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:tb.~tract. Theorem-proving on the computer, using procedures based on the fund~- 
mental theorem of Herbrand concerning the first-order predicate etdeulus, is examined with 
~ view towards improving the efticieney and widening the range of practical applicability 
of these procedures. A elose analysis of the process of substitution (of terms for variables), 
and the process of t ruth-funct ional  analysis of the results of such substitutions, reveals 
that both processes can be combined into a single new process (called resolution), i terating 
which is vastty more ef[ieient than the older cyclic procedures consisting of substitution 
stages alternating with  truth-functional analysis stages. 

The theory of the resolution process is presented in the form of a system of first<~rder 
logic with .just one inference principle (the resolution principle). The completeness of the 
system is proved; the simplest proof-procedure based oil the system is then the direct im- 
plementation of the proof of completeness. Howew~r, this procedure is quite inefficient, 
~nd the paper concludes with a discussion of several principles (called search principles) 
which are applicable to the design of efficient proof-procedures employing resolution as the 
basle logical process. 

1. introduction 

Presented in this paper is a formulation of first-order logic which is specifically 
designed for use as the basle theoretical instrument of a computer theorem- 
proving program. Earlier theorem-proving programs have been based oil systems 
of first-order logic which were originally devised for other purposes. A prominent 
feature of those systems of logic, which is l~eking in the system described in this 
paper, is the relative ,simplicity of their inference principles. 

Traditionally, a sirlgle step in a deduction has bee~ required, for pragmatic a,~d 
psychological reasons, to be simple enough, broadly speaking, to be apprehended 
as correct by a human being in a single intellectual act. No doubt this custom 
origiu~tes i~1 the desire that each single step of a deduction should be indubitable, 
even though the deduction as a whole may consist of a long chain of such steps. 
The ultimate conclusion of a deduction, if the deduction is correct, follows logi- 
e~dly from the premisses used ia tile deduction; but the human mind may well 
fit~d the unmediated transition from the prelnisses to the conclusion surprising, 
hence (psychologically) dubitable. Part of the point, theft, of the logical analysis 
of deductive reasoning has been to reduce complex inferences, which are beyond 
the capacity of the human mind to grasp as single steps, to chains of simpler 
inferences, each of which is within the capacity of the human milld to grasp as a 
single transactiom 
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From the theoretical point of view, however, an inference principle need only 
be .sound (i.e., allow only logical consequences of premisses to be deduced from 
them) and effective (i.e., it must be algorithmically decidable whether an alleged 
application of the inference principle is indeed an application of if,). Wlielt the 
agent  carrying out the application of an inference principle is a modern computing 
machine, the traditional limitation on the complexity of inference principles is 
no longer very appropriate. More powerful principles, involving perhaps a much 
greater amount  of combinatorial information-processing for a single application, 
become a possibility. 

In the system described ill this paper, one such inference principle is used. 
I t  is called the resolution principle, and it is machine-oriented, rather than human- 
oriented, in the sense of the preceding remarks. The resolution principle is quite 
powerful, both in the psychological sense that it condones single inferences 
which are often beyond the ability of the human to grasp (other than discur- 
sively), and in the theoretical sense that  it alone, as sole inference principle, 
forms a complete system of first-order logic. While this latter property is of no 
great  importance, it is interesting that  (as far as the author is aware) no other 
complete system of first-order logic has consisted of just one inference principle, 
if one construes the device of introducing a logical axiom, given outright, or by a 
schema, as a (premiss-free) inference principle. 

The main advantage of the resolution principle lies in its ability to allow 
us to avoid one of the major combinatorial obstacles to efficiency which have 
plagued earlier theorem-proving procedures. 

In Section 2 the syntax and semantics of the particular formalism which is 
used in this paper are explained. 

2. Formal Preliminaries 

The formalism used in this paper is based upon the notions of unsatisfiability 
and refutation rather than upon the notions of validity and proof. I t  is well 
known (cf. [2] and [5]) that  in order to detemfine whether a finite set S of sen- 
tences of first-order logic is satisfiable, it is sufficient to assume that  each sentence 
in S is in prenex form with no existential quantifiers in the prefix; moreover the 
matr ix of each sentence in S carl be assumed to be a disjunction of formulas 
each of which is either au atomic formula or the negation of an atomic formula. 
Therefore our syntax is set up so that  the natttral syntactical unit is a finite set 
S of sentences in this special form. The quantifier prefix is omitted from each 
sentence, since it consists just of universal quantifiers binding each variable in 
the  sentence; furthermore the matrix of each sentence is regarded simply as the 
set of its disjunets, on the grounds that  the order and multiplicity of the disjunets 
in a disjunction are immaterial. 

Accordingly we introduce the following definitions (following in part the 
nomenclature of [2] and [5]): 

2.1 Variables. The following symbols, in alphabetical order, are variables: 

~t/,~ Y, W~ X~ y ,  Z, U l  ~ Yl ~ Wl  ~ Xl  ~ Yl , Zl , U2 , " " • , e t c ,  
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2.2 V,~z,ttctio'n symbols. The following symbols, in alphabetical order, arc 
functioIl symbols of degree n, for each n ~ 0: 

a , b , c , d ,  g , h , l c , a ~ ,  ~,  . ,e tc .  e , j ,  ' . . . . . . .  b" 

Whea n = O, the superscript may be omitted, li'unetion symbols of degree 0 arc 
ind irid'~al constants. 

2.3 Predfeale symboL% The :following symbols, in alphabetical order, are 
predieate symbols of degree n, for each n >= 0: 

i , ~ , R  , l l  , )1 ,R1 , t 2  , - . , e t c .  

The superscript may be omitted when 'r~ is 0. 
2.4 The negation symbol The following symbol is the negation symbol: ~,o 
2.;5 Alphabetical order 4' symbols. The set of all symbols is well ordered in 

alphabetical order by adding to the above ordering conventions the rule that  
variables precede function symbols, function symbols precede predicate symbols, 
predicate symbols precede the negation symbol, function symbols of lower degree 
precede function symbols of higher degree, and predicate symbols of lower de- 
gree precede predicate symbols of higher degree. 

2.6 Terms. A variable is a term, and a string of symbols consisting of a 
function symbol of degree n ~ 0 followed by n terms is a term. 

2.7 Atomie jb~'mula8. A string of symbols eottsisting of a predicate symbol of 
degree n >- 0 followed by n terms is an atomic fornmla. 

2.8 Literals. An atomic forrnula is a literal; and if A is an atomic fornmla 
then ~ A  is a literal. 
,2.9 Complements. If A is an atomic formula, then the two literals A attd ~--,A 

are said to be each other's complements, and to form, in either order, a comple- 
mentary pair. 

2.10 Clauses. A finite set (possibly empty) of literals is called a clause. The 
empty clause is denoted by: [] 

2.11 grownd literals, A literal whieh contains no variables is called a ground 
literal. 

2.12 Ground clauses. A elause, each men lber of which is a ground literal, is 
called a ground clause. In particular [] is a ground clause. 

2.13 Well-formed expressions. Terms and literals are (the only) well formed 
expressions. 

2.14 Lexical or'der of weU-formed expreasions. The set of all well formed ex- 
pressions is well ordered in lexieal order by the rule that A precedes B just in 
ease that  A is shorter than B or, if A and B are of equal length, then A has the 
alphabetically earlier symbol in the first symbol position at which A and B 
have distinct symbols. 

In writing well-formed expressions for illustrative purposes, we follow the 
more readable plan of enclosing the n terms following a function symbol or 
predicate symbol of degree n by a pair of parentheses, separating the terms, if 
there m'e two or more, by commas. We ean then unambiguously omit all super- 
scripts from symbols. In writing finite sets, we follow the usual convention of 
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e~elosi~lg the me nbers in a pair of braces and of separating/ the members by 
commas, with the ultderstanding that  the order o(' writing the n~e nbers is im- 
material. 

~.1 > Hc:,'b~'and ~n'/~'ersea. With any set ~q of clauses there is associated a set 
¢ f ~round terms called the t Ierbrand universe o[' S, as follows: let F be the set of 
all hmction symbols which occur i~l ,~. [f [" contains any function symbols of 
degree O, t.he functional vocabulary of S is F; otherwise it is the set {a} U F. The 
Herbrand universe o r s  is then the set of all ground terms iu which there occur 
o~lly symbols in the functional vocabulary of S. 

2.16 ~atua'atzon. If S is any set of clauses and P is any set of terms, then 
by P(S)  we denote the saturatkm of S over P, which is the set. of all ground 
clauses obtainable from members of S by replacing variables with members of 
P--oeeurrenees  of the same vm'iable in any one clause being replaced by occur- 
retices of the same term. 

2.17 Models. A set of ground literals which does not include a complementary 
pair is called a model. If M is a model and S is a set of ground clauses, then M 
is a model of S if, for all C in S, C contains a member of M. Then,  in general, 
if S is any set of clauses, and H is the Herbrand universe of S, we say that  ;1 is 
a model of S just itt case that  M is a model of H(S) .  

2.18 Saffs5abilitU. A set S of clauses is satisfiable if there is a model of S; 
otherwise S is unsatisfiable. 

F rom the definitioi1 of satisfiability, it is clear tha t  any set of etauses uhich 
contah~s D is unsatisfiable, and that  the empty  set of clauses is satisfiable. These 
two circumstances wilt appear quite naturM as the development of out' system 
proeeeds. I t  is also clear tha t  according to our semaatie definitions each non- 
empty  clause is ititerpreted, as explained in the informal remarks at the begin- 
ning of this section, as the universal closure of the disjunction of the literals 
which it, contains. 

2.19 Ground resolventa. If C and D are two ground clauses, and L ~ C, M ~ D 
are two singletons (unit  sets) whose respective members form a complementary 
pair, then the ground clause: (C - L)  U (D - M)  is called a ground resolveHt 
of C and D. 

Evidently any model of {C, D} is also a model of {C, D, R}, where le is a 
grouud resolvent of C and D. Not all pairs of ground clauses have ground re- 
solvents, and some have rnore than one; but  in no case, as is clear from the defini- 

o I tion, can two ground clauses have more than a finite number  of g 'ound resolvents. 
2.20 Ground resoluKon. If S is any set of ground clauses, then the ground 

resolution of S, denoted by (~.(S), is the set of ground clauses consisting of the 
members of S together with all ground resolvents of all pairs of members of S. 

2.2t N-th gro'~nd reaob~tion. If S is any set of groined clauses, then the nth 
gcouad resolution of S, denoted by (fl'~(S), is defined for each ,~. ~ 0 as follows: 
6t0(,%') = S; and for n > 0, (~"+~ - (f~(Cf~'~(S)). 

This completes the first batch of definitions. The next sectio~ls are COltcerned 
wit, h the various forms tha t  Herbrand 's  Theorem takes on it~ out" system. To 
each such form, there is a type  of refutat ion procedure which tha t  form sug- 
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g(:sts and justifies. The basic, versioIt is stated as follows (el. [2, 4]): 
H~:a~t~axD's THEOt~E~. [~" S is any finite set qf clauses and H its Herbrand 

unire'~'se, ~hen S is 'unsatisfiable ij" and only ~[l' some finite subset qj' H (S) is unsalis- 
fiable. 

3. Satu~'ation P~'ocedures 

Is was ~oted in aa earlier paper [5] that  one can express Herbrand's Theorem 
i~ the following form: 

T~-moa~ 1. I f  S is any finite set of clauses, then S Ls .unsat@i'able {f and only 
if, jbr some finite subset P qf the Herbrand universe of S, P(S) is unsatisfiable. 

This version of Herbrand's Theorem suggests the following sort of refutation 
procedure, which we call a saturation proced't~,)'e: given a finite set S of clauses, 
select a sequence P0,  P~, t.'~, • .. , of finite subsets of the Herbrand universe 
H of S, such that  P i  ~- Ps+l for eachj  ~ 0, and such that [Ji~0 Pj = H. Then 
examine in turn the sets P0 (S) ,  P i (S ) ,  P~ (S) ,  • • • , for satisfiability. Evidently, 
for any finite subset P of H, P c_ P i  for some j,  and therefore P ( S )  ~ Pj (S) .  
Therefore, by Theorem 1, if S is unsatisfiable then, for some j,  Pj(S)  is unsatis- 
fiable. 

Of course, any specific procedure of this sort must make the selection of P0, 
P~, P2, " "" , uniformly for all finite sets of clauses. A particularly natural way 
of doing this is to use the so-called levels H0, H1, H~, . . .  , of the Herbraad 
universe H; where H0 consists of all the individual constants in H, and H,~+~, for 
n ~ 0, consists of all the terms ia H which are in H,,, or whose arguments are 
in H~. In [5] we called procedures using this method level-saturation procedures. 
It, was there remarked that essentially the procedures of Gihnore [4] and Davis- 
Putnam [2] are level-saturation procedures. 

The major combinatorial obstacle to efficiency for level-satm'ation procedures 
is the enormous rate of growth of the finite sets H i  and Hi(S)  as 3' increases, at 
least for most interesting sets S. These growth rates were analyzed in some de- 
t~til in [5], and some examples were there given of some quite simple unsatisfiable 
S for which the earliest unsatisfiable Hi(N) is so large as to be absolutely beyond 
the limits of feasibility. 

An interesting heuristic remark is that,  for every finite set S of clauses which 
is unsatisfiable and which has a refutation one could possibly construct, there is 
at least one reasonably small finite subset of the Herbrand universe of S such 
that P(S)  is unsatisfiable and such that  P is minimal in the sense that  Q(S) is 
satisfiable for each proper subset Q of P. Such a P was called a proof set for S in 
[5]. If only, then, a benevolent and omniscient demon were available who could 
provide us, in reasonable time, with a proof set P for each unsatisfiable finite set 
S of clauses that  we considered, we could simply arrange to saturate S over P 
and then extract a suitable refutation of S from the resulting finite unsatisfiable 
set P(S)  of ground clauses. This was in fact the underlying scheme of a computer 
program reported in [5], in which the part of the demon is played, as best his 
ingenuity allows, by the mathematician using the program. What is really 
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wanted, to be sure, is a simulation of the proof set demon on the computer;  but  
this would appeal', intuitively, to be out of the qucstiot~. 

I t  turns out that  it, is not completely out of the question. In fact, the method 
developed in the remainder of this paper seems to come quite close to supplying 
the required demon as a computing process. In Sectio~l 4 we take the first major 
step towards the development of this method by proving more versions of Her- 
brand's Theorem. We also give a preliminary informal account of the rest of the 
argument,  pending a rigorous t rea tment  in succeeding sections. 

4. The Resolution Theorems and the /gasic Lemma 

As a specific method for testing a finite set of ground clauses for satisfi~bitity, 
the method of Davis-Putnam [4] would be hard to improve on from the point 
of view of efficiency. However,  we now give another method, far less efficient 
than theirs, which plays only a theoretical role in our development,  and which 

0 is nmch simpler to state: given the finite set ~ of ground clauses, form successively 
the sets S, ok(S), ~ ( S ) ,  . - .  , until either some ~ ( S )  contMns D, or dots not 
contain E3 but  is equal to fft"+l(S). In the former case, S is unsatisfiable; in the 
latter case, S is satisfiable. One or other  of these two terminating conditions 
must  eventually occur, since the number of distinct clauses formable from the 
finite set of literats which occur in S is finite, and hence in the nested infinite 
sequence : 

4.1 S G 0I(S) ~_ o~(S) _c . . .  G ~ ' ( S )  _c . . . ,  
not all of the inclusions are proper, since resohltion introduces no new literals. 

In view of the finite termination of the described process we can prove its 
correctness, as stated above, in the form of the ground resolution theorem. 

D GROL-N RESOLUTION THEOREM. I f  S is any finite set of ground clauses, then 
S is unsatisfiable if and only if ~ ( S )  contains El, jbr some n => O. 

PROOF. The "if" part  is immediate. To prove the "only if" part ,  let T be the 
terminating set ~"~(S) in the sequence (4.1) above, so that  T is closed under 
ground resolution. We need only show that  if T does not contain [2, then T is 
satisfiable, and hence S is satisfiable since S c T. Let  L i ,  . . .  , L~ be all the 
distinct atomic formulas which occur in T or whose complements occur in T. 
Let  M be the model defined as follows: M0 is the empty  set; and for 0 < j _-< k, 
ilfj is the set Ms-~ U {Ls}, unless some clause in T consists entirely of comple- 
ments of literals in the set Mj_~ U { Lj} ; in which ease Mj  is the set ;]fj_~ U {-.~Lj]. 
Finally, M is Mk. Now if T does not  contain ~ ,  M satisfies T. For  otherwise 
there is a least j ,  0 < j ~ It, such tha t  some clause (say, C) in 7' consists en- 
tirely of complements of literals in the set M 5 . By the definition of ;J t j ,  therefore, 
Mj  is 3ij_j U {~Lj I .  Hence by the leastness of j ,  C contains L j .  But  since 31; is 
Mj_~ U {~--~L;}, there is some clause (say, D) in 7' which consists entirely of 
complements of literals in the set Mj_~ U {Lj}. Hence by the leastness of j ,  D 
con tMns ~ L j .  Ih(.n the clause B = (C {Lfl) U (D - {~--~L~}) consists 
entirely of complements of titerals in the set ~1:[i_1 , unless B is ~ .  But i9 is a 
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ground resolvent of C and D, hence is in T, hence is not [~. Thus the leastness of 
j is contradicted and the theorem is proved. 

The Ground Resolution Theorenl now allows us to state a more specific form 
of Theorem 1, namely, 

T m,:ORE:X~ 2. I f  S is any finite set of clauses, then S is unsatisfiable if and only 
if, jut some finite subset P of the Herbrand aniverse of S, and some n ~ O, 6tn ( P ( S ) ) 
contains D. 

It  is now possible to state informally the essential steps of the remaining part 
of the development. We are going to generalize the notions of ground resolvent 
and ground resolution, respectively, to the notions of resolvent and resolution. 
by removing the restriction that the clauses involved be only ground clauses. 
Any two clauses will then have zero, one or more clauses as their resolvents, 
but in no case more than finitely many. In the special ease that C and D are 
ground clauses, their resolvents, if arw, are precisely their ground resolvents as 
already defined. SimilaHy, the notations at(S),  ~ ( S )  will be retained, with S 
allowed to be any set of clauses. ~ ( S )  will then denote the resolution of S, which 
is the set of clauses consisting of all members of S together with all resolvents 
of all pairs of members of S. Again, 6~(S) is precisely the ground resolution of 
S, already defined, whenever S happens to be a set of ground clauses. 

The details of how this generalization is done nmst await the formal definitions 
ia Section 5. However, an informal grasp of the general notion of resolution is 
obtainable now, prior to its exact treatment, from simply contemplating the 
fundamental property which it will be shown to possess: resolution "is sem~:o,m- 
mutative with saturation. More exactly, this property is as stated in the following 
basic Lemma, which is proved in Section 5: 
" LEM~A. I f  S "is any set of clauses, and P is any subset of the Herbrand universe 
of S, then: ~ ( P ( S )  ) ~ P(61(S) ). 

The fact is, as will be shown here, that any ground clause which can be ob- 
tained by first instantiating over P a pair C, D of clauses in S, and then forming 
a ground resolvent of the two resulting instances, cast also be obtained by in- 
stantiating over P oile of the finitely many resolvents of C and D. 

I t  is an easy corollawy of the basic Lemma that  nth resolutions are also semi- 
commutative with saturation: 

COi~OLLA~¢Y. I f  S is any set of clauses and P is any subset of the Herbrand 
universe of S, then: 6t~(P(S) ) c P(  fft'~( S)  ) for all n ~ O. 

Pt~OOF. By induction on n. 6I°(P(S))  = P ( S )  = P ( ~ ° ( S ) ) ,  so that  the 
case n = 0 is trivial. And if, for n ~ O, 6 C ( P ( S ) )  c P(6 ln(S) ) ,  then: 

~>+l(P(S)) = ~(~t,,(P(S))) 

~(P((R~(s))) 

P(~((Rn(s))) 

= P (6t'~+l(S)) 

and the Corollary is proved. 

by definition of 6l "+1, 

by the induction hypothesis, as ~ preserves inclusion, 

by the Lemma, 

by definition of 6t "+1, 
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Now by the above Corollary to the basic I ,emma we may immediately ob(ain 
a third versiol, of Herbrand 's  Theorem from Theorem. 2: 

Tmc<)~EM ; .  /~/' N ia ~z~:j .fi.:zite ,et qf elaz~s'e~, :he~, ~' z,s 'z~.~.sc~i<s:f&b/c ~iI" o,zd o:d9 
:j', j'of so,~e dii~ile s~d)~et l" ~g" Lt~e [ted)ra,~d ~r~'h,e,se , f  & a:~d ,some ~ ~ O, :'( (il" ( ,~') ) 
coltt(lg:/ls [~]. 

Here, the order of the saturation and '~tth resolution operatiotts is ceversed. 
Now a rather sm'prising simplifie.ation of Theorem 3 eau be made, <>~ the l:asis 
of the remark that  mere replacement of variables by terms eamtot produce K] 
from a nonempty elause. Hence P(ca"(S)) will contain [] if and o~dy if (S~ ( , )  
eontah~s ~ .  I:rom Theorem 3, therefore, we immediately obtain our fi:xal version 
of Herbrand 's  Theorem, which is the main result of this paper, and which we 
eall: 

]RESOLUTION THEOREM. I f  S z's any jir~ite set of clattses, then S is ~tsati.sjiab~e 
i f  a~zd otdy f f  (~'~( S)  conga.ins K], for aome r~ => 0. 

) ( The s ta tement  of the Resolution Theorem is just that  of the (]roumt hes  )lu- 
tion Theorem with the word "ground" omitted. Apart,  therefore, from the some- 
what more complex way in which the resolvents of two clauses are computed 
(described in Section 5) the method suggested by the Resolution Theorem for 
testing a finite set S of elauses for unsatisfiability is exactly like that  given 
earlier for the ease tha t  S is a set of ground clauses, and indeed it. automatically 
reverts to tha t  method when it is applied to a finite set of ground elauses. How- 
ever, it is no longer the ease in general that  the nested sequence 

s _c ca(s) c <a~(s) c . . .  _c <~"(s) _c . . .  

nmst terminate for all finite S. By Church's  Theorem this could not be so, for 
otherwise we would have a decision procedure for satisfiability for our formula- 
tion of first-order logic. 

Consider now the "proof set demon"  discussed in Section 3. We there supposed 
that  if see were given a proof set P for an unsatisfiable set S of clauses, all we 
would have to do would be to compute until we encountered the first C~." ( ( . ) ) t )  S 
which eontains KJ, in order to obtain from it a formal refutation of N. But the 
Resolution Theorem assures us tha t  by the time we had computed ,~I"(S), if 
not before, we would have turned up KI, despite our ignoranee of P. In this sense 
the Resolution Theorem makes the proof set demon's role unnecessary. 

In Section 5 we introduce a little more formal apparatus  by a seeond batch 
of definitions, and pay  off our debts by defining the general notion of resolution 
and proving the basle Lemma. 

5. Stz.bstittttion, (77t'ificatiem. and ResolWion 

The following definitions are eoneerned with the operation of b~stantiation, 
i.e. substi tut ion of terms for variables in well-formed expressions a~ct in sets of 
well-formed expressions, and with the various auxiliary Hot, ions l~eeded to define 
resotutiot~ in general. 

5.1 S~b,s.tiO~.tior~. eomponertt.s. A substi tution component is any expressio~ of 
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the  form T/V, where V is any variable and 7' is any term different from g. V is 
called the va~'iable of t he  component T / V ,  and .7' is called the Ze~'m of the com- 
ponent 77V. 

5.2 Sub.stitutions. A substitution is any finite set (possibly empty)  of sub- 
stitutiol~ components ,rune of the variables of which are the same. If P is any set; 
of terms, and the terms of the components of the substitution 0 are all in P, we 
say" that 0 is a substitution over P. We write the substitution whose components 
are T ~ / V 1 , . . . ,  T~:/Vi~ as {T i /V~ ,  . . . ,  2G/V,.}, With the understanding that  
the order of the components is immaterial. We use lower-ease Greek letters to 
denote substitutions. In particular, ~ is the empt:q sz&,titution. 

5.3 [nstarttiatio~. If E is any finite string of symbols and 

0 = { T g t q ,  . . . ,  7%/y,,} 

is any substitution, then the instantiation of E by 0 is the operation of replaei2~g 
each occurrence of the variable V<, 1 N i ~ to, in E by an occurrence of the 
t.erm T~. The resulting string, denoted by EO, is called the instance of E by 0. I.e., 
if £' is the string E o g q E ,  . . .  V~,E,,, then NO is the string EoT~,E1 . . .  T~,.E,, . 
Here, none of the substrings/~'i of E contain oceurrenees of the variables Vz, . • • , 
l%, some of the Ej  are possibly null, n is possibly 0, and each Vq is an occurrence 
of one of the variables g~, . . .  , Ve. Any string E0 is called an instance of tim 
string E. If C is any set of strings and 0 a substitution, then the instance of C 
by  0 is the set of all strings E0, where E is in C. We denote this set. by CO, and 
say that  it is an instanee of C. 

5.4 Standardization& If C is any finite set of strings, and V~, . . .  , V~ are 
,.~ll the distinct variables, in alphabetical order, which oeeur in strings in C, then 
the z-standardization of C, denoted by Se, is the substitution {x l /V1,  • •. , xj~/Vj~} 
and the y-standardization of C, denoted by nc, is the substitution 

{y~/V, , . . . ,  > / v , } .  

5.5 Composition of sz&sgitugions. If 0 = {T1 /V , ,  . . .  , 5r'a/l~\} and X are any 
two substitutions, then the set 0' U X', where X' is the set of all components of X 
whose variables are not among V , ,  • • • , V~, and 0' is the set of all components 
T & / V ~ ,  1 ~ i ~ £, stteh that  T& is different from V~, is called the composi- 
tion of 0 and X, and is denoted by 0X. 

It  is strMghtforward to verify tha t  e0 = 0e = 0 for any substitution 0. Also, 
composition of substitutions enjoys the associative property (0X)~ = 0(Xp), so 
that we may omit parentheses in writing multiple compositions of substitutions. 

The point of the eomposition operation on substitutions is that,  when E is any 
string, and ¢ = 0X, the string E¢ is just the string EOX, i.e. the instance of EO 
by X. 

These properties of the composition of substitutions are established by the 
following propositions. 

5.5.1. (E@X = g(~X) for all strings E and all subsgit~u~tions ¢, X. 
]?~moF. Let c~ = { T , / G , . . .  , Tk/Vk}, X = { U ~ / W ~ , . . . ,  U,~JW~I and 

E = EoV~E~ . . .  V~E,~ as explained in (5.3) above. Then by definition Eo- = 
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and each  i')j is EjX',  where  X' is the  set  of all c o m p o n e n t s  of X whose var iables  
are 1lot a m o n g  fQ,  . • . , V/~ (since ~xone of these var iab les  occur  in a n y  E~).  But  
CX = ~ / U  X', where each compo~xetxt of ~r' is jus t  Y'~/Y~ whet~ever Y['~ is different 
f rom V~. Hence  f(~,X) = E07'~i?~ . . .  ~'~,~/??,~. 

5.5.2. For any stt.b,stitt~tior~.s' or, X: "zj' Eo- = EX jb'r all st)'iugs E, then cr = X. 
P~oo~,'. Le t  I"~, • - - , Vz,. include all the  var iab les  of the  c o m p o n e n t s  of ~r and 

k ; t h e n  Vet  = V~k, for I =<j  =< }c. T h e n  all the  compot~ents of (r and  X are  the 
S a l t l e .  

5.5.3. For an;~ substitt~tions o~, X, ~: (~rX)~ = c~(,X~). 
.l:h~OOF. Le t  E be a n y  string. T h e n  b y  5.5.1, 

= ( (J¢~)x)u  

= ( E ~ ) ( x . )  

= I , : (~(x~)) .  

t l ence  (~rX)U = ~(X,u) by  (5.5.2).  
We shall  also have  occasion to use the  following d i s t r ibu t ive  p rope r ty .  
5.5.4. For any .~et.s A,  B of strings and ~ztbstitution X: (A U B)X = A X U BX, 
5.6 Disagree'ment sels. I f  A is a n y  set  of wel l - formed expressions,  we call the 

set B the  d i sag reemen t  set  of A wheneve r  B is the  set  of all wel l - formed subex-  
pressions of the  wel l - formed expressions in A, which  begin a t  the  f r s t  symbo l  
posi t ion a t  which not  all wel l - formed expressions in A have  the  s ame  symbol .  
Exa'lnple: 

~i = { / ' (z ,  t~(~, ~) ,  y) ,  P ( x ,  t~(y), y) ,  P ( x ,  a, b)}, 

D i s a g r e e m e n t  set  of A = {h(:c, y),  ~@), a}. 

Eviden t ly ,  if A is n o n e m p t y  and  is not  a s ingleton,  then  the  d i sag reemen t  set  
of A is n o n e m p t y  and  is not  a singleton.  

5.7 Unificatio%. I f  A is a n y  set  of wel l - formed expressions and  0 is a sub- 
s t i tu t ion,  then  0 is said to un i fy  A, or  to be  a unifier of A, if AO is a singleton.  
A n y  set  of wel l - formed expressions which  has  a unifier is said to be unifiable.  

Ev iden t ly ,  if 0 unifies A, bu t  A is not  a s ingleton,  then  0 unifies the  disagree-  
m e n t  set  of A. 

5.8 Unification Algorithm. T h e  following process, appl icable  to  a n y  finite 
n o n e m p t y  set  A of we l l4o rmcd  expressions,  is called the  Unif icat ion Algor i thm:  

[ 

Step 1. Set ~0 = ~and /~ = 0, and g o t o s t e p 2 .  
Step 2. If Ao-~, is not a singleton, go to step 3. Otherwise, set a~ == ~r;, and terminate. 
Step 3. Let Vk be the earliest, arid Ue the next earliest, in the lexieal orderir~g of the dis~ 

agreement set Bk of A~r~ . If V~ is a variable, and does not occur in U~ , set zk~ = ~e{ Uk/Vk}, 
add 1 to k, and return to step 2. Otherwise, terminate. 

Th i s  defini t ion requires  jus t i f icat ion in the  fo rm of a proof  t h a t  the  given 
process is in fact  an a lgor i thm.  I n  fact  the  process  a lways  t e r m i n a t e s  for a n y  
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fi~ite nonempty set of well-formed expressions, for otherwise there wouM be 
generated sin infinite sequence A, A ~  , A~2, • " of finite nonempty sets of well- 
formed expressions with the property that each successive se(~ contains one less 
variable than its predecessor (namely, A~: contains G but .c:[O'k+l does not). But 
this is impossible, since A contains only finitely many distinct variables. 

5.9 Most general unifiers. If A is a finite nonempty set of well-formed ex- 
pressions for which the Unification Algorithm terminates in step 2, the substitu- 
tion ~A then available as output of the Unification Algorithm is called the most 
general unifier of A, and A is then said to be most generally unifiable. 

5.10 Key triples. The ordered triple (L, M, N} of finite sets of literals is said 
to be a key triple of the ordered pair (C, D) of clauses just in case the following 
eoMitions are satisfied, 

5.1.0.1. L and M are nonempty, and L G C, M C D. 
9 ;).10.~. N is the set of atomic formulas which are members, or complemeuts 

of members, of the set L}c U MW (ef. definition (5.4)). 
5.10,3. N is most generally unifiable, with most general unifier aN. 
5.10.4. The sets L,ecCN and M~DO-~- art singletons whose members arc eomple- 

Ill,illS. 

Ii, vtdently, a pair (C, D) of clauses has at  most a finite number of key triples, 
and possibly none at all. 

5.11 Resolvents. A resolvenl~ of the two clauses (7 attd D is any clause of the 
form: (C - L ) ~ c ~  U (D - M)~Dcs where (L, M, N} is a key triple of ((7, D}. 

By the remark following definition (5.10) it is dear  that two clauses C and D 
eat1 have at most finitely many resolvents, and possibly none at all. 

5.12 Resolutions. If S is any set of clauses then the resolution of S, denoted 
1)y (;l (S), is the set of all clauses which are members of S or resolvents of members 
of S. 

5.13 N-th resolution. The nth resolution of S, where S is any set of clauses, 
is denoted by ~ ( S )  and is defined for all n ~ 0 exactly analogously to definition 

¢) c (~.el). 

This eonlpletes our second group of definitions. The definition of 6l(S) as 
given is adequate for our theoretical argument, but  in practice one would not 
include in it both the resolvents of (C, D} and the resolvents of (D, C), since 
these are in fact identical up to a change of variables. When C and D are both 
ground clauses, the resolvents of ((7, D} are actually identical with those of 
(D, C), and are precisely the ground resolvents of C and D, as is easily verified. 

I t  now remains to prove the basic Lemma, which will be done after we have 
first proved the following theorem establishing the basic property of unification, 
which we need hi the proof of the Lemm~ and elsewhere in our theory: 

UNIFICATION THEORI~M. Let A be any finite nonempty set of well-formed ex- 
pressions. I f  A is unifiable, then A iz most generally unifiable with most general 
unifier ca ; moreover, fo'r any unifier 0 of A there is a substitution X such that 
0 = ZAX. 

PROOf. I t  will suffice to prove that  under the hypotheses of the theorem the 
Unification Algorithm will terminate, when applied to A, at step 2; and that  
for each Ic _~ 0 until the Unification Algorithm so terminates, the equation 
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5.14. 0 = ¢*:~/: 
holds at step 2 for some substitution Xk • For k = 0, (5.14) holds with >~0 = 
since ~0 = e. Now assume that, for k ~ 0, (5.14) holds at step 2 for some s 
stitution Xe. Then either Ao?¢ is a singleton, in which case the Unification 
gorithm terminates at step 2 with ~r~ = ~ the most general unifier of A 
X = X~ the required substitution; or the Unification Algorithm transfers to s 
3. Iu the latter ease, since Xz: ut~ifies A~r~:, (by (5.14), since 0 unifies A) Xz m 
also unify the disagreement set B~ of Ao-z. Hence the V~0 and (& defined b~ s 
3 of the Unification Algorithm satisfy the equation 

5.15. V~X~ = U~X~. 
Since B~ is a disagreement set, the well-formed expressions in B~ cannot 
begin with the same symbol; hence they cannot all begin with symbols which 
not variables, since B~ is unifiable. Therefore at least one well-formed express 
in B~: begins with a variable, and hence is a variable, since it is well-form 
Since variables precede al[ other well-formed expressions in the lexical order, 
since V~ is the earliest well-formed expression ill B~:, it follows that V~ i,. 
variable. Now if V~ occurs in U~, V~X~ occurs in U~X~, but sitice V, and U,, 
distinct well-formed expressions this is impossible because of (5.15). Theref 
V~ does not occur in U~. Hence the Unification Algorithm will not termiuat¢ 
step 3, but will return to step 2 with m~+l = o-~:{ U~JVk}. Now let X~+~ = X,: 
{ Vi~Xk/Vlo}. Then: 

x~: = {Vkxk/Vk} U X~+i by definit;ion of Xk+l , 

= [U~Xk/V~} U x,+~ by (5.15), 

= {U~Xk+l/Vt~} U xk+l since V~ does not occur ia 65:, 

= {U~/Vi,}Xk+~ by definition (5.5). 

i[cnee by (5.14) 0 = m,+iXk+i • Thus (5.14) holds for all Ic => 0 until the U 
fication Algorithm terminates in step 2, and the theorem is proved. 

We are now ia a position to prove the basic Lenima, which we state here ag~ 
for convenience. 

LEr~M*. I f  S is any set of clauses and P is any subset of  the He;"brand unive 

of S,  then: ~ ( P ( S ) )  ~ P ( ~ ( S ) ) .  
PROOF. Assume that A E 6 I ( P ( S ) ) .  Then either A E P ( S ) ,  in which c: 

A E P ( 6 I ( S ) )  since S Z 5~(S) ; or A is a ground resolvent of two ground clau 
Ca, Dfl, where C E S, D E S, a = { T 1 / V i ,  " "  , 7'~/Fk}, where V1 , - ' .  , Vkl 
all the distinct variables of C in alphabetical order and 5f'~, .. • , Tk are in 
and 5 = { U~/W~,  •. • , U,,,/W,,,}, where W~, • • • ,Wm are all the distinct v~ 
ables of D in alphabetical order and U , ,  . . .  , U,, are in P. In that ease, A 
(C - L)oe U (D - M)5, where L ~ C, M ~ D, L and M are nonempty, a 
Lce, M5 are singletons whose members are complements. Let 

O = {T~/x~ , . . . ,  T k / x k ,  U ~ / y ~ , . . . ,  U,,/y,~}. 

Then it follows that  A = (C' - L)~cO U (D - M ) w O  and that Li%0 = Loe a 
M~,O = Mfi.  Therefore 0 unifies the set N of atomic formulas which are me 
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bets, or eompieme~ts of members, of the set L~c U J['ov.  t leuce by the Unifica- 
tion Theorem N has a most ge~eral unifier <v, and there is a substitution X over 
P such that 0 = orx,~, ttence L~c<~X = L~ and M~r)~NX = M~, and therefore 
e~co,v and 3:[vvcx are singletons whose members are complements. It  follows 
that (L, M, N) is a key triple of (C, D}, and hence that the clause 

B = (C - L)}oz~v U (D - M)VDz,,, 

is a resolvent of C and D; hence B ~ 6i(S). But since 0 = ~r~k, it follows by 
(5.5.4) that  A = BX and therefore that  A ~ P(( i t (S)) .  The  proof is complete. 

The hypotheses of the Lemma do not entail the opposite inclusion P(6i(S)  ) 
~ (P  (S) ) .  :ks a simple counterexample, consider: 

S = { { Q ( x , f ( y ) ) } ,  {~-.-~Q(g(y),x)}}, P =  {a}. 

A short investigation shows that  P (6 t (S ) )  contains ~ (since cf~(N) does) while 
c~(P(S)) does not. Thus S is unsatisfiable, but P is not a proof set for S. 

6. The t{esoh~tion Princ@le: Refutations 

The single inference principle of our system of logic, mentioned ia Section l, 
is the resolution principle, namely: From any two clauses C and D, one may i~J~r 
a resolvent qf C and D. 

By a r@~tation of the set S of clauses we mean a finite sequence B1, .. • , B, 
of clauses such that  (a) each B~, 1 -~ i ~ n, kse i ther in  S o r i s a r e s o l v e n t  
of two earlier clauses in the sequence, and (b) B~, is ~ .  

i t  is immediate h'om the Resolution Theorem that  a finite set S of clauses is 
unsatisfiable if and only if there is a refutation of S. Titus the Resolution Theorem 
is the ~ completeness theorem for out' system of logic. 

Two examples of refutations will illustrate the workings of the system. 
Example 1. The set containing just the two clauses C~ and C~, where 

C~ = { Q ( z ,  g ( z ) ,  y,  h(x ,  y ) ,  z, l~(x, y,  z) )l 

C~ = {~-.~Q(u, v, e(v), w, f(v, w) ,  x)} 
has the refutation C~, C~, ~ .  Note that  (C~, C2) has the key triple (C~, C~, iV}, 
where N is the set 

{Q(x~ , g(z~) ,  x~ , h(x~ , z : ) ,  x:~, k(z~ , x~ , z~) ), 

Q(y~ , u~ , e ( y ~ ) ,  y~ , f ( y ~  , u~,), y~)l. 
The reader can verify in a few minutes of computation with the Unification 
Algorithrn that z~- is the substitution with the compor~ents: 

yJz~ , h(y~ , e(g(y~)))/y:~ 

g(y~)/y~ , f(g(y~), h(y~ , e(g(y~))))/x:~ 

e(g(yt))/x~, /,:(y~ , e(g(yl)), f(g(y~), h(y~ , c(g(y~)))))/y4 

and that then C ~ . ~ -  and C2vc~o~ art  singletons whose members are comple- 
ments. 
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This example illustr~tl.es the, wa.y in which a pt'oof set is ~tuton~atieally col~i- 
I)uted :~s a by-product; of the resolut.io~l operation. The tel'ms of the above sub- 
stitution1 co~lpone~ts }>ecome those of a proof set for {C~ , (/~} when the variable 
//~ is repl~ced throughout by ~ y  tern~ of the t:[erbra~id universe of {C~, C~}, e.g. 
})y the individual e()~stat~[: % . "  I t  is interest:ing t:o note tha t  the earlies% level of 
~his Herbrand universe [[ to include such ~ proof set is Ills, which has of the 
orgies" of :10 s4 ~.embers. Co~se(lue,~tly tts({C'~ , (.;'~}) has of the order of 10 ~ss mem- 
bers. A level-satur~tioti procedure would ttol~ fi~d Lhis example feasible. 

I;:ca,~zp[e 2. A more intei'esti~lg example is erie which was discussed in [5]. 
I t  arises from the following algebraic problem. 

t'rol,e ~h~t i~z an~] as'soc/e~th,e s}]sge~ wh.gch has left and right select'ions z and y for 
c,}~ eq'~a~io~z,~ z .  a = b a ~ t  e~.y = b, the~'e i.s a right ide'ngit?] ele~zent. 

To formalize this problem i~ our logic, we deny the alleged conclusion, and try 
to r(:i'ute the set containing the clauses (where Q(x,  y, z) is to mean z . y  = z): 

C~ : { -()Co, ~z, "), ~O(,!J, z, v), .~Q(z, v, ~J:), O(u, z, ¢,~)} 

C~ : {-O(:v, y, ~), "~O(y, z, z'), .~O(,l~, z, ~), O(:v, v, w)} 

C~ : {O(g(a', y), :r, y)] 

C~ : {Q(z, hCc, y), z/)} 

(::~ : {O(z, ~,f(z,  ~/))} 

C,~ : { ' - O ( k ( z ) ,  z ,  aCe))} 

Assoe in t iv i ty  
\ 

Existence of left and right 

solutions 

Closure under • 

No right identity. 

By adding the following resotve~Lts, we get a refutation: 

C7 : { ~ Q ( y ~  , x ~ ,  ?ji), Q ( y ~  , x6  , y~)} 

C~ : { : ~ Q ( y ~  , y~ , y~)} 

Ca: 

Com.'tr~.enlc~ry. Cr is tile resotven£ of the pair (C1 , Ca) for the key triple 

({~--Q(x, :q, ~), ~.JQ(x, v, w)}, {Q(g(x,  y) ,  x, y)}, N) 

where N is the set {Q(z.4, xs ,  x l ) ,  Q(x4,  x2 , xa), Q ( g ( y l ,  y2), yl , y2)}. The ~r~. 
computed for this N by the Unification Algorithm is 

, , g(y  , y /zd, 

as is easily verified. Cs is the only resolvent of (C~, C7}, and [] is the only re- 
solvent of ((J4,6%}. 

Thks example illustrates the way in which the single steps in a refutation made 
with the resolution principle go beyond, in their eornplexity, the capacity of the 
human mind to apprehend their correctness irt one single intellectual act. By 
taking larger bites, so to speak, the resolution principle in this ease permits a 
very compact, not to say elegant, piece of reasoning. C'2 and C~ are not used as 
premisses hi. the refutations, although this has nothing to do with the resolution 
principle. Hence a non.redundant refutation for this example is the sequence: 
C h , C a , C 4 , C ~ , C r , C s ,  D. 
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7. R@~tation Proc(~dures, Search P~'ir~eiples 

The foregoing discussiotl was intended only to establish the theoret:ical frame- 
work, in the form of a special system of logic, for the desigu of theorem-proviug 
programs, i.e. ia tile present ease, refutation procedures. No at tempt has been 
made thus far to discuss the question of developing efBcie~tt refutation pro- 
eedures, and in this final section of the paper we briefly discuss this question. 

The raw implementation of the Resolution Theorem would produce a very 
inefficient refutation procedure, namely, the procedure would consist of com- 
puting, given the finite set S of clauses as input, the sdqueuce of sets S, dl(S), 
0=t2(S), - . .  , until one is encountered, say, 6I'~(S), which either contains [] or 
else does not contain ~ but is equal to its successor (~t~~ ~(S). In the former ease, 
a refutation of S is obtained by tracing back the genesis of ~ ; in the latter ease 
the eonelusion is that  S is satisfiable. By Church's Theorem [1] we kttow that 
for some inputs S this procedure, and in general all correct refutation procedures, 
will not terminate in either of these two ways but will continue computing in- 
definitely. 

In some eases we can foresee the nonterminating behavior. Consider the ex- 
ample of the set S whose members are: 

Cx : {Q(a)}, C2 : {~Q(x ) ,  Q(f(x))}. 

(The reader will recognize this as the formulation, in our logic, of a fragment of 
Peano's postulates for the natural numbers, with "Q(x)"  for "x is a natural 
number," "a" for "0," and " f (a )"  for "the successor of z".)  I t  is easy to see 
that for this S the procedure described above would generate successively the 
resolvents { Q (f(a) ) }, { Q ( f( f (a)  ) ) }, { Q ( f ( f ( f (a)  ) ) )}, . - .  , etc., ad infinitum. 

This example suggests out" attempting to formulate a principle which would 
allow us effectively to recognize the particular indefinite continuation phenome- 
non which it exhibits, so that  we might incorporate the principle ittto a refuta- 
tion procedure and cause it to terminate for this S and for other similar examples. 
Such a principle, which we call the purity principle, is available, based on the 
notion of a literal being pure in a set S of clauses. We define this notion as fol- 
lows. 

7.1 Pure literals. If S :is any finite set of clauses, C a clause in S, and L a 
literal in C with the property that  there is no key triple ({L}, M, N} for any 
pair <C, D} of clauses, where D is any clause in S -- {C}, then L is said to be 
pure in S. 

The purity principle ks then based on the following theorem. 
PURITY THEOREM. If S is any finite set of clauses, and L C C ~ S is a literal 

which is pw'e in S, then S is satisfiable i f  and only f f  S - {C} is satisfiable. 
PROOF. If S is satisfiable then so is S - {C} since it is a subset of S. I t S  - {C} 

is satisfiable, then there is a model A of S -- {C}, every literal in which occurs 
in some clause of H ( S ) ,  where H is the Herbrand universe of S. Let N be the 
set of all ground literals LO, where 0 ks a substitution over H, and let K consist 
of all complements of members of N. Then the set P == N U (A - K) is a 
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model; moreover it is a model e[ ~ < sh~ce every claus<~ in H( ~ ) ccmtai.ns a 
n-mmb~r of P (namely a member of N) ,  mid every clause in [ / (£ '  - {C} ) con.- 
taius a member of P, namely a member of A -- K; for no clause in tT(~v - {C}) 
contains a member of K, since otherwise, if 7)~ were, such a clause, wff, h D 
N ~C ~ then h ( , c  would be an __ - ~ ..j, t ~', ~1] c D such that  M~ would b<~ a singleto~,,_ 
containing a member o[' K. Then there would be some subsdhl t ion e~ over H 
such that  z~J~'~qce, J /d  eontaim>d compIementary singletons., t:. h~ne(~, ~ by. the same 
argmnent  as in rile proof of the Lemma, there would be a key triple ({ L}, 34, N) 
of the pair (C, D}, co~.tracticting the puri ty  o [ L  i.u ,5. The theorem is proved. 

The p%ril~ pr~TneipZe is then simply the following: One 9~zay ddete, j3'o,i, a fi~ige 
act S of da~tse,, aw~/ da<~tse containi~ng a literal which is pure in S. 

When N is the little Peano example given earlier, i.e., is the set eont.a.iaing just 
the two clauses 

C,:  {O(a)}, C~: {~O(:~), Q(f(z))} 

we see that  the underlined literal itt Cs is pure iu S. I{erme we may delete C2, 
obtaining the set S -- {G:} whose only clause is 

c' , :  {OZ.J }. 

But  of course tl~e underlined literal is, trivially, pure in S - I CJ ;  hence we may 
delete Q ,  obtaining tt~e set S - {Cj - {C2}, which is empty,  hence satisfiable. 
Hence by the Pm'i ty Theorem, S is satisfiable. 

Thus a refutation procedure incorporating the pur i ty  principle as well as [he 
resolution principle "converges" for more finite sets of clauses than a procedure 
based on the resolution priuciple alone. Such principles as the pm'ity prineiple 
we call ,ear& principle,, to distinguish them from inference principles. 

There is another search principle which, though riot increasing the range of 
convergence, does help to increase the rate of convergence, of refutat ion pro- 
eedures. We ealt this principle the ,ubs'~tmption principle and base it on the %l- 
lowing definition. 

7.2 S%b,~m, ptior< If  C and D are two distinct nonempty  clauses, ~e  say 
that  C subsumes D just ia case there is a substi tut ion ~- such that  (:'~r Z D.  

The  fol lowing theorem establishes the  basic property  of subsumption.  
SuBsu:~PT~ox TUEO~:E:~. I f  S is any  finite set of clause.% and D is any clause 

in S which "is ~ztbsumed by some da~zse in S -- {D}, then S is ,s'ati.sfiable .(f and onlg 
iT' S - S D~ is .s'atisfiable. 

P~{ooF. We need only show that  if M is a model of S -- {D}, ther~ 2]4 is a 
model of S. Let  M be a model of S - {D}, and suppose that  (', ~ ~ ,.~ - {D} sub- 
sumes D. Then there is a substitlttion. ~r such that  C(~ G2 D .... met. D ft. S ,  the 
terms of the ('.ornponents of ¢ must  be formed from furw.tion symbols in the fum> 
tionaI voeabulary of S, together possibly with variables, t-tenee every grouml 
instarme of C¢ over H is a ground instance of C over H, and hence eont, ains a 
member of M. But  every  grotmd insta,nce/)X of D includes the ground instance 
Cck of C, and hence contains a member of M. So M is a model of N aml the theo- 
rem is proved. 
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The ~.~d;,~"~mp&on p~'i~wiple is then shnply the foIlowi ~g: One m~W dch:a~, from ~ 
fi'nite set S of eka~e.% an:/dcru, se D which is s~d~<t nf;d b:: ~ clau~e in ,,'5 - {I)}. 

in order t:o make the subsumptioa principle available for incorporation i ~o  a 
re[uta~ion proeedm'e, we must  give an aigorithn~ for deddh>?< whet}tot oue clause 

,.uch au algov[th ~ is the t'ctlox~il g ~ubsumphou 6: sltbs[lllles another  clause D. R -, . 
Algoritl~ ~ 

Step 1. I .e t  V1 , " -  , V~,~ be ~*[I t he  dist, inc t  varia}> es,  in Mp}ud)etical o rder ,  of D. Let  
J l  , " '"  , ,1,. be  distiI~(:¢ ind iv idua l  c o n s t a n t s ,  n o u e  of which  occur  in C or  D. l,~t 0 .... 

• t { . t , / V j ,  " "  , J . j ~ . . . ~ .  C o m p u t e  DO a a d  go to s t e p  2. 
Step 2. Se t , l .0  = {C} ,  /:. = O, and  go to  s tep  3. 
SleR 3. If' A:~ does  n o t  coI~tain ~ ,  let zl;:+~ bc the sc t. of all c l auses  o[ the  fo rm (Kc~x - Me:v), 

w h e r e K  C A~; M C N , , \ : =  M U  ~ )l , __ ~I 1, [or some  I-' ~ l)O, amd \" ]:S m o s t  goner  ally uuifi 4)t( 
with m o s t  genera l  unif ier  ¢~  ; ariel go to s tep  4. O t h e r w i s %  t e r m i n a t e .  

Step 4. If A:,t. is n o n e m p t y ,  a.dd 1 to L: a n d  r e t u r u  {o s t ep  ,%. ()t, herwise ,  t e r m i n a t e .  

That  t.his is an Mgorithm is elear from the  tad~ theft each e, lause in /lx.~.~ is 
smaller, by a t  least one literM, than  the clause in A, from which it was obtained. 
Hence, since the  only clause in Ao has  but  finitely m a u y  titerals, the sequence 
A o, A, ,  . . .  , must  even~uMly contMn a set  which contains g? or is empty.  

Tha t  the $ubsulnpt ion Algori thm is correct  is shown by the following argu- 
me~.t that  it t e rmina tes  in step 3 if and on ly  if C subsumes D. 

If C stibsumes D, then  6'(r ~ D for some <~. Hence C'~0 cz DO. l[eime (;'~ !~:] 
DO, R)r some ~. Now assume, for lc ~ 0, t h a t  K ~:i A~ aad that,  for soa:~(: ~, 
Ku ~ DO. If K is not [7, let P be a literM in K u  ~ DO. Tl:~em there is ~m M ;;7; K 
sticix that N = (M U {P} ) is unified by  >. There[ore  by tim UMfie~d)iou 'l:heor(3m 
N h a s  a most  general unifier ~ ,  and tile clause G = ( K a , v  - ill<v) is ia A~,.t.~ . 

[But by the Unification Theorem ~ = coX, £er SOIal(? X, hence K(:a. qT~ DO. 
Therefore GX G DO. Siace C E A0, this shows du~t each A~:,/,: )~ (), either cow- 
t, aias ~ or is nonempty .  Hence the S u b s u m p t k m  Algori thm does not termiual;e 
i t /step 4. Tt " mrmore it te rminates  in step 3 .  

If the Subsmnpt ion  Algor i thm te rmina tes  in sts p 3, for C' amJ l) as input, then 
there is a finite sequence Co , C1 , • • • , 6.,,-.k~ of clauses, sueh tha t  Co .... 6,  (',,, ~.~ :: 

' = ( ] i ¢ i  ...... ~ ,  and, for 0 =< j ~ n, C~_: - M y ~ ,  where ella c: Ca, aad r*i is 
the most general unifier of M:  U {P}, where I ) (!i DO. I t  folh)ws tha t  (since M y :  
e(mtains no variables,  0 N j N n)  we have  

C,,+i = [] = C¢0~l " ' "  o~ -- 211000 -- 3liai . . . . . . .  M: ' . , ,  

• r- ~~ U U M:-, , )  C DO. t ie,me, for some i.e. t h a t  C~ocq .- ~r,, ~ ( M : 0  U M : q  " ' "  .._ 
X, CX C D0. Let  ¢ be the subst i tut ion ob ta ined  fi'om X by  the replaeemeut,  i~ 
each eomponen.t of X of J~ by  V~, for 1 = < i =< m. Then. 6'¢ =:- D.  

A part icularly useful applicat ion of th.e sttbsumptio~l p r i aco le  is t, he follow- 
ing: Suppose a resolvent k'. of C and D subsumes  ome of C, D; then in. adding 
t~ by the resolution principle we m a y  s imul taneous ly  delete, by the s u b s t l m p -  

tion principle, t ha t  one of C, D w h i c h  R st:tbsunms. This  combined operation 
amounts to replacing C or D by  R; accordingly we name the principle inw)lved 

the replacement principle. 
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The following example, used by Gilmore [4], Davis-Putnam [2] and Friedman 
[3], illustrates the utility of these search principles in speeding up convergence. 
Consider the set S whose members are: 

Cl : { P ( x l , x 2 ) }  

(6) 

C2 : { u P ( y 2  , f ( y ,  , y~)), ~ P ( f ( y l  , y~),f(y~ , y~)), Q(yl  , y2)} 
(1) (2) 

(C:~ : {~P(y2 , f (y t ,  y2)), ~ P ( f ( y ,  , y2), f ( y ,  , y~) ), ~--'Q(y~ , f(y~ , y2) ), ~ Q ( f ( y ~  , y~),.f(y~ , y~) ) } 

(3) (4) (5) 

and we obtai~t tile set S'  whose only members re'e: 

C,~ : {Q(y l , y2 )}  

C~ : { ~ Q ( f ( y l  , y 2 ) , f ( y L ,  y~))} 

in six stages which may be followed through by deleting the underlined literals, 
and the underlined clause, in the order indicated. This gives the set of clauses 
at  each stage. Deletions (1) through (5) are by virtue of the replacement prin- 
ciple; deletion (6),  of the entire clause C~, is by virtue of the purity principle. 
The  set S' in turn is found immediately to be unsatisfiable, since C4 and C5 have 
[] as their only resolvent. 

Gilmore's 704 program failed to converge after 21 minutes' running time, when 
given this example. The more efficient procedure of Davis and Put~am con- 
verges, for this example, in 30 minutes of hand computation. 

The  application, to a finite set S of clauses, of any of the three search win-  
eiples we have described, produces a set S ~ which either has fewer clauses than 
S or has the same number of clauses as S but  with one or more shorter clauses. 
An obvious method of exploiting these principles in a refutation procedure is 
therefore never to add new clauses, by the resolution principle, except to a set 
to which the three principles are no longer applicable. We might call such sets 
irreducible. The way in which such a procedure would terminate, for satisfiable 
S within its range of convergence, would then be with a set, which is either empty 
(as in the Peano example) or nonempty, irreducible, and with the property 
t ha t  each resolvent of any pair of its clauses is subsumed by some one of its 
clauses. 

There are further search principles of this same general sort, which are less 
simple than those discussed in this section. A sequel to the present paper is 
planned in which the theoretical framework developed here will be used as the 
basis for a more extensive treatment of search principles and of the design of 
refutation procedures. This section has been merely a sketch of the general na- 
tu re  of the problem, and a brief view of some of the approaches to if,. 
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