
A Technique for Scalability: Sparse Analysis

Outline

1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Kwangkeun Yi (Seoul National U) Program Analysis 100 / 132



A Technique for Scalability: Sparse Analysis

Scalability Challenge

Figure: Call graph of less-382 (23,822 lines of code)

Kwangkeun Yi (Seoul National U) Program Analysis 101 / 132



A Technique for Scalability: Sparse Analysis

Sparse Analysis

Exploit the semantic sparsity of the input program to analyze
Spatial sparsity & temporal sparsity

Right part at right moment

Kwangkeun Yi (Seoul National U) Program Analysis 102 / 132



A Technique for Scalability: Sparse Analysis

Example Performance Gain by Sparse Analysis

Sparrow: a sound, global C analyzer for the memory safety property
(no overrun, no null-pointer dereference, etc.)

http://github.com/ropas/sparrow

∼ 10 hours in analyzing million lines of C [PLDI’12, TOPLAS’14]

Kwangkeun Yi (Seoul National U) Program Analysis 103 / 132



A Technique for Scalability: Sparse Analysis

Spatial Sparcity

Each program portion accesses only a small part of the memory.

Kwangkeun Yi (Seoul National U) Program Analysis 104 / 132



A Technique for Scalability: Sparse Analysis

Temporal Sparcity

After the def of a memory, its use is far.

Kwangkeun Yi (Seoul National U) Program Analysis 105 / 132



A Technique for Scalability: Sparse Analysis

Example (Code fragment)
x = x + 1;
y = y - 1;
z = x;
v = y;
ret *a + *b

Assume that a points to v and b to z.

Kwangkeun Yi (Seoul National U) Program Analysis 106 / 132



A Technique for Scalability: Sparse Analysis

Spatial and Temporal Sparsity of the Example Code

x = x+ 1

y = y− 1

z = x

v = y

ret ∗ a+ ∗b b
a
v
z
y
x

b
a
v
z
y
x

b
a
v
z
y
x

b
a
v
z
y
x

b
a
v
z
y
x

(a) Without exploiting

the sparsities

x = x+ 1

y = y− 1

z = x

v = y

ret ∗ a+ ∗b

x

y

z
x

v
y

z
v
b
a

(b) Spatial sparsity

x = x+ 1

y = y− 1

z = x

v = y

ret ∗ a+ ∗b

x

y

z
x

v
y

z
v
b
a

(c) Spatial & temporal spar-

sity

Kwangkeun Yi (Seoul National U) Program Analysis 107 / 132



A Technique for Scalability: Sparse Analysis

Exploiting Spatial Sparsity: Need Access�(l)

“abstract garbage collecition”, “frame rule”

F � : (L → M�) → (L → M�)

becomes
F �
sparse : (L → M�

sparse) → (L → M�
sparse)

where

M�
sparse = {M � ∈ M� | dom(M �) = Access�(l), l ∈ L} ∪ {⊥}.

Kwangkeun Yi (Seoul National U) Program Analysis 108 / 132



A Technique for Scalability: Sparse Analysis

Exploiting Temporal Sparsity: Need Def-Use Chain

Need the def-use chain information as follows.
we streamline the abstract one-step relation

(l,M �) �→� (l�,M ��) for l� ∈ next�(l,M �).

so that the link �→� should follow the def-use chain:
� from (def) a label where a location is defined

� to (use) a label where the defined location is read

Kwangkeun Yi (Seoul National U) Program Analysis 109 / 132



A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis Framework

Goal

F � : D� → D� sparsify
=⇒ F �

sparse : D� → D�

lfpF � still
= lfpF �

sparse

Kwangkeun Yi (Seoul National U) Program Analysis 110 / 132



A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Spatial Sparsity
(1/3)

Need to safely estimate
Access�(l).

Use yet another sound static analysis, a futher abstraction:

(L → M�,�) −→←−
α

γ
(M�,�M )

(a “flow-insensitive” version of the “flow-sensitive” analysis design)

Kwangkeun Yi (Seoul National U) Program Analysis 111 / 132



A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Temporal Sparsity
(2/3)

Let
D� : L → ℘(X) and U � : L → ℘(X)

be the def and use sets from the original analysis.
Need to safely estimate D� and U �.
Use yet another sound static analysis to compute

D�
pre and U �

pre

such that
� ∀l ∈ L : D�

pre(l) ⊇ D�(l) and U �
pre(l) ⊇ U �(l).

� ∀l ∈ L : U �
pre(l) ⊇ D�

pre(l) \D�(l).

Kwangkeun Yi (Seoul National U) Program Analysis 112 / 132



A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Temporal Sparsity
(3/3)

Let D�
pre and U �

pre be, respectively, safe def and use sets from a
pre-analysis as defined before.

Definition (Precision preserving def-use chain)

Label a to label b is a def-use chain for an abstract location η whenever
η ∈ D�

pre(a), η ∈ U �
pre(b), and η may not be re-defined inbetween the two

labels.

Precision preservation
Then, the resulting sparse analysis version has the same precision as the
original non-sparse analysis.

Kwangkeun Yi (Seoul National U) Program Analysis 113 / 132



A Technique for Scalability: Sparse Analysis

Need for the Second Condition for D�
pre and U �

pre

η ∈ D�(a) η �∈ D�(c) η ∈ U �(b)

a c b

(d) Original analysis def-use edge for η

η ∈ D�
pre(a) η ∈ D�

pre(c) η ∈ U �
pre(b)

a c b

(e) Missing def-use edge (a to b) for η because of over-

approximate D�
pre(c)

η ∈ D�
pre(a) η ∈ D�

pre(c)
η ∈ U �

pre(c)
η ∈ U �

pre(b)

a c b

(f) Recovered def-use edge (a to b via c) for η by safe U �
pre(c)

Kwangkeun Yi (Seoul National U) Program Analysis 114 / 132


