
A General Framework in Transitional Style

Outline

1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Kwangkeun Yi (Seoul National U) Program Analysis 61 / 132

A General Framework in Transitional Style

Transitional Semantics

State transition sequence

s0 �→ s1 �→ s2 �→ · · ·

where �→ is a transition relation between states S

�→⊆ S× S

A state s ∈ S of the program is a pair (l,m) of a program label l and the
machine state m at that program label during execution.

Kwangkeun Yi (Seoul National U) Program Analysis 62 / 132

A General Framework in Transitional Style

Concrete Transition Sequence

Example
Consider the following program

input(x);
while (x ≤ 99)

{x := x+ 1}

Let labels be “program points.”

input(x)

while (x ≤ 99)

x := x+ 1

0

1

2

3

Let the initial state be ∅. Some transition sequences are:

For input 100: (0, ∅) �→ (1, x �→ 100) �→ (3, x �→ 100).
For input 99: (0, ∅) �→ (1, x �→ 99) �→ (2, x �→ 99) �→ (1, x �→ 100) �→ (3, x �→ 100).
For input 0: (0, ∅) �→ (1, x �→ 0) �→ (2, x �→ 0) �→ (1, x �→ 1) �→ · · · �→ (3, x �→ 100).

Kwangkeun Yi (Seoul National U) Program Analysis 63 / 132

A General Framework in Transitional Style

Reachable States

input(x)

while (x ≤ 99)

x := x+ 1

0

1

2

3

Assume that the possible inputs are 0, 99, and 100. Then, the set of all
reachable states are the set of states occurring in the three transition
sequences:

{(0, ∅), (1, x �→ 100), (3, x �→ 100)}
∪ {(0, ∅), (1, x �→ 99), (2, x �→ 99), (1, x �→ 100), (3, x �→ 100)}
∪ {(0, ∅), (1, x �→ 0), (2, x �→ 0), (1, x �→ 1), · · · , (2, x �→ 99), (1, x �→ 100), (3, x �→ 100)}
= {(0, ∅), (1, x �→ 0), · · · , (1, x �→ 100), (2, x �→ 0), · · · , (2, x �→ 99), (3, x �→ 100)}

Kwangkeun Yi (Seoul National U) Program Analysis 64 / 132

A General Framework in Transitional Style

Concrete Semantics: the Set of Reachable States (1/3)

Given a program, let I be the set of its initial states and Step be the
powerset-lifted version of �→:

Step : ℘(S) → ℘(S)
Step(X) = {s� | s �→ s�, s ∈ X}

The set of reachable states is

I ∪ Step
1(I) ∪ Step

2(I) ∪ · · · .

which is, equivalently, the limit of Cis

C0 = I
Ci+1 = I ∪ Step(Ci)

which is, the least solution of

X = I ∪ Step(X).

Kwangkeun Yi (Seoul National U) Program Analysis 65 / 132

A General Framework in Transitional Style

Concrete Semantics: the Set of Reachable States (2/3)
The least solution of

X = I ∪ Step(X)

is also called the least fixpoint of F

F : ℘(S) → ℘(S)
F (X) = I ∪ Step(X)

written as
lfpF.

Theorem (Least fixpoint)
The least fixpoint lfpF of F (X) = I ∪ Step(X) is

�

i≥0

F i(∅)

where F 0(X) = X and Fn+1(X) = F (Fn(X)).

Kwangkeun Yi (Seoul National U) Program Analysis 66 / 132

A General Framework in Transitional Style

Concrete Semantics: the Set of Reachable States (3/3)

Definition (Concrete semantics, the set of reachable states)
Given a program, let S be the set of states and �→ be the one-step
transition relation ⊆ S× S. Let I be the set of its initial states and Step be
the powerset-lifted version of �→:

Step : ℘(S) → ℘(S)
Step(X) = {s� | s �→ s�, s ∈ X}.

Then the concrete semantics of the program, the set of all reachable states
from I, is defined as the least fixpoint lfpF of F

F (X) = I ∪ Step(X).

Kwangkeun Yi (Seoul National U) Program Analysis 67 / 132

A General Framework in Transitional Style

Analysis Goal

Program-label-wise reachability
For each program label we want to know the set of memories that can
occur at that label during executions of the input program.

labels: “partitioning indices”
e.g., statement labels as in programs, statement labels after loop
unrolling, statement labels after function inlining

Kwangkeun Yi (Seoul National U) Program Analysis 68 / 132

A General Framework in Transitional Style

Abstract Semantics

Define the abstract semantics “homomorphically”:

F : ℘(S) → ℘(S) F � : S� → S�
F (X) = I ∪ Step(X) F �(X�) = I� ∪� Step

�(X�)

The forthcoming framework will guide us
conditions for S� and F �

so that the abstract semantics is finitely computable and is an
upper-approximation of concrete semantics lfpF .

Kwangkeun Yi (Seoul National U) Program Analysis 69 / 132

A General Framework in Transitional Style

Abstraction of the Semantic Domain ℘(S) (1/2)

℘(S) where S = L×M

Label-wise (two-step) abstraction of states:

set of states to label-wise collect to label-wise abstraction
℘(L×M)

abstraction−→ L → ℘(M)
abstraction−→ L → M�.

Kwangkeun Yi (Seoul National U) Program Analysis 70 / 132

A General Framework in Transitional Style

Abstraction of the Semantic Domain ℘(S) (2/2)

℘(L×M) � collection of
all states

(0,m0), (0,m�
0), · · · , at 0

(1,m1), (1,m�
1), · · · , at 1

...
(n,mn), (n,m�

n), · · · . at n

L → ℘(M) � label-wise
collection

(0, {m0,m�
0, · · · })

(1, {m1,m�
1, · · · })

...
(n, {mn,m�

n, · · · })

L → M� � label-wise
abstraction

(0,M �
0)

(1,M �
1)

...
(n,M �

n)

Each M �
l over-approximates the set {ml,m�

l, · · · } collected at label l.
Kwangkeun Yi (Seoul National U) Program Analysis 71 / 132

A General Framework in Transitional Style

Preliminary for Abstract Domains (1/3)

Define an abstract domain as a CPO

� a partial order set

� has a least element ⊥
� has a least-upper bound for every chain

An abstract domain as �-semilattices also work.

Kwangkeun Yi (Seoul National U) Program Analysis 72 / 132

A General Framework in Transitional Style

Preliminary for Abstract Domains (2/3)

Abstract and concrete domains are structured “consistently”.

Definition (Galois connection)
A Galois connection is a pair made of a concretization function γ and an
abstraction function α such that:

∀c ∈ C, ∀a ∈ A, α(c) � a ⇐⇒ c ⊆ γ(a)

We write such a pair as follows:

(C,⊆) −→←−
α

γ
(A,�)

Kwangkeun Yi (Seoul National U) Program Analysis 73 / 132

A General Framework in Transitional Style

Preliminary for Abstract Doamins (3/3)

Galois-connection properties we rely on:
For

(C,⊆) −→←−
α

γ
(A,�)

α and γ are monotone functions
∀c ∈ C, c ⊆ γ(α(c))
∀a ∈ A, α(γ(a)) � a
If both C and A are CPOs, then α is continuous.

(Proofs are in the book.)

Kwangkeun Yi (Seoul National U) Program Analysis 74 / 132

A General Framework in Transitional Style

Abstract Domains (1/2)

Design an abstract domain as a CPO that is Galois-connected with the
concrete domain:

(℘(L×M),⊆) −→←−
α

γ
(L → M�,�).

Abstraction α defines how each concrete elmt (set of concrete states)
is abstracted into an abstract elmt.
Concretization γ defines the set of concrete states implied by each
abstract state.
Partial order � is the label-wise order:

a� � b� iff ∀l ∈ L : a�(l) �M b�(l)

where �M is the partial order of M�.

Kwangkeun Yi (Seoul National U) Program Analysis 75 / 132

A General Framework in Transitional Style

Abstract Domains (2/2)
The above Galois connection (abstraction)

(℘(L×M),⊆) −→←−
α

γ
(L → M�,�).

composes two Galois connections:

(℘(L×M),⊆)

−→←−
α0

γ0
(L → ℘(M),�) (� is the label-wise ⊆)

−→←−
α1

γ1
(L → M�,�) (� is the label-wise �M)

α0

(0,m0), (0,m�
0), · · · ,

...
(n,mn), (n,m�

n), · · ·

=

(0, {m0,m�
0, · · · }),

...
(n, {mn,m�

n, · · · })

α1

(0, {m0,m�
0, · · · }),

...
(n, {mn,m�

n, · · · })

=

(0,M �
0),

...
(n,M �

n)

Thus, boils down to

(℘(M),⊆) −→←−
αM

γM
(M�,�M).

Kwangkeun Yi (Seoul National U) Program Analysis 76 / 132

A General Framework in Transitional Style

Abstract Semantic Functions

Let
(℘(L×M),⊆) −→←−

α

γ
(L → M�,�).

A concrete semantic function F An abstract semantic function F �

S = L×M S� = L → M�

F : ℘(S) → ℘(S) F � : S� → S�
F (X) = I ∪ Step(X) F �(X�) = α(I) ∪� Step

�(X�)

Step = ℘̆(�→) Step
� = ℘(id,∪�

M) ◦ π ◦ ℘̆(�→�)
�→⊆ (L×M)× (L×M) �→� ⊆ (L×M�)× (L×M�)

with relations �→ and �→� being functions

Kwangkeun Yi (Seoul National U) Program Analysis 77 / 132

A General Framework in Transitional Style

As of Step� = ℘(id,∪�
M) ◦ π ◦ ℘̆(�→�)

Step
� : (L → M�) → (L → M�)

Abstract transition ℘̆(�→�):
� a set ⊆ L×M� �→ a set ⊆ L×M�

Paritioning π:
� a set ⊆ L×M� �→ a set ⊆ L× ℘(M�)

Joining ℘(id,∪�
M):

� a set ⊆ L× ℘(M�) �→ an abstract state ∈ L → M�

Kwangkeun Yi (Seoul National U) Program Analysis 78 / 132

A General Framework in Transitional Style

Example
Suppose the program has two labels l1 and l2. That is, L = {l1, l2}. Given
an abstract state {(l1,M �

1), (l2,M
�
2)}, Step

� first applies ℘̆(�→�) to it:

�→�(l1,M
�
1) ∪ �→�(l2,M

�
2).

Suppose the result is

{(l1,M ��
1), (l2,M

���
1), (l1,M

��
2)}.

By the subsequent partitioning operator π, the result becomes

{(l1, {M ��
1,M

��
2}), (l2, {M ���

1})}.

The final organization operation ℘(id,∪�
M) returns the post abstract state

∈ L → M�:
{(l1,M ��

1∪
�
MM ��

2), (l2,M
���
1)}.

Kwangkeun Yi (Seoul National U) Program Analysis 79 / 132

A General Framework in Transitional Style

Example
Suppose the program has two labels l1 and l2. That is, L = {l1, l2}. Given
an abstract state {(l1,M �

1), (l2,M
�
2)}, Step

� first applies ℘̆(�→�) to it:

�→�(l1,M
�
1) ∪ �→�(l2,M

�
2).

Suppose the result is

{(l1,M ��
1), (l2,M

���
1), (l1,M

��
2)}.

By the subsequent partitioning operator π, the result becomes

{(l1, {M ��
1,M

��
2}), (l2, {M ���

1})}.

The final organization operation ℘(id,∪�
M) returns the post abstract state

∈ L → M�:
{(l1,M ��

1∪
�
MM ��

2), (l2,M
���
1)}.

Kwangkeun Yi (Seoul National U) Program Analysis 79 / 132

A General Framework in Transitional Style

Example
Suppose the program has two labels l1 and l2. That is, L = {l1, l2}. Given
an abstract state {(l1,M �

1), (l2,M
�
2)}, Step

� first applies ℘̆(�→�) to it:

�→�(l1,M
�
1) ∪ �→�(l2,M

�
2).

Suppose the result is

{(l1,M ��
1), (l2,M

���
1), (l1,M

��
2)}.

By the subsequent partitioning operator π, the result becomes

{(l1, {M ��
1,M

��
2}), (l2, {M ���

1})}.

The final organization operation ℘(id,∪�
M) returns the post abstract state

∈ L → M�:
{(l1,M ��

1∪
�
MM ��

2), (l2,M
���
1)}.

Kwangkeun Yi (Seoul National U) Program Analysis 79 / 132

A General Framework in Transitional Style

Example
Suppose the program has two labels l1 and l2. That is, L = {l1, l2}. Given
an abstract state {(l1,M �

1), (l2,M
�
2)}, Step

� first applies ℘̆(�→�) to it:

�→�(l1,M
�
1) ∪ �→�(l2,M

�
2).

Suppose the result is

{(l1,M ��
1), (l2,M

���
1), (l1,M

��
2)}.

By the subsequent partitioning operator π, the result becomes

{(l1, {M ��
1,M

��
2}), (l2, {M ���

1})}.

The final organization operation ℘(id,∪�
M) returns the post abstract state

∈ L → M�:
{(l1,M ��

1∪
�
MM ��

2), (l2,M
���
1)}.

Kwangkeun Yi (Seoul National U) Program Analysis 79 / 132

A General Framework in Transitional Style

Conditions for Sound �→� and ∪�
−

sound condition for �→�:

℘̆(�→) ◦ γ ⊆ γ ◦ ℘̆(�→�)

sound condition for ∪−
�:

∪ ◦ (γ, γ) ⊆ γ ◦ ∪�
−

X Y

X� Y �

⊆

γ

℘̆(�→)

℘̆(�→�)

γ

Pattern for the sound condition for each semantic operator
f � : A� → B�

f ◦ γA �B γB ◦ f �.

Kwangkeun Yi (Seoul National U) Program Analysis 80 / 132

A General Framework in Transitional Style

Then, Follows Sound Static Analysis

In case S� is of finite-height and F � is monotone or extensive, then
�

i≥0

F �i(⊥)

is finitely computable and over-approximates the concrete semantics
lfpF .
Otherwise, find a widening operator

�
, then the following chain

X0 � X1 � · · ·

X0 = ⊥ Xi+1 = Xi

�
F �(Xi)

is finite and its last element over-approximates the concrete semantics
lfpF .

Kwangkeun Yi (Seoul National U) Program Analysis 81 / 132

A General Framework in Transitional Style

Underlying Theorems (1/2)

Theorem (Sound static analysis by F �)

Given a program, let F and F � be defined as in the framework. If S� is of

finite-height (every chain S� is finite) and F � is monotone or extensive, then

�

i≥0

F �i(⊥)

is finitely computable and over-approximates lfpF :

lfpF ⊆ γ(
�

i≥0

F �i(⊥)) or equivalently α(lfpF) �
�

i≥0

F �i(⊥).

(Proof is in the book.)

Kwangkeun Yi (Seoul National U) Program Analysis 82 / 132

A General Framework in Transitional Style

Underlying Theorems (2/2)

Theorem (Sound static analysis by F � and widening operator
�

)
Given a program, let F and F � be defined as in the framework. Let

�
be a

widening operator. Then the following chain Y0 � Y1 � · · ·

Y0 = ⊥ Yi+1 = Yi
�

F �(Yi)

is finite and its last element Ylim over-approximates lfpF :

lfpF ⊆ γ(Ylim) or equivalently α(lfpF) � Ylim.

(Proof is in the book.)

Kwangkeun Yi (Seoul National U) Program Analysis 83 / 132

A General Framework in Transitional Style

Definition (Widening operator)
A widening operator over an abstract domain A is a binary operator �,
such that:

1 For all abstract elements a0, a1, we have

γ(a0) ∪ γ(a1) ⊆ γ(a0 � a1)

2 For all sequence (an)n∈N of abstract elements, the sequence (a�n)n∈N
defined below is finitely stationary:

�
a�0 = a0

a�n+1 = a�n � an

Kwangkeun Yi (Seoul National U) Program Analysis 84 / 132

A General Framework in Transitional Style

Analysis Algorithm Based on Global Iterations: Basic
Version (1/2)

Case: S� is of finite-height and F � is monotone or extensive
Note the increasing chain

⊥ � (F �)
1
(⊥) � (F �)

2
(⊥) � · · ·

is finite and its biggest element is equal to
�

i≥0

F �i(⊥).

������������

C ← ⊥
repeat

R ← C

C ← F �(C)
until C � R

return R

Kwangkeun Yi (Seoul National U) Program Analysis 85 / 132

A General Framework in Transitional Style

Analysis Algorithm Based on Global Iterations: Basic
Version (2/2)

Case: S� is of infinite-height or F � is neither monotonic nor extensive
Use a widening operator

�

������������

C ← ⊥
repeat

R ← C

C ← C
�

F �(C)
until C � R

return R

Kwangkeun Yi (Seoul National U) Program Analysis 86 / 132

A General Framework in Transitional Style

Inefficiency of the Basic Algorithms

Recall the algirthm with F �(C) being inlined:
���������������

C ← ⊥
repeat

R ← C

C ← C
�

(℘(id,∪�
M) ◦ π ◦ ℘̆(�→�))

� �� �
F �

(C)

until C � R

return R

|C| ∼ the number of labels in the input program!
Better apply

℘̆(�→�)(C)

only to necessary labels

Kwangkeun Yi (Seoul National U) Program Analysis 87 / 132

A General Framework in Transitional Style

Analysis Algorithm Based on Global Iterations: Worklist
Version

worklist: the set of labels whose input memories are changed in the
previous iteration

�������������������������

C : L → M�

F � : (L → M�) → (L → M�)
WorkList : ℘(L)

WorkList ← L
C ← ⊥
repeat

R ← C

C ← C
�

F �(C|WorkList)
WorkList ← {l | C(l) �� R(l), l ∈ L}

until WorkList = ∅
return R

Kwangkeun Yi (Seoul National U) Program Analysis 88 / 132

A General Framework in Transitional Style

Improvement of the Worklist Algorithm

Inefficient: WorkList ← {l | C(l) �� R(l), l ∈ L} re-scans all the labels.

� Better: At application �→� to (l, C(l)), if its result (l�,M �) is changed

(M � �� C(l�)), add l� to the worklist.

Inefficient: C
�

F �(C|WorkList) widens at all the labels.
� Better: Apply

�
only at the target of a loop. Use ∪� at other labels.

Kwangkeun Yi (Seoul National U) Program Analysis 89 / 132

A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(1/4)

1 Define M to be the set of memory states that can occur during
program executions. Let L be the finite and fixed set of labels of a
given program.

2 Define a concrete semantics as the lfpF where

concrete domain ℘(S) = ℘(L×M)
concrete semantic function F : ℘(S) → ℘(S)

F (X) = I ∪ Step(X)
Step = ℘̆(�→)
�→ ⊆ (L×M)× (L×M)

The �→ is the one-step transition relation over L×M.

Kwangkeun Yi (Seoul National U) Program Analysis 90 / 132

A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(2/4)

3 Define its abstract domain and abstract semantic function as

abstract domain S� = L → M�

abstract semantic function F � : S� → S�
F �(X�) = α(I) ∪� Step

�(X�)

Step
� = ℘(id,∪�

M) ◦ π ◦ ℘̆(�→�)
�→� ⊆ (L×M�)× (L×M�)

The �→� is the one-step abstract transition relation over L×M�.
Function π partitions a set ⊆ L×M� by the labels in L returning an
element in L → ℘(M�) represented as a set ⊆ L× ℘(M�).

Kwangkeun Yi (Seoul National U) Program Analysis 91 / 132

A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(3/4)

4 Check the abstract domains S� and M� are CPOs, and forms a
Galois-connection respectively with ℘(S) and ℘(M):

(℘(S),⊆) −→←−
α

γ
(S�,�) and (℘(M),⊆) −→←−

αM

γM
(M�,�M)

where the partial order � of S� is label-wise �M :

a� � b� iff ∀l ∈ L : a�(l) �M b�(l).

5 Check the abstract one-step transition �→� and abstract union ∪�
−

satisfy:
℘̆(�→) ◦ γ ⊆ γ ◦ ℘̆(�→�)

∪ ◦ (γ, γ) ⊆ γ ◦ ∪�
−

Kwangkeun Yi (Seoul National U) Program Analysis 92 / 132

A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(4/4)

6 Then, sound static analysis is defined as follows:
� In case S� is of finite-height (every its chain is finite) and F � is

monotone or extensive, then

�

i≥0

F �i(⊥)

is finitely computable and over-approximates the concrete semantics

lfpF .

� Otherwise, find a widening operator
�

, then the following chain

X0 � X1 � · · ·

X0 = ⊥ Xi+1 = Xi

�
F �(Xi)

is finite and its last element over-approximates the concrete semantics

lfpF .

Kwangkeun Yi (Seoul National U) Program Analysis 93 / 132

A General Framework in Transitional Style

Use Example: Target Language

x ∈ X program variables
C ::= statements

| skip nop statement
| C ; C sequence of statements
| x := E assignment
| input(x) read an integer input
| if(B){C }else{C } condition statement
| while(B){C } loop statement
| goto E goto with dynamically computed label

E ::= expression
| n integer
| x variable
| E + E addition

B ::= boolean expression
| true | false
| E < E comparison
| E = E equality

P ::= C program

Figure: Syntax of a simple imperative language

Kwangkeun Yi (Seoul National U) Program Analysis 94 / 132

A General Framework in Transitional Style

Use Example: Concrete State Transition Semantics

lfpF

of the continuous function

F : ℘(S) → ℘(S)
F (X) = I ∪ Step(X)
Step(X) = ℘̆(�→)

where
S = L×M

and
memories M = X → V
values V = Z ∪ L

The state transition relation (l,m) �→ (l�,m�) is defined as follows.

skip : (l,m) �→ (next(l), m)
input(x) : (l,m) �→ (next(l), updatex(m, z)) for an input integer z

x := E : (l,m) �→ (next(l), updatex(m, evalE (m)))
C 1; C 2 : (l,m) �→ (next(l), m)

if(B){C 1}else{C 2} : (l,m) �→ (nextTrue(l), filterB (m))
: (l,m) �→ (nextFalse(l), filter¬B (m))

while(B){C } : (l,m) �→ (nextTrue(l), filterB (m))
: (l,m) �→ (nextFalse(l), filter¬B (m))

goto E : (l,m) �→ (evalE (m), m)

Kwangkeun Yi (Seoul National U) Program Analysis 95 / 132

A General Framework in Transitional Style

Use Example: Abstract State

An abstract domain M� is a CPO such that

(℘(M),⊆) −→←−
αM

γM
(M�,�M)

defined as
M � ∈ M� = X → V�

where V� is an abstract domain that is a CPO such that

(℘(V),⊆) −→←−
αV

γV
(V�,�V).

We design V� as
V� = Z� × L�

where Z� is a CPO that is Galois connected with ℘(Z), and L� is the
powerset ℘(L) of labels.

Kwangkeun Yi (Seoul National U) Program Analysis 96 / 132

A General Framework in Transitional Style

Use Example: Abstract State Transition Semantics

Case the l-labeled statement of
skip : (l,M �) �→� (next(l),M �)

input(x) : (l,M �) �→� (next(l), update
�
x(M

�,α(Z)))
x := E : (l,M �) �→� (next(l), update

�
x(M

�, eval �E (M
�)))

C 1; C 2 : (l,M �) �→� (next(l),M �)
if(B){C 1}else{C 2} : (l,M �) �→� (nextTrue(l), filter

�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

while(B){C } : (l,M �) �→� (nextTrue(l), filter
�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

goto E : (l,M �) �→� (l�,M �) for l� ∈ L of (z�, L) = eval
�
E (M

�)

Let F � be defined as the framework:

F � : S� → S�
F �(S�) = α(I) ∪� Step

�(S�)

Step
� = ℘(id,∪�

M) ◦ π ◦ ℘̆(�→�).

If the Step
� and ∪�

− are sound abstractions of, respectively, Step and ∪−:

℘̆(�→) ◦ γ ⊆ γ ◦ ℘̆(�→�)

∪ ◦ (γ, γ) ⊆ γ ◦ ∪�
−

then we can use F � to soundly approximates the concrete semantics
lfpF

Kwangkeun Yi (Seoul National U) Program Analysis 97 / 132

A General Framework in Transitional Style

Use Example: Abstract State Transition Semantics

Case the l-labeled statement of
skip : (l,M �) �→� (next(l),M �)

input(x) : (l,M �) �→� (next(l), update
�
x(M

�,α(Z)))
x := E : (l,M �) �→� (next(l), update

�
x(M

�, eval �E (M
�)))

C 1; C 2 : (l,M �) �→� (next(l),M �)
if(B){C 1}else{C 2} : (l,M �) �→� (nextTrue(l), filter

�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

while(B){C } : (l,M �) �→� (nextTrue(l), filter
�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

goto E : (l,M �) �→� (l�,M �) for l� ∈ L of (z�, L) = eval
�
E (M

�)

Let F � be defined as the framework:

F � : S� → S�
F �(S�) = α(I) ∪� Step

�(S�)

Step
� = ℘(id,∪�

M) ◦ π ◦ ℘̆(�→�).

If the Step
� and ∪�

− are sound abstractions of, respectively, Step and ∪−:

℘̆(�→) ◦ γ ⊆ γ ◦ ℘̆(�→�)

∪ ◦ (γ, γ) ⊆ γ ◦ ∪�
−

then we can use F � to soundly approximates the concrete semantics
lfpF

Kwangkeun Yi (Seoul National U) Program Analysis 97 / 132

A General Framework in Transitional Style

Use Example: Abstract State Transition Semantics

Case the l-labeled statement of
skip : (l,M �) �→� (next(l),M �)

input(x) : (l,M �) �→� (next(l), update
�
x(M

�,α(Z)))
x := E : (l,M �) �→� (next(l), update

�
x(M

�, eval �E (M
�)))

C 1; C 2 : (l,M �) �→� (next(l),M �)
if(B){C 1}else{C 2} : (l,M �) �→� (nextTrue(l), filter

�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

while(B){C } : (l,M �) �→� (nextTrue(l), filter
�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

goto E : (l,M �) �→� (l�,M �) for l� ∈ L of (z�, L) = eval
�
E (M

�)

Let F � be defined as the framework:

F � : S� → S�
F �(S�) = α(I) ∪� Step

�(S�)

Step
� = ℘(id,∪�

M) ◦ π ◦ ℘̆(�→�).

If the Step
� and ∪�

− are sound abstractions of, respectively, Step and ∪−:

℘̆(�→) ◦ γ ⊆ γ ◦ ℘̆(�→�)

∪ ◦ (γ, γ) ⊆ γ ◦ ∪�
−

then we can use F � to soundly approximates the concrete semantics
lfpF

Kwangkeun Yi (Seoul National U) Program Analysis 97 / 132

A General Framework in Transitional Style

Use Example: Abstract State Transition Semantics

Case the l-labeled statement of
skip : (l,M �) �→� (next(l),M �)

input(x) : (l,M �) �→� (next(l), update
�
x(M

�,α(Z)))
x := E : (l,M �) �→� (next(l), update

�
x(M

�, eval �E (M
�)))

C 1; C 2 : (l,M �) �→� (next(l),M �)
if(B){C 1}else{C 2} : (l,M �) �→� (nextTrue(l), filter

�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

while(B){C } : (l,M �) �→� (nextTrue(l), filter
�
B (M �))

: (l,M �) �→� (nextFalse(l), filter
�
¬B (M �))

goto E : (l,M �) �→� (l�,M �) for l� ∈ L of (z�, L) = eval
�
E (M

�)

Let F � be defined as the framework:

F � : S� → S�
F �(S�) = α(I) ∪� Step

�(S�)

Step
� = ℘(id,∪�

M) ◦ π ◦ ℘̆(�→�).

If the Step
� and ∪�

− are sound abstractions of, respectively, Step and ∪−:

℘̆(�→) ◦ γ ⊆ γ ◦ ℘̆(�→�)

∪ ◦ (γ, γ) ⊆ γ ◦ ∪�
−

then we can use F � to soundly approximates the concrete semantics
lfpF

Kwangkeun Yi (Seoul National U) Program Analysis 97 / 132

A General Framework in Transitional Style

Use Example: Defining Sound �→�

Theorem (Soundness of �→�)
If the semantic operators satisfy the following soundness properties:

℘(evalE) ◦ γM ⊆ γV ◦ eval
�
E

℘(updatex) ◦ × ◦ (γM , γV) ⊆ γM ◦ update
�
x

℘(filterB) ◦ γM ⊆ γM ◦ filter
�
B

℘(filter¬B) ◦ γM ⊆ γM ◦ filter
�
¬B

then ℘̆(�→) ◦ γ � γ ◦ ℘̆(�→�). (The × is the Cartesian product operator of

two sets.)

Kwangkeun Yi (Seoul National U) Program Analysis 98 / 132

A General Framework in Transitional Style

Use Example: Defining Sound ∪�
−

As of sound ∪�
−, one candidate is the least upper bound operator � if S�

and M� are closed by � (e.g. lattices), since

(γ ◦ �)(a�, b�) = γ(a� � b�) � γ(a�) ∪ γ(b�) by monotone γ
= (∪ ◦ (γ, γ))(a�, b�).

Kwangkeun Yi (Seoul National U) Program Analysis 99 / 132

