Static Program Analysis Overview

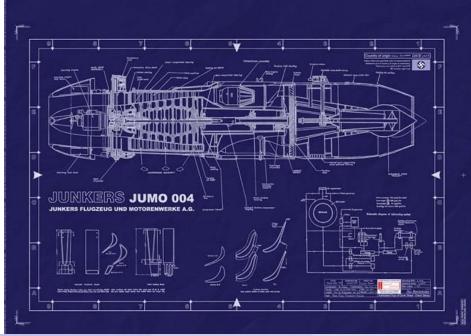
Kwangkeun Yi

Seoul National University, Korea

Outline

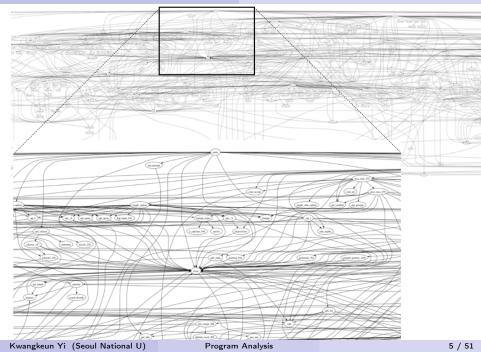
2) Static Analysis: a Gentle Introduction

Kwangkeun Yi (Seoul National U)



Kwangkeun Yi (Seoul National U)

4 / 51



The Common Goal

	Computing area	Other engineering areas		
Object	Software	Machine/building/circuit/chemical cess design		
Execution subject	Computer runs it	Nature runs it		
Our question	Will it work as intended?	Will it work as intended?		
Our knowledge	Program analysis	Newtonian mechanics, Maxwell e tions, Navier-Stokes equations, the dynamic equations, and other princi		

Our Interest

How to verify specific properties about program executions before execution:

- absence of run-time errors i.e., no crashes
- preservation of invariants

Verification

Make sure that $\llbracket P \rrbracket \subseteq \mathcal{S}$ where

- the semantics $\llbracket P \rrbracket$ = the set of all behaviors of P
- the specification S = the set of acceptable behaviors

Semantics $[\![P]\!]$ and Semantic Properties ${\mathcal S}$

Semantics [[P]]:

- compositional style ("denotational")
 - $\bullet \ \llbracket AB \rrbracket = \cdots \llbracket A \rrbracket \cdots \llbracket B \rrbracket \cdots$
- transitional style ("operational")
 - $\blacksquare [\![AB]\!] = \{s_0 \hookrightarrow s_1 \hookrightarrow \cdots, \cdots\}$

Semantic properties S:

- safety
 - some behavior observable in *finite* time will never occur.
- liveness
 - some behavior observable after *infinite* time will never occur.

Safety Properties

Some behavior observable in *finite* time will never occur.

Examples:

- no crashing error
 - ▶ no divide by zero, no bus error in C, no uncaught exceptions
- no invariant violation
 - some data structure should never get broken
- no value overrun
 - a variable's values always in a given range

Liveness Properties

Some behavior observable after *infinite* time will never occur.

Examples:

- no unbounded repetition of a given behavior
- no starvation
- no non-termination

Soundness and Completeness

"Analysis is sound." "Analysis is complete."

- Soundness: analysis(P) = yes $\implies P$ satisfies the specification
- **Completeness**: analysis $(P) = yes \iff P$ satisfies the specification

Spectrum of Program Analysis Techniques

- testing
- machine-assisted proving
- finite-state model checking
- conservative static analysis
- bug-finding

Testing

Approach

- Consider finitely many, finite executions
- **②** For each of them, check whether it violates the specification
 - If the finite executions find no bug, then accept.
 - Unsound: can accept programs that violate the specification
 - Complete: does not reject programs that satisfy the specification

Machine-Assisted Proving

Approach

- Use a specific language to formalize verification goals
- Manually supply proof arguments
- S Let the proofs be automatically verified
 - tools: Coq, Isabelle/HOL, PVS, ...
 - Applications: CompCert (certified compiler), seL4 (secure micro-kernel), ...
 - Not automatic: key proof arguments need to be found by users
 - Sound, if the formalization is correct
 - Quasi-complete (only limited by the expressiveness of the logics)

Finite-State Model Checking

Approach

- I Focus on finite state models of programs
- Perform exhaustive exploration of program states

Automatic

- Sound or complete, only with respect to the finite models
- Software has $\sim \infty$ states: the models need approximation or non-termination (semi-algorithm)

Conservative Static Analysis

Approach

- O Perform automatic verification, yet which may fail
- **②** Compute a conservative approximation of the program semantics
 - Either sound or complete, not both
 - Sound & incomplete static analysis is common:
 - optimizing compilers relies on it (supposed to)
 - Astrée, Sparrow, Facebook Infer, ML type systems, ...

Automatic

- Incompleteness: may reject safe programs (false alarms)
- Analysis algorithms reason over program semantics

Bug Finding

Approach

Automatic, unsound and incomplete algorithms

- commercial tools: Coverity, CodeSonar, SparrowFasoo, ...
- Automatic and generally fast
- No mathematical guarantee about the results
 - may reject a correct program, and accept an incorrect one
 - may raise false alarm and fail to report true violations
- Used to increase software quality without any guarantee

High-level Comparison

	automatic	sound	complete
testing	yes	no	yes
machine-assisted proving	no	yes	yes/no
finite-state model checking	yes	yes/no	yes/no
conservative static analysis	yes	yes	no
bug-finding	yes	no	no

Focus of This Lecture: Conservative Static Analysis

A general technique, for any programming language $\mathbb L$ and safety property $\mathcal S,$ that

- checks, for input program P in \mathbb{L} , if $\llbracket P \rrbracket \subseteq S$,
- automatic (software)
- finite (terminating)
- sound (guarantee)
- malleable for arbitrary precision

A forthcoming framework

Will guide us how to design such static analysis.

Problem: How to Finitely Compute $\llbracket P \rrbracket$ Beforehand

• Finite & exact computation Exact(P) of $\llbracket P \rrbracket$ is impossible, in general.

For a Turing-complete language \mathbb{L} , $\exists algorithm \ Exact : Exact(P) = \llbracket P \rrbracket$ for all P in \mathbb{L} .

- Otherwise, we can solve the Halting Problem.
 - Given P, see if Exact(P; 1/0) has divide-by-zero.

Answers: Conservative Static Analysis

Technique for finite sound estimation $\llbracket P \rrbracket^{\sharp}$ of $\llbracket P \rrbracket$

- "finite", hence
 - automatic (algorithm) &
 - static (without executing P)
- "sound"
 - over-approximation of $\llbracket P \rrbracket$

Hence, ushers us to sound anaysis:

 $(\mathsf{analysis}(P) = \mathsf{check}\,\llbracket P \rrbracket^{\sharp} \subseteq \mathcal{S}) \Longrightarrow (P \text{ satisfies property } \mathcal{S})$

Need Formal Frameworks of Static Analysis (1/2)

Suppose that

- We are interested in the value ranges of variables.
- How to finitely estimate $[\![P]\!]$ for the property?

You may, intuitively:

```
x = readInt;

1:

while (x \leq 99)

2:

x++;

3:

end

4:
```

Capture the dynamics by abstract equations; solve; reason.

$$egin{array}{rcl} x_1 &=& [-\infty,+\infty] \ or \ x_3 \ x_2 &=& x_1 \ and \ [-\infty,99] \ x_3 &=& x_2 \ \dot{+} \ 1 \ x_4 &=& x_1 \ and \ [100,+\infty] \end{array}$$

Program Analysis

Need Formal Frameworks of Static Analysis (2/2)

Abstract Interpretation [CousotCousot]: a powerful design theory

- How to derive correct yet arbitrarily precise equations?
 - Non-obvious: ptrs, heap, exns, high-order ftns, etc.

- Define an abstract semantics function \hat{F} s.t. \cdots
- How to solve the equations in a finite time?

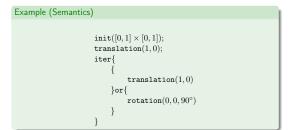
• Fixpoint iterations for an upperbound of $f\!i\!x\hat{F}$

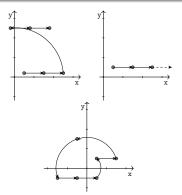
Outline

2 Static Analysis: a Gentle Introduction

Example Language

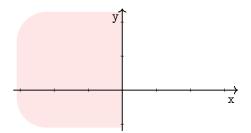
initialization, with a state in \Re translation by vector (u, v)rotation by center (u, v) and angle θ sequence of operations non-deterministic choice non-deterministic iterations





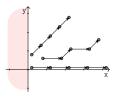
Analysis Goal Is Safety Property: Reachability

Analyze the set of reachable points, to check if the set intersects with a no-fly zone. Suppose that the no-fly zone is:



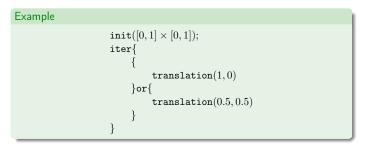
Correct or Incorrect Executions

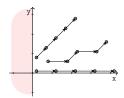
(a) An incorrect execution



(b) Correct executions

An Example Safe Program





How to Finitely Over-Approximate the Set of Reachable Points?

Definition (Abstraction)

We call *abstraction* a set A of logical properties of program states, which are called *abstract properties* or *abstract elements*. A set of abstract properties is called an *abstract domain*.

Definition (Concretization)

Given an abstract element a of A, we call *concretization* the set of program states that satisfy it. We denote it by $\gamma(a)$.

Abstraction Example 1: Signs Abstraction

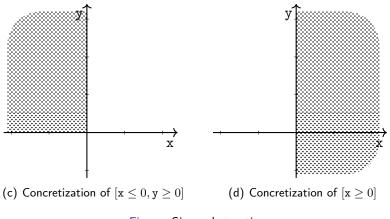


Figure: Signs abstraction

Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality constraints: $c_1 \leq x \leq c_2$, $c_1' \leq y \leq c_2'$

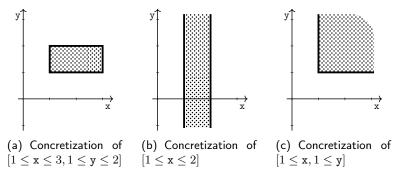


Figure: Intervals abstraction

Abstraction Example 3: Convex Polyhedra Abstraction

The abstract elements: conjunctions of linear inequality constraints: $c_1 {\tt x} + c_2 {\tt y} \leq c_3$

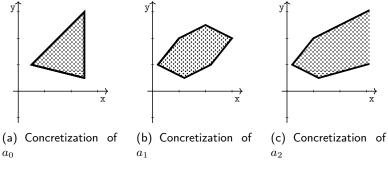


Figure: Convex polyhedra abstraction

An Example Program, Again

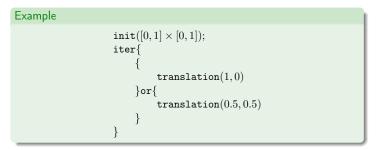
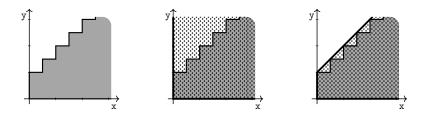


Figure: Reachable states

Abstractions of the Semantics of the Example Program



(a) Reachable states (b) Intervals abstraction (c) Convex polyhedra abstraction

Figure: Program's reachable states and abstraction

Sound Analysis Function for the Example Language

- Input: a program p and an abstract area a (pre-state)
- Output: an abstract area a' (post-state)

Definition (sound analysis)

An analysis is sound if and only if it captures the real execuctions of the input program.

If an execution of p moves a point (x, y) to point (x', y'), then for all abstract element a such that $(x, y) \in \gamma(a)$, $(x', y') \in \gamma(\text{analysis}(p, a))$

Sound Analysis Function as a Diagram

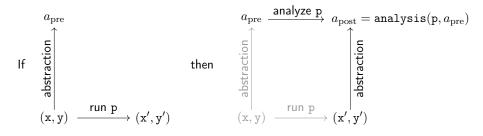


Figure: Sound analysis of a program p

Abstract Semantics Computation

Recall the example language

$$p ::= init(\mathfrak{R})$$

$$| translation(u, v)$$

$$| rotation(u, v, \theta)$$

$$| p; p$$

$$| \{p\}or\{p\}$$

$$| iter\{p\}$$

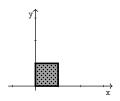
initialization, with a state in \Re translation by vector (u, v)rotation defined by center (u, v) and angle θ sequence of operations non-deterministic choice non-deterministic iterations

Approach

A sound analysis for a program is constructed by computing sound abstract semantics of the program's components.

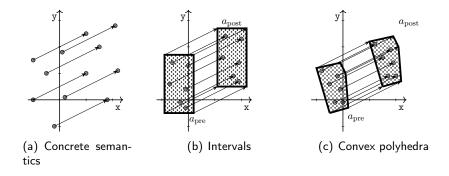
Abstract Semantics Computation: $init(\mathfrak{R})$

- Select, if any, the best abstraction of the region \mathfrak{R} .
- For the example program with the intervals or convex polyhedra abstract domains, analysis of $\texttt{init}([0,1]\times[0,1])$ is



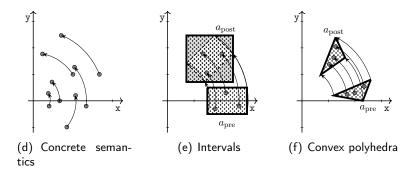
 $\texttt{analysis}(\texttt{init}(\mathfrak{R}), a) = \texttt{best}$ abstraction of the region \mathfrak{R}

Abstract Semantics Computation: translation(u, v)



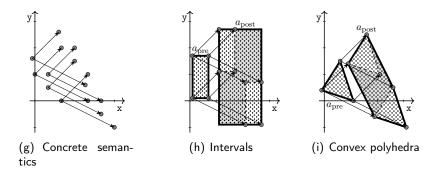
 $\texttt{analysis}(\texttt{translation}(u,v),a) = \left\{ \begin{array}{l} \texttt{return an abstract state that contains} \\ \texttt{the translation of } a \end{array} \right.$

Abstract Semantics Computation: $rotation(u, v, \theta)$



 $\texttt{analysis}(\texttt{rotation}(u,v,\theta),a) = \left\{ \begin{array}{l} \texttt{return an abstract state that contains} \\ \texttt{the rotation of } a \end{array} \right.$

Abstract Semantics Computation: {p}or{p}



 $\texttt{analysis}(\{\texttt{p}_0\}\texttt{or}\{\texttt{p}_1\},a) = \texttt{union}(\texttt{analysis}(\texttt{p}_1,a),\texttt{analysis}(\texttt{p}_0,a))$

Abstract Semantics Computation: p_0 ; p_1

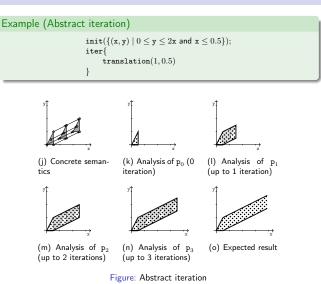
$$\texttt{analysis}(\texttt{p}_0;\texttt{p}_1,a) = \texttt{analysis}(\texttt{p}_1,\texttt{analysis}(\texttt{p}_0,a))$$

Abstract Semantics Computation: $iter{p} (1/5)$

iter{p} is equivalent to

```
{}
or{p}
or{p;p}
or{p;p;p}
or{p;p;p;p}
```

Abstract Semantics Computation: $iter{p} (2/5)$



Abstract Semantics Computation: $iter{p} (3/5)$

Recall

where

$$\mathtt{p}_0 = \{\} \qquad \mathtt{p}_{k+1} = \mathtt{p}_k \text{ or } \{\mathtt{p}_k; \mathtt{p}\}$$

Hence,

$$analysis(iter{p}, a) = \begin{cases} R \leftarrow a; \\ repeat \\ T \leftarrow R; \\ R \leftarrow widen(R, analysis(p, R)); \\ until inclusion(R, T) \\ return T; \end{cases}$$

$$operator widen \qquad \begin{cases} over approximates unions \\ enforces finite convergence \end{cases}$$

Abstract Semantics Computation: $iter{p} (4/5)$

```
Example (Abstract iteration with widening)
```

```
\begin{array}{l} \texttt{init}(\{(\texttt{x},\texttt{y}) \mid 0 \leq \texttt{y} \leq 2\texttt{x} \text{ and } \texttt{x} \leq 0.5\}); \\ \texttt{iter}\{ \\ \texttt{translation}(1,0.5) \\ \} \end{array}
```

- $\bullet~$ The constraints $0 \leq y$ and $y \leq 2x$ are stable after iteration 1; thus, they are preserved.
- $\bullet\,$ The constraint $x \leq 0.5$ is not preserved; thus, it is discarded.

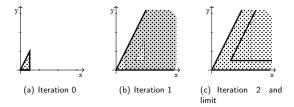


Figure: Abstract iteration with widening

Abstract Semantics Computation: $iter{p} (5/5)$

Example (Loop unrolling)

$$\begin{array}{l} \texttt{init}(\{(\texttt{x},\texttt{y}) \mid 0 \leq \texttt{y} \leq 2\texttt{x} \text{ and } \texttt{x} \leq 0.5\});\\ \{\} \texttt{ or } \{\texttt{ translation}(1,0.5) \};\\ \texttt{iter}\{\texttt{ translation}(1,0.5) \} \end{array}$$

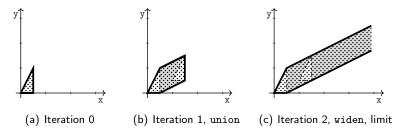


Figure: Abstract iteration with widening and unrolling

Abstract Semantics Function analysis At a Glance

The analysis(p, a) is finitely computable and sound.

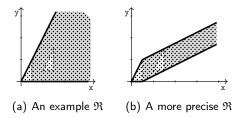
Sound analysis

If an execution of p from a state (\mathbf{x},\mathbf{y}) generates the state $(\mathbf{x}',\mathbf{y}')$, then for all abstract element a such that $(\mathbf{x},\mathbf{y})\in\gamma(a)$, $(\mathbf{x}',\mathbf{y}')\in\gamma(\texttt{analysis}(p,a))$

Kwangkeun Yi (Seoul National U)

Verification of the Property of Interest

- Does program compute a point inside no-fly zone \mathfrak{D} ?
- Need to collect the set of reachable points.
- Run analysis(p, -) and collect all points \mathfrak{R} from every call to analysis.
- Since analysis is sound, the result is an over approx. of the reachable points.
- If $\mathfrak{R} \cap \mathfrak{D} = \emptyset$, then p is verified. Otherwise, we don't know.



Semantics Style: Compositional Versus Transitional

- Compositional semantics function analysis:
 - Semantics of p is defined by the semantics of the sub-parts of p.

$$\llbracket AB \rrbracket = \cdots \llbracket A \rrbracket \cdots \llbracket B \rrbracket \cdots$$

- Proving its soundness is thus by structural induction on p.
- For some realistic programming languages, even defining their compositional ("denotational") semantics is a hurdle.
 - gotos, exceptions, function calls

Transitional-style ("operational") semantics avoids the hurdle

$$\llbracket AB \rrbracket = \{s_0 \hookrightarrow s_1 \hookrightarrow \cdots, \cdots\}$$