

Reachable States



Assume that the possible inputs are 0, 99, and 100. Then, the set of all reachable states are the set of states occurring in the three transition sequences:

$$\{ (0, \emptyset), (1, x \mapsto 100), (3, x \mapsto 100) \}$$

$$\cup \{ (0, \emptyset), (1, x \mapsto 99), (2, x \mapsto 99), (1, x \mapsto 100), (3, x \mapsto 100) \}$$

$$\cup \{ (0, \emptyset), (1, x \mapsto 0), (2, x \mapsto 0), (1, x \mapsto 1), \cdots, (2, x \mapsto 99), (1, x \mapsto 100), (3, x \mapsto 100) \}$$

$$= \{ (0, \emptyset), (1, x \mapsto 0), \cdots, (1, x \mapsto 100), (2, x \mapsto 0), \cdots, (2, x \mapsto 99), (3, x \mapsto 100) \}$$

Concrete Semantics: the Set of Reachable States (1/3)

Given a program, let I be the set of its initial states and *Step* be the powerset-lifted version of \hookrightarrow :

$$\begin{aligned} & \textit{Step} : \wp(\mathbb{S}) \to \wp(\mathbb{S}) \\ & \textit{Step}(X) = \{s' \mid s \hookrightarrow s', s \in X\} \end{aligned}$$

The set of reachable states is

 $I \cup Step^1(I) \cup Step^2(I) \cup \cdots$.

which is, equivalently, the limit of C_i s

$$\begin{array}{rcl} C_0 &=& I\\ C_{i+1} &=& I \ \cup \ \mathcal{Step}(C_i) \end{array}$$

which is, the least solution of

$$X = I \cup Step(X).$$

Concrete Semantics: the Set of Reachable States (2/3)

The least solution of

 $X = I \cup Step(X)$

is also called the least fixpoint of F

 $F: \wp(\mathbb{S}) \to \wp(\mathbb{S})$ $F(X) = I \cup Step(X)$

written as

lfp*F*.

Theorem (Least fixpoint) The least fixpoint lfpF of $F(X) = I \cup Step(X)$ is $\bigcup_{i \ge 0} F^{i}(\emptyset)$ where $F^{0}(X) = X$ and $F^{n+1}(X) = F(F^{n}(X))$.

Concrete Semantics: the Set of Reachable States (3/3)

Definition (Concrete semantics, the set of reachable states) Given a program, let S be the set of states and \hookrightarrow be the one-step

transition relation $\subseteq \mathbb{S} \times \mathbb{S}$. Let *I* be the set of its initial states and *Step* be the powerset-lifted version of \hookrightarrow :

$$Step: \wp(\mathbb{S}) \to \wp(\mathbb{S})$$
$$Step(X) = \{s' \mid s \hookrightarrow s', s \in X\}.$$

Then the concrete semantics of the program, the set of all reachable states from I, is defined as the least fixpoint **lfp**F of F

$$F(X) = I \cup Step(X).$$

Analysis Goal

Program-label-wise reachability

For each program label we want to know the set of memories that can occur at that label during executions of the input program.

- labels: "partitioning indices"
- e.g., statement labels as in programs, statement labels after loop unrolling, statement labels after function inlining