Outline

1 Introduction

- 2 Static Analysis: a Gentle Introduction
- 3 A General Framework in Transitional Style
- 4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Practical altenatives to the aforementioned general, abstract interpretation framework

- for simple languages and properties,
- ∃frameworks that are simple yet powerful enough
- review of their limitations

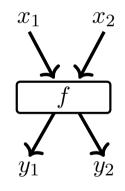
Three specialized frameworks:

- static analysis by equations
- static analysis by monotonic closure
- static analysis by proof construction

Static Analysis by Equations

- Static analysis = equation setup and resolution
 - equations capture all the executions of the program
 - a solution of the equations is the analysis result
- Represent programs by control-flow graphs
 - nodes for semantic functions (statements)
 - edges for control flow
- Straightforward to set up sound equations

For each node



we set up equations

$$y_1 = f(x_1 \sqcup x_2)$$
$$y_2 = f(x_1 \sqcup x_2)$$

Example: Data-Flow Analysis for Integer Intervals

Example (Data-flow analysis) input (x); while $(x \le 99)$ x := x+1input x 1 3 x <= 99 x > 99 4 x++ Figure: Control-flow graph $x_0 = [-\infty, +\infty]$ $x_1 = x_0 \ \sqcup \ x_3$ $x_2 = x_1 \ \sqcap \ [-\infty, 99]$ $x_3 = x_2 \oplus 1$ $x_4 = x_1 \ \sqcap \ [100, +\infty]$ Figure: A set of equations for the program

Kwangkeun Yi (Seoul National U)

Program Analysis

Limitations

Not powerful enough for arbitrary languages

- control-flow before analysis?
 - control is also computed in modern languages
 - no: the dichotomy of control being fixed and data being dynamic
- sound transformation function?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...
- lacks a systematic approach
 - to prove the correctness of the analysis
 - to vary the accuracy of the analysis

Static Analysis by Monotonic Closure (1/2)

- Static analysis = setting up initial facts then collecting new facts by a kind of chain reaction
 - has rules for collecting initial facts
 - has rules for generating new facts from existing facts
- the initial facts immediate from the program text
- the chain reaction steps simulate the program semantics
- the universe of facts are finite for each program
- analysis accumulates facts until no more possible

Static Analysis by Monotonic Closure (2/2)

- $\bullet~$ let R be the set of the chain-reaction rules
- let X_0 be the initial fact set
- let *Facts* be the set of all possible facts

Then, the analysis result is

$$\bigcup_{i\geq 0}Y_i,$$

where

$$Y_0 = X_0,$$

$$Y_{i+1} = Y \text{ such that } Y_i \vdash_R Y.$$

Or, equivalently, the analysis result is the least fixpoint

$$\bigcup_{i\geq 0}\phi^i(\emptyset)$$

of monotonic function $\phi : \wp(Facts) \to \wp(Facts) :$

$$\phi(X) = X_0 \ \cup \ (Y \text{ such that } X \vdash_R Y).$$

Example: Pointer Analysis (1/3)

Р	::=	С	program
С	::=		statement
		L := R	assignment
		C ; C	sequence
		while $B {\cal C}$	while-loop
L	::=	$x \mid *x$	target to assign to
R	::=	$n \mid x \mid *x \mid \&x$	value to assign
B			Boolean expression

- Goal: estimate all "points-to" relations between variables that can occur during executions
- $a \rightarrow b$: variable a can point to (can have the address of) variable b

Example: Pointer Analysis (2/3)

The initial facts that are obvious from the program text are collected by this rule:

$$\frac{x := \& y}{x \to y}$$

The chain-reaction rules are as follows for other cases of assignments:

$$\frac{x := y \quad y \to z}{x \to z} \qquad \frac{x := *y \quad y \to z \quad z \to w}{x \to w}$$

$$\frac{*x := y \quad x \to w \quad y \to z}{w \to z} \qquad \frac{*x := *y \quad x \to w \quad y \to z \quad z \to v}{w \to v}$$

$$\frac{*x := & y \quad x \to w}{w \to y}$$

Example: Pointer Analysis (3/3)

Example (Pointer analysis steps)

• Initial facts are from the first two assignments:

 \bullet From $y \rightarrow x$ and the while-loop body, add

 $\mathtt{x}\to \mathtt{b}$

• From the last assignment:

- from $x \rightarrow a$ and $y \rightarrow x$, add $a \rightarrow a$
- From $x \rightarrow b$ and $y \rightarrow x$, add $b \rightarrow b$
- from $x \rightarrow a$, $y \rightarrow x$, and $x \rightarrow b$, add $a \rightarrow b$
- For froom $x \rightarrow b$, $y \rightarrow x$, and $x \rightarrow a$, add $b \rightarrow a$

Kwangkeun Yi (Seoul National U)

Limitations

Not powerful enough for arbitrary language

- sound rules?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...
- accuracy problem
 - consider program a set of statements, with no order between them
 - rules do not consider the control flow
 - the analysis blindly collects every possible facts when rules hold
 - accuracy improvement by more elaborate rules, but no systematic way for soundness proof

Static Analysis by Proof Construction

- Static analysis = proof construction in a finite proof system
- finite proof system = a finite set of inference rules for a predefined set of judgments
- The soundness corresponds to the soundness of the proof system.
 - ► the input program is provable ⇒ the program satisfies the proven judgment.

Example: Type Inference (1/4)

Р	::=	E	program
E	::=		expression
		n	integer
		x	variable
		$\lambda \mathtt{x}.E$	function
		E E	function application

• judgment that says expression E has type τ is written as

 $\Gamma \vdash E : \tau$

• Γ is a set of type assumptions for the free variables in E.

Example: Type Inference (2/4)

Consider *simple types*

$$\tau ::= int \mid \tau \to \tau$$

$$\frac{\mathbf{x}:\tau \in \Gamma}{\Gamma \vdash \mathbf{x}:\tau} \qquad \frac{\mathbf{x}:\tau \in \Gamma}{\Gamma \vdash \mathbf{x}:\tau}$$

-

$$\frac{\Gamma + \mathbf{x} : \tau_1 \vdash E : \tau_2}{\Gamma \vdash \lambda \mathbf{x} . E : \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash E_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash E_2 : \tau_1}{\Gamma \vdash E_1 \; E_2 : \tau_2}$$

Figure: Proof rules of simple types

Theorem (Soundness of the proof rules)

Let E be a program, an expression without free variables. If $\emptyset \vdash E : \tau$, then the program runs without a type error and returns a value of type τ if it terminates.

Kwangkeun Yi (Seoul National U)

Example: Type Inference (3/4)

Program

 $(\lambda x. x \ 1)(\lambda y. y)$

is typed *int* because we can prove

 $\emptyset \vdash (\lambda \mathtt{x}. \mathtt{x} \ 1)(\lambda \mathtt{y}. \mathtt{y}) : int$

as follows:

$$\begin{array}{l} \frac{\mathbf{x}:int \rightarrow int \ \in \{\mathbf{x}:int \rightarrow int\}}{\{\mathbf{x}:int \rightarrow int\} \vdash \mathbf{x}:int \rightarrow int\}} & \overline{\{\mathbf{x}:int \rightarrow int\} \vdash 1:int} \\ \frac{\{\mathbf{x}:int \rightarrow int\} \vdash \mathbf{x}:int \rightarrow int\} \vdash \mathbf{x} \ 1:int}{\emptyset \vdash \lambda \mathbf{x}.\mathbf{x} \ 1:(int \rightarrow int) \rightarrow int} & \frac{\mathbf{y}:int \in \{\mathbf{y}:int\}}{\emptyset \vdash \lambda \mathbf{y}.\mathbf{y}:int \rightarrow int} \\ \frac{\emptyset \vdash (\lambda \mathbf{x}.\mathbf{x} \ 1)(\lambda \mathbf{y}.\mathbf{y}):int \end{array}$$

Example: Type Inference (4/4)

Algorithm

• given a program E, $V(\emptyset, E, \alpha)$ returns type equations.

$$V(\Gamma, n, \tau) = \{\tau \doteq int\}$$

$$V(\Gamma, \mathbf{x}, \tau) = \{\tau \doteq \Gamma(\mathbf{x})\}$$

$$V(\Gamma, \lambda \mathbf{x}. E, \tau) = \{\tau \doteq \alpha_1 \rightarrow \alpha_2\} \cup V(\Gamma + \mathbf{x} : \alpha_1, E, \alpha_2) \text{ (new } \alpha_i\text{)}$$

$$V(\Gamma, E_1 E_2, \tau) = V(\Gamma, E_1, \alpha \rightarrow \tau) \cup V(\Gamma, E_2, \alpha) \text{ (new } \alpha\text{)}$$

• solving the equations is done by the *unification* procedure

Theorem (Correctness of the algorithm)

Solving the equations \equiv proving in the simple type system

More precise analysis?

• need new sound proof rules (e.g., *polymorphic type systems*)

Limitations

- For target languages that lack a sound static type system, we have to invent it.
 - design a finite proof system
 - prove the soundness of the proof system
 - design its algorithm that automates proving
 - prove the correctness of the algorithm
- What if the unification procedure is not enough?
 - for some properties, the algorithm can generate constraints that are unsolvable by the unification procedure
- For some conventional imperative languages, sound and precise-enough static type systems are elusive.