
A M a e h i n e - O r l e n t e d L o g i c B a s e d o n t h e R e s o l u t i o n P r i n c i p l e

J. A. ROBINSON

Argonne Nalionrd Laboratory* and t~ice U.niver~itg~

:tb.~tract. Theorem-proving on the computer, using procedures based on the fund~-
mental theorem of Herbrand concerning the first-order predicate etdeulus, is examined with
~ view towards improving the efticieney and widening the range of practical applicability
of these procedures. A elose analysis of the process of substitution (of terms for variables),
and the process of t ruth-funct ional analysis of the results of such substitutions, reveals
that both processes can be combined into a single new process (called resolution), i terating
which is vastty more ef[ieient than the older cyclic procedures consisting of substitution
stages alternating with truth-functional analysis stages.

The theory of the resolution process is presented in the form of a system of first<~rder
logic with .just one inference principle (the resolution principle). The completeness of the
system is proved; the simplest proof-procedure based oil the system is then the direct im-
plementation of the proof of completeness. Howew~r, this procedure is quite inefficient,
~nd the paper concludes with a discussion of several principles (called search principles)
which are applicable to the design of efficient proof-procedures employing resolution as the
basle logical process.

1. introduction

Presented in this paper is a formulation of first-order logic which is specifically
designed for use as the basle theoretical instrument of a computer theorem-
proving program. Earlier theorem-proving programs have been based oil systems
of first-order logic which were originally devised for other purposes. A prominent
feature of those systems of logic, which is l~eking in the system described in this
paper, is the relative ,simplicity of their inference principles.

Traditionally, a sirlgle step in a deduction has bee~ required, for pragmatic a,~d
psychological reasons, to be simple enough, broadly speaking, to be apprehended
as correct by a human being in a single intellectual act. No doubt this custom
origiu~tes i~1 the desire that each single step of a deduction should be indubitable,
even though the deduction as a whole may consist of a long chain of such steps.
The ultimate conclusion of a deduction, if the deduction is correct, follows logi-
e~dly from the premisses used ia tile deduction; but the human mind may well
fit~d the unmediated transition from the prelnisses to the conclusion surprising,
hence (psychologically) dubitable. Part of the point, theft, of the logical analysis
of deductive reasoning has been to reduce complex inferences, which are beyond
the capacity of the human mind to grasp as single steps, to chains of simpler
inferences, each of which is within the capacity of the human milld to grasp as a
single transactiom

Work performed under the auspices of the U. S. Atomic Energy Commission.
* Argonne, Illinois.
t Present address: Rice University, Houston, Texas.

23

Jaurnal of the Association for Computing Machinery, Val. 1 2, No. 1 (January, 1965), pp. 23-41

24 J . A. R O B I N S O N

From the theoretical point of view, however, an inference principle need only
be .sound (i.e., allow only logical consequences of premisses to be deduced from
them) and effective (i.e., it must be algorithmically decidable whether an alleged
application of the inference principle is indeed an application of if,). Wlielt the
agent carrying out the application of an inference principle is a modern computing
machine, the traditional limitation on the complexity of inference principles is
no longer very appropriate. More powerful principles, involving perhaps a much
greater amount of combinatorial information-processing for a single application,
become a possibility.

In the system described ill this paper, one such inference principle is used.
I t is called the resolution principle, and it is machine-oriented, rather than human-
oriented, in the sense of the preceding remarks. The resolution principle is quite
powerful, both in the psychological sense that it condones single inferences
which are often beyond the ability of the human to grasp (other than discur-
sively), and in the theoretical sense that it alone, as sole inference principle,
forms a complete system of first-order logic. While this latter property is of no
great importance, it is interesting that (as far as the author is aware) no other
complete system of first-order logic has consisted of just one inference principle,
if one construes the device of introducing a logical axiom, given outright, or by a
schema, as a (premiss-free) inference principle.

The main advantage of the resolution principle lies in its ability to allow
us to avoid one of the major combinatorial obstacles to efficiency which have
plagued earlier theorem-proving procedures.

In Section 2 the syntax and semantics of the particular formalism which is
used in this paper are explained.

2. Formal Preliminaries

The formalism used in this paper is based upon the notions of unsatisfiability
and refutation rather than upon the notions of validity and proof. I t is well
known (cf. [2] and [5]) that in order to detemfine whether a finite set S of sen-
tences of first-order logic is satisfiable, it is sufficient to assume that each sentence
in S is in prenex form with no existential quantifiers in the prefix; moreover the
matr ix of each sentence in S carl be assumed to be a disjunction of formulas
each of which is either au atomic formula or the negation of an atomic formula.
Therefore our syntax is set up so that the natttral syntactical unit is a finite set
S of sentences in this special form. The quantifier prefix is omitted from each
sentence, since it consists just of universal quantifiers binding each variable in
the sentence; furthermore the matrix of each sentence is regarded simply as the
set of its disjunets, on the grounds that the order and multiplicity of the disjunets
in a disjunction are immaterial.

Accordingly we introduce the following definitions (following in part the
nomenclature of [2] and [5]):

2.1 Variables. The following symbols, in alphabetical order, are variables:

~t/,~ Y, W~ X~ y , Z, U l ~ Yl ~ Wl ~ Xl ~ Yl , Zl , U2 , " " • , e t c ,

T H E R E S O L U T I O N P R I N C I P L E 25

2.2 V,~z,ttctio'n symbols. The following symbols, in alphabetical order, arc
functioIl symbols of degree n, for each n ~ 0:

a , b , c , d , g , h , l c , a ~ , ~, . ,e tc . e , j , ' b"

Whea n = O, the superscript may be omitted, li'unetion symbols of degree 0 arc
ind irid'~al constants.

2.3 Predfeale symboL% The :following symbols, in alphabetical order, are
predieate symbols of degree n, for each n >= 0:

i , ~ , R , l l ,)1 ,R1 , t 2 , - . , e t c .

The superscript may be omitted when 'r~ is 0.
2.4 The negation symbol The following symbol is the negation symbol: ~,o
2.;5 Alphabetical order 4' symbols. The set of all symbols is well ordered in

alphabetical order by adding to the above ordering conventions the rule that
variables precede function symbols, function symbols precede predicate symbols,
predicate symbols precede the negation symbol, function symbols of lower degree
precede function symbols of higher degree, and predicate symbols of lower de-
gree precede predicate symbols of higher degree.

2.6 Terms. A variable is a term, and a string of symbols consisting of a
function symbol of degree n ~ 0 followed by n terms is a term.

2.7 Atomie jb~'mula8. A string of symbols eottsisting of a predicate symbol of
degree n >- 0 followed by n terms is an atomic fornmla.

2.8 Literals. An atomic forrnula is a literal; and if A is an atomic fornmla
then ~ A is a literal.
,2.9 Complements. If A is an atomic formula, then the two literals A attd ~--,A

are said to be each other's complements, and to form, in either order, a comple-
mentary pair.

2.10 Clauses. A finite set (possibly empty) of literals is called a clause. The
empty clause is denoted by: []

2.11 grownd literals, A literal whieh contains no variables is called a ground
literal.

2.12 Ground clauses. A elause, each men lber of which is a ground literal, is
called a ground clause. In particular [] is a ground clause.

2.13 Well-formed expressions. Terms and literals are (the only) well formed
expressions.

2.14 Lexical or'der of weU-formed expreasions. The set of all well formed ex-
pressions is well ordered in lexieal order by the rule that A precedes B just in
ease that A is shorter than B or, if A and B are of equal length, then A has the
alphabetically earlier symbol in the first symbol position at which A and B
have distinct symbols.

In writing well-formed expressions for illustrative purposes, we follow the
more readable plan of enclosing the n terms following a function symbol or
predicate symbol of degree n by a pair of parentheses, separating the terms, if
there m'e two or more, by commas. We ean then unambiguously omit all super-
scripts from symbols. In writing finite sets, we follow the usual convention of

2(; ,L A. ROB[NS ()N

e~elosi~lg the me nbers in a pair of braces and of separating/ the members by
commas, with the ultderstanding that the order o(' writing the n~e nbers is im-
material.

~.1 > Hc:,'b~'and ~n'/~'ersea. With any set ~q of clauses there is associated a set
¢ f ~round terms called the t Ierbrand universe o[' S, as follows: let F be the set of
all hmction symbols which occur i~l ,~. [f [" contains any function symbols of
degree O, t.he functional vocabulary of S is F; otherwise it is the set {a} U F. The
Herbrand universe o r s is then the set of all ground terms iu which there occur
o~lly symbols in the functional vocabulary of S.

2.16 ~atua'atzon. If S is any set of clauses and P is any set of terms, then
by P(S) we denote the saturatkm of S over P, which is the set. of all ground
clauses obtainable from members of S by replacing variables with members of
P--oeeurrenees of the same vm'iable in any one clause being replaced by occur-
retices of the same term.

2.17 Models. A set of ground literals which does not include a complementary
pair is called a model. If M is a model and S is a set of ground clauses, then M
is a model of S if, for all C in S, C contains a member of M. Then, in general,
if S is any set of clauses, and H is the Herbrand universe of S, we say that ;1 is
a model of S just itt case that M is a model of H(S) .

2.18 Saffs5abilitU. A set S of clauses is satisfiable if there is a model of S;
otherwise S is unsatisfiable.

F rom the definitioi1 of satisfiability, it is clear tha t any set of etauses uhich
contah~s D is unsatisfiable, and that the empty set of clauses is satisfiable. These
two circumstances wilt appear quite naturM as the development of out' system
proeeeds. I t is also clear tha t according to our semaatie definitions each non-
empty clause is ititerpreted, as explained in the informal remarks at the begin-
ning of this section, as the universal closure of the disjunction of the literals
which it, contains.

2.19 Ground resolventa. If C and D are two ground clauses, and L ~ C, M ~ D
are two singletons (unit sets) whose respective members form a complementary
pair, then the ground clause: (C - L) U (D - M) is called a ground resolveHt
of C and D.

Evidently any model of {C, D} is also a model of {C, D, R}, where le is a
grouud resolvent of C and D. Not all pairs of ground clauses have ground re-
solvents, and some have rnore than one; but in no case, as is clear from the defini-

o I tion, can two ground clauses have more than a finite number of g 'ound resolvents.
2.20 Ground resoluKon. If S is any set of ground clauses, then the ground

resolution of S, denoted by (~.(S), is the set of ground clauses consisting of the
members of S together with all ground resolvents of all pairs of members of S.

2.2t N-th gro'~nd reaob~tion. If S is any set of groined clauses, then the nth
gcouad resolution of S, denoted by (fl'~(S), is defined for each ,~. ~ 0 as follows:
6t0(,%') = S; and for n > 0, (~"+~ - (f~(Cf~'~(S)).

This completes the first batch of definitions. The next sectio~ls are COltcerned
wit, h the various forms tha t Herbrand 's Theorem takes on it~ out" system. To
each such form, there is a type of refutat ion procedure which tha t form sug-

THE tlESOLUTION PRINCIPLE ~7

g(:sts and justifies. The basic, versioIt is stated as follows (el. [2, 4]):
H~:a~t~axD's THEOt~E~. [~" S is any finite set qf clauses and H its Herbrand

unire'~'se, ~hen S is 'unsatisfiable ij" and only ~[l' some finite subset qj' H (S) is unsalis-
fiable.

3. Satu~'ation P~'ocedures

Is was ~oted in aa earlier paper [5] that one can express Herbrand's Theorem
i~ the following form:

T~-moa~ 1. I f S is any finite set of clauses, then S Ls .unsat@i'able {f and only
if, jbr some finite subset P qf the Herbrand universe of S, P(S) is unsatisfiable.

This version of Herbrand's Theorem suggests the following sort of refutation
procedure, which we call a saturation proced't~,)'e: given a finite set S of clauses,
select a sequence P0, P~, t.'~, • .. , of finite subsets of the Herbrand universe
H of S, such that P i ~- Ps+l for eachj ~ 0, and such that [Ji~0 Pj = H. Then
examine in turn the sets P0 (S) , P i (S) , P~ (S) , • • • , for satisfiability. Evidently,
for any finite subset P of H, P c_ P i for some j, and therefore P (S) ~ Pj (S) .
Therefore, by Theorem 1, if S is unsatisfiable then, for some j, Pj(S) is unsatis-
fiable.

Of course, any specific procedure of this sort must make the selection of P0,
P~, P2, " "" , uniformly for all finite sets of clauses. A particularly natural way
of doing this is to use the so-called levels H0, H1, H~, . . . , of the Herbraad
universe H; where H0 consists of all the individual constants in H, and H,~+~, for
n ~ 0, consists of all the terms ia H which are in H,,, or whose arguments are
in H~. In [5] we called procedures using this method level-saturation procedures.
It, was there remarked that essentially the procedures of Gihnore [4] and Davis-
Putnam [2] are level-saturation procedures.

The major combinatorial obstacle to efficiency for level-satm'ation procedures
is the enormous rate of growth of the finite sets H i and Hi(S) as 3' increases, at
least for most interesting sets S. These growth rates were analyzed in some de-
t~til in [5], and some examples were there given of some quite simple unsatisfiable
S for which the earliest unsatisfiable Hi(N) is so large as to be absolutely beyond
the limits of feasibility.

An interesting heuristic remark is that, for every finite set S of clauses which
is unsatisfiable and which has a refutation one could possibly construct, there is
at least one reasonably small finite subset of the Herbrand universe of S such
that P(S) is unsatisfiable and such that P is minimal in the sense that Q(S) is
satisfiable for each proper subset Q of P. Such a P was called a proof set for S in
[5]. If only, then, a benevolent and omniscient demon were available who could
provide us, in reasonable time, with a proof set P for each unsatisfiable finite set
S of clauses that we considered, we could simply arrange to saturate S over P
and then extract a suitable refutation of S from the resulting finite unsatisfiable
set P(S) of ground clauses. This was in fact the underlying scheme of a computer
program reported in [5], in which the part of the demon is played, as best his
ingenuity allows, by the mathematician using the program. What is really

2 8 J . A . R O B I N S O N

wanted, to be sure, is a simulation of the proof set demon on the computer; but
this would appeal', intuitively, to be out of the qucstiot~.

I t turns out that it, is not completely out of the question. In fact, the method
developed in the remainder of this paper seems to come quite close to supplying
the required demon as a computing process. In Sectio~l 4 we take the first major
step towards the development of this method by proving more versions of Her-
brand's Theorem. We also give a preliminary informal account of the rest of the
argument, pending a rigorous t rea tment in succeeding sections.

4. The Resolution Theorems and the /gasic Lemma

As a specific method for testing a finite set of ground clauses for satisfi~bitity,
the method of Davis-Putnam [4] would be hard to improve on from the point
of view of efficiency. However, we now give another method, far less efficient
than theirs, which plays only a theoretical role in our development, and which

0 is nmch simpler to state: given the finite set ~ of ground clauses, form successively
the sets S, ok(S), ~ (S) , . - . , until either some ~ (S) contMns D, or dots not
contain E3 but is equal to fft"+l(S). In the former case, S is unsatisfiable; in the
latter case, S is satisfiable. One or other of these two terminating conditions
must eventually occur, since the number of distinct clauses formable from the
finite set of literats which occur in S is finite, and hence in the nested infinite
sequence :

4.1 S G 0I(S) ~_ o~(S) _c . . . G ~ ' (S) _c . . . ,
not all of the inclusions are proper, since resohltion introduces no new literals.

In view of the finite termination of the described process we can prove its
correctness, as stated above, in the form of the ground resolution theorem.

D GROL-N RESOLUTION THEOREM. I f S is any finite set of ground clauses, then
S is unsatisfiable if and only if ~ (S) contains El, jbr some n => O.

PROOF. The "if" part is immediate. To prove the "only if" part , let T be the
terminating set ~"~(S) in the sequence (4.1) above, so that T is closed under
ground resolution. We need only show that if T does not contain [2, then T is
satisfiable, and hence S is satisfiable since S c T. Let L i , . . . , L~ be all the
distinct atomic formulas which occur in T or whose complements occur in T.
Let M be the model defined as follows: M0 is the empty set; and for 0 < j _-< k,
ilfj is the set Ms-~ U {Ls}, unless some clause in T consists entirely of comple-
ments of literals in the set Mj_~ U { Lj} ; in which ease Mj is the set ;]fj_~ U {-.~Lj].
Finally, M is Mk. Now if T does not contain ~ , M satisfies T. For otherwise
there is a least j , 0 < j ~ It, such tha t some clause (say, C) in 7' consists en-
tirely of complements of literals in the set M 5 . By the definition of ;J t j , therefore,
Mj is 3ij_j U {~Lj I . Hence by the leastness of j , C contains L j . But since 31; is
Mj_~ U {~--~L;}, there is some clause (say, D) in 7' which consists entirely of
complements of literals in the set Mj_~ U {Lj}. Hence by the leastness of j , D
con tMns ~ L j . Ih(.n the clause B = (C {Lfl) U (D - {~--~L~}) consists
entirely of complements of titerals in the set ~1:[i_1 , unless B is ~ . But i9 is a

THE RESOLUTION PRINCIPLE 29

ground resolvent of C and D, hence is in T, hence is not [~. Thus the leastness of
j is contradicted and the theorem is proved.

The Ground Resolution Theorenl now allows us to state a more specific form
of Theorem 1, namely,

T m,:ORE:X~ 2. I f S is any finite set of clauses, then S is unsatisfiable if and only
if, jut some finite subset P of the Herbrand aniverse of S, and some n ~ O, 6tn (P (S))
contains D.

It is now possible to state informally the essential steps of the remaining part
of the development. We are going to generalize the notions of ground resolvent
and ground resolution, respectively, to the notions of resolvent and resolution.
by removing the restriction that the clauses involved be only ground clauses.
Any two clauses will then have zero, one or more clauses as their resolvents,
but in no case more than finitely many. In the special ease that C and D are
ground clauses, their resolvents, if arw, are precisely their ground resolvents as
already defined. SimilaHy, the notations at(S), ~ (S) will be retained, with S
allowed to be any set of clauses. ~ (S) will then denote the resolution of S, which
is the set of clauses consisting of all members of S together with all resolvents
of all pairs of members of S. Again, 6~(S) is precisely the ground resolution of
S, already defined, whenever S happens to be a set of ground clauses.

The details of how this generalization is done nmst await the formal definitions
ia Section 5. However, an informal grasp of the general notion of resolution is
obtainable now, prior to its exact treatment, from simply contemplating the
fundamental property which it will be shown to possess: resolution "is sem~:o,m-
mutative with saturation. More exactly, this property is as stated in the following
basic Lemma, which is proved in Section 5:
" LEM~A. I f S "is any set of clauses, and P is any subset of the Herbrand universe
of S, then: ~ (P (S)) ~ P(61(S)).

The fact is, as will be shown here, that any ground clause which can be ob-
tained by first instantiating over P a pair C, D of clauses in S, and then forming
a ground resolvent of the two resulting instances, cast also be obtained by in-
stantiating over P oile of the finitely many resolvents of C and D.

I t is an easy corollawy of the basic Lemma that nth resolutions are also semi-
commutative with saturation:

COi~OLLA~¢Y. I f S is any set of clauses and P is any subset of the Herbrand
universe of S, then: 6t~(P(S)) c P(fft'~(S)) for all n ~ O.

Pt~OOF. By induction on n. 6I°(P(S)) = P (S) = P (~ ° (S)) , so that the
case n = 0 is trivial. And if, for n ~ O, 6 C (P (S)) c P(6 ln(S)) , then:

~>+l(P(S)) = ~(~t,,(P(S)))

~(P((R~(s)))

P(~((Rn(s)))

= P (6t'~+l(S))

and the Corollary is proved.

by definition of 6l "+1,

by the induction hypothesis, as ~ preserves inclusion,

by the Lemma,

by definition of 6t "+1,

~30 ,L A. ROBINSON

Now by the above Corollary to the basic I ,emma we may immediately ob(ain
a third versiol, of Herbrand 's Theorem from Theorem. 2:

Tmc<)~EM ; . /~/' N ia ~z~:j .fi.:zite ,et qf elaz~s'e~, :he~, ~' z,s 'z~.~.sc~i<s:f&b/c ~iI" o,zd o:d9
:j', j'of so,~e dii~ile s~d)~et l" ~g" Lt~e [ted)ra,~d ~r~'h,e,se , f & a:~d ,some ~ ~ O, :'((il" (,~'))
coltt(lg:/ls [~].

Here, the order of the saturation and '~tth resolution operatiotts is ceversed.
Now a rather sm'prising simplifie.ation of Theorem 3 eau be made, <>~ the l:asis
of the remark that mere replacement of variables by terms eamtot produce K]
from a nonempty elause. Hence P(ca"(S)) will contain [] if and o~dy if (S~ (,)
eontah~s ~ . I:rom Theorem 3, therefore, we immediately obtain our fi:xal version
of Herbrand 's Theorem, which is the main result of this paper, and which we
eall:

]RESOLUTION THEOREM. I f S z's any jir~ite set of clattses, then S is ~tsati.sjiab~e
i f a~zd otdy f f (~'~(S) conga.ins K], for aome r~ => 0.

) (The s ta tement of the Resolution Theorem is just that of the (]roumt hes)lu-
tion Theorem with the word "ground" omitted. Apart, therefore, from the some-
what more complex way in which the resolvents of two clauses are computed
(described in Section 5) the method suggested by the Resolution Theorem for
testing a finite set S of elauses for unsatisfiability is exactly like that given
earlier for the ease tha t S is a set of ground clauses, and indeed it. automatically
reverts to tha t method when it is applied to a finite set of ground elauses. How-
ever, it is no longer the ease in general that the nested sequence

s _c ca(s) c <a~(s) c . . . _c <~"(s) _c . . .

nmst terminate for all finite S. By Church's Theorem this could not be so, for
otherwise we would have a decision procedure for satisfiability for our formula-
tion of first-order logic.

Consider now the "proof set demon" discussed in Section 3. We there supposed
that if see were given a proof set P for an unsatisfiable set S of clauses, all we
would have to do would be to compute until we encountered the first C~." ((.)) t) S
which eontains KJ, in order to obtain from it a formal refutation of N. But the
Resolution Theorem assures us tha t by the time we had computed ,~I"(S), if
not before, we would have turned up KI, despite our ignoranee of P. In this sense
the Resolution Theorem makes the proof set demon's role unnecessary.

In Section 5 we introduce a little more formal apparatus by a seeond batch
of definitions, and pay off our debts by defining the general notion of resolution
and proving the basle Lemma.

5. Stz.bstittttion, (77t'ificatiem. and ResolWion

The following definitions are eoneerned with the operation of b~stantiation,
i.e. substi tut ion of terms for variables in well-formed expressions a~ct in sets of
well-formed expressions, and with the various auxiliary Hot, ions l~eeded to define
resotutiot~ in general.

5.1 S~b,s.tiO~.tior~. eomponertt.s. A substi tution component is any expressio~ of

T H E R E S O I , U T I O N PRINCIPLl i ; ol

the form T/V, where V is any variable and 7' is any term different from g. V is
called the va~'iable of t he component T / V , and .7' is called the Ze~'m of the com-
ponent 77V.

5.2 Sub.stitutions. A substitution is any finite set (possibly empty) of sub-
stitutiol~ components ,rune of the variables of which are the same. If P is any set;
of terms, and the terms of the components of the substitution 0 are all in P, we
say" that 0 is a substitution over P. We write the substitution whose components
are T ~ / V 1 , . . . , T~:/Vi~ as {T i /V~ , . . . , 2G/V,.}, With the understanding that
the order of the components is immaterial. We use lower-ease Greek letters to
denote substitutions. In particular, ~ is the empt:q sz&,titution.

5.3 [nstarttiatio~. If E is any finite string of symbols and

0 = { T g t q , . . . , 7%/y,,}

is any substitution, then the instantiation of E by 0 is the operation of replaei2~g
each occurrence of the variable V<, 1 N i ~ to, in E by an occurrence of the
t.erm T~. The resulting string, denoted by EO, is called the instance of E by 0. I.e.,
if £' is the string E o g q E , . . . V~,E,,, then NO is the string EoT~,E1 . . . T~,.E,, .
Here, none of the substrings/~'i of E contain oceurrenees of the variables Vz, . • • ,
l%, some of the Ej are possibly null, n is possibly 0, and each Vq is an occurrence
of one of the variables g~, . . . , Ve. Any string E0 is called an instance of tim
string E. If C is any set of strings and 0 a substitution, then the instance of C
by 0 is the set of all strings E0, where E is in C. We denote this set. by CO, and
say that it is an instanee of C.

5.4 Standardization& If C is any finite set of strings, and V~, . . . , V~ are
,.~ll the distinct variables, in alphabetical order, which oeeur in strings in C, then
the z-standardization of C, denoted by Se, is the substitution {x l /V1, • •. , xj~/Vj~}
and the y-standardization of C, denoted by nc, is the substitution

{y~/V, , . . . , > / v , } .

5.5 Composition of sz&sgitugions. If 0 = {T1 /V , , . . . , 5r'a/l~\} and X are any
two substitutions, then the set 0' U X', where X' is the set of all components of X
whose variables are not among V , , • • • , V~, and 0' is the set of all components
T & / V ~ , 1 ~ i ~ £, stteh that T& is different from V~, is called the composi-
tion of 0 and X, and is denoted by 0X.

It is strMghtforward to verify tha t e0 = 0e = 0 for any substitution 0. Also,
composition of substitutions enjoys the associative property (0X)~ = 0(Xp), so
that we may omit parentheses in writing multiple compositions of substitutions.

The point of the eomposition operation on substitutions is that, when E is any
string, and ¢ = 0X, the string E¢ is just the string EOX, i.e. the instance of EO
by X.

These properties of the composition of substitutions are established by the
following propositions.

5.5.1. (E@X = g(~X) for all strings E and all subsgit~u~tions ¢, X.
]?~moF. Let c~ = { T , / G , . . . , Tk/Vk}, X = { U ~ / W ~ , . . . , U,~JW~I and

E = EoV~E~ . . . V~E,~ as explained in (5.3) above. Then by definition Eo- =

~{2 J, A . R O B I N S O N

and each i')j is EjX', where X' is the set of all c o m p o n e n t s of X whose var iables
are 1lot a m o n g fQ, . • . , V/~ (since ~xone of these var iab les occur in a n y E~). But
CX = ~ / U X', where each compo~xetxt of ~r' is jus t Y'~/Y~ whet~ever Y['~ is different
f rom V~. Hence f(~,X) = E07'~i?~ . . . ~'~,~/??,~.

5.5.2. For any stt.b,stitt~tior~.s' or, X: "zj' Eo- = EX jb'r all st)'iugs E, then cr = X.
P~oo~,'. Le t I"~, • - - , Vz,. include all the var iab les of the c o m p o n e n t s of ~r and

k ; t h e n Vet = V~k, for I =<j =< }c. T h e n all the compot~ents of (r and X are the
S a l t l e .

5.5.3. For an;~ substitt~tions o~, X, ~: (~rX)~ = c~(,X~).
.l:h~OOF. Le t E be a n y string. T h e n b y 5.5.1,

= ((J¢~)x)u

= (E ~) (x .)

= I , : (~(x~)) .

t l ence (~rX)U = ~(X,u) by (5.5.2).
We shall also have occasion to use the following d i s t r ibu t ive p rope r ty .
5.5.4. For any .~et.s A, B of strings and ~ztbstitution X: (A U B)X = A X U BX,
5.6 Disagree'ment sels. I f A is a n y set of wel l - formed expressions, we call the

set B the d i sag reemen t set of A wheneve r B is the set of all wel l - formed subex-
pressions of the wel l - formed expressions in A, which begin a t the f r s t symbo l
posi t ion a t which not all wel l - formed expressions in A have the s ame symbol .
Exa'lnple:

~i = { / ' (z , t~(~, ~) , y) , P (x , t~(y), y) , P (x , a, b)},

D i s a g r e e m e n t set of A = {h(:c, y), ~@), a}.

Eviden t ly , if A is n o n e m p t y and is not a s ingleton, then the d i sag reemen t set
of A is n o n e m p t y and is not a singleton.

5.7 Unificatio%. I f A is a n y set of wel l - formed expressions and 0 is a sub-
s t i tu t ion, then 0 is said to un i fy A, or to be a unifier of A, if AO is a singleton.
A n y set of wel l - formed expressions which has a unifier is said to be unifiable.

Ev iden t ly , if 0 unifies A, bu t A is not a s ingleton, then 0 unifies the disagree-
m e n t set of A.

5.8 Unification Algorithm. T h e following process, appl icable to a n y finite
n o n e m p t y set A of we l l4o rmcd expressions, is called the Unif icat ion Algor i thm:

[

Step 1. Set ~0 = ~and /~ = 0, and g o t o s t e p 2 .
Step 2. If Ao-~, is not a singleton, go to step 3. Otherwise, set a~ == ~r;, and terminate.
Step 3. Let Vk be the earliest, arid Ue the next earliest, in the lexieal orderir~g of the dis~

agreement set Bk of A~r~ . If V~ is a variable, and does not occur in U~ , set zk~ = ~e{ Uk/Vk},
add 1 to k, and return to step 2. Otherwise, terminate.

Th i s defini t ion requires jus t i f icat ion in the fo rm of a proof t h a t the given
process is in fact an a lgor i thm. I n fact the process a lways t e r m i n a t e s for a n y

TtIE RESOLUTION PItlNCIPLE 33

fi~ite nonempty set of well-formed expressions, for otherwise there wouM be
generated sin infinite sequence A, A ~ , A~2, • " of finite nonempty sets of well-
formed expressions with the property that each successive se(~ contains one less
variable than its predecessor (namely, A~: contains G but .c:[O'k+l does not). But
this is impossible, since A contains only finitely many distinct variables.

5.9 Most general unifiers. If A is a finite nonempty set of well-formed ex-
pressions for which the Unification Algorithm terminates in step 2, the substitu-
tion ~A then available as output of the Unification Algorithm is called the most
general unifier of A, and A is then said to be most generally unifiable.

5.10 Key triples. The ordered triple (L, M, N} of finite sets of literals is said
to be a key triple of the ordered pair (C, D) of clauses just in case the following
eoMitions are satisfied,

5.1.0.1. L and M are nonempty, and L G C, M C D.
9 ;).10.~. N is the set of atomic formulas which are members, or complemeuts

of members, of the set L}c U MW (ef. definition (5.4)).
5.10,3. N is most generally unifiable, with most general unifier aN.
5.10.4. The sets L,ecCN and M~DO-~- art singletons whose members arc eomple-

Ill,illS.

Ii, vtdently, a pair (C, D) of clauses has at most a finite number of key triples,
and possibly none at all.

5.11 Resolvents. A resolvenl~ of the two clauses (7 attd D is any clause of the
form: (C - L) ~ c ~ U (D - M)~Dcs where (L, M, N} is a key triple of ((7, D}.

By the remark following definition (5.10) it is dear that two clauses C and D
eat1 have at most finitely many resolvents, and possibly none at all.

5.12 Resolutions. If S is any set of clauses then the resolution of S, denoted
1)y (;l (S), is the set of all clauses which are members of S or resolvents of members
of S.

5.13 N-th resolution. The nth resolution of S, where S is any set of clauses,
is denoted by ~ (S) and is defined for all n ~ 0 exactly analogously to definition

¢) c (~.el).

This eonlpletes our second group of definitions. The definition of 6l(S) as
given is adequate for our theoretical argument, but in practice one would not
include in it both the resolvents of (C, D} and the resolvents of (D, C), since
these are in fact identical up to a change of variables. When C and D are both
ground clauses, the resolvents of ((7, D} are actually identical with those of
(D, C), and are precisely the ground resolvents of C and D, as is easily verified.

I t now remains to prove the basic Lemma, which will be done after we have
first proved the following theorem establishing the basic property of unification,
which we need hi the proof of the Lemm~ and elsewhere in our theory:

UNIFICATION THEORI~M. Let A be any finite nonempty set of well-formed ex-
pressions. I f A is unifiable, then A iz most generally unifiable with most general
unifier ca ; moreover, fo'r any unifier 0 of A there is a substitution X such that
0 = ZAX.

PROOf. I t will suffice to prove that under the hypotheses of the theorem the
Unification Algorithm will terminate, when applied to A, at step 2; and that
for each Ic _~ 0 until the Unification Algorithm so terminates, the equation

84 J . A . ROBINSON

5.14. 0 = ¢*:~/:
holds at step 2 for some substitution Xk • For k = 0, (5.14) holds with >~0 =
since ~0 = e. Now assume that, for k ~ 0, (5.14) holds at step 2 for some s
stitution Xe. Then either Ao?¢ is a singleton, in which case the Unification
gorithm terminates at step 2 with ~r~ = ~ the most general unifier of A
X = X~ the required substitution; or the Unification Algorithm transfers to s
3. Iu the latter ease, since Xz: ut~ifies A~r~:, (by (5.14), since 0 unifies A) Xz m
also unify the disagreement set B~ of Ao-z. Hence the V~0 and (& defined b~ s
3 of the Unification Algorithm satisfy the equation

5.15. V~X~ = U~X~.
Since B~ is a disagreement set, the well-formed expressions in B~ cannot
begin with the same symbol; hence they cannot all begin with symbols which
not variables, since B~ is unifiable. Therefore at least one well-formed express
in B~: begins with a variable, and hence is a variable, since it is well-form
Since variables precede al[other well-formed expressions in the lexical order,
since V~ is the earliest well-formed expression ill B~:, it follows that V~ i,.
variable. Now if V~ occurs in U~, V~X~ occurs in U~X~, but sitice V, and U,,
distinct well-formed expressions this is impossible because of (5.15). Theref
V~ does not occur in U~. Hence the Unification Algorithm will not termiuat¢
step 3, but will return to step 2 with m~+l = o-~:{ U~JVk}. Now let X~+~ = X,:
{ Vi~Xk/Vlo}. Then:

x~: = {Vkxk/Vk} U X~+i by definit;ion of Xk+l ,

= [U~Xk/V~} U x,+~ by (5.15),

= {U~Xk+l/Vt~} U xk+l since V~ does not occur ia 65:,

= {U~/Vi,}Xk+~ by definition (5.5).

i[cnee by (5.14) 0 = m,+iXk+i • Thus (5.14) holds for all Ic => 0 until the U
fication Algorithm terminates in step 2, and the theorem is proved.

We are now ia a position to prove the basic Lenima, which we state here ag~
for convenience.

LEr~M*. I f S is any set of clauses and P is any subset of the He;"brand unive

of S, then: ~ (P (S)) ~ P (~ (S)) .
PROOF. Assume that A E 6 I (P (S)) . Then either A E P (S) , in which c:

A E P (6 I (S)) since S Z 5~(S) ; or A is a ground resolvent of two ground clau
Ca, Dfl, where C E S, D E S, a = { T 1 / V i , " " , 7'~/Fk}, where V1 , - ' . , Vkl
all the distinct variables of C in alphabetical order and 5f'~, .. • , Tk are in
and 5 = { U~/W~, •. • , U,,,/W,,,}, where W~, • • • ,Wm are all the distinct v~
ables of D in alphabetical order and U , , . . . , U,, are in P. In that ease, A
(C - L)oe U (D - M)5, where L ~ C, M ~ D, L and M are nonempty, a
Lce, M5 are singletons whose members are complements. Let

O = {T~/x~ , . . . , T k / x k , U ~ / y ~ , . . . , U,,/y,~}.

Then it follows that A = (C' - L)~cO U (D - M) w O and that Li%0 = Loe a
M~,O = Mfi. Therefore 0 unifies the set N of atomic formulas which are me

T H E R E S O L U T I O N P R I N C I P L E 35

bets, or eompieme~ts of members, of the set L~c U J['ov. t leuce by the Unifica-
tion Theorem N has a most ge~eral unifier <v, and there is a substitution X over
P such that 0 = orx,~, ttence L~c<~X = L~ and M~r)~NX = M~, and therefore
e~co,v and 3:[vvcx are singletons whose members are complements. It follows
that (L, M, N) is a key triple of (C, D}, and hence that the clause

B = (C - L)}oz~v U (D - M)VDz,,,

is a resolvent of C and D; hence B ~ 6i(S). But since 0 = ~r~k, it follows by
(5.5.4) that A = BX and therefore that A ~ P((i t (S)) . The proof is complete.

The hypotheses of the Lemma do not entail the opposite inclusion P(6i(S))
~ (P (S)) . :ks a simple counterexample, consider:

S = { { Q (x , f (y)) } , {~-.-~Q(g(y),x)}}, P = {a}.

A short investigation shows that P (6 t (S)) contains ~ (since cf~(N) does) while
c~(P(S)) does not. Thus S is unsatisfiable, but P is not a proof set for S.

6. The t{esoh~tion Princ@le: Refutations

The single inference principle of our system of logic, mentioned ia Section l,
is the resolution principle, namely: From any two clauses C and D, one may i~J~r
a resolvent qf C and D.

By a r@~tation of the set S of clauses we mean a finite sequence B1, .. • , B,
of clauses such that (a) each B~, 1 -~ i ~ n, kse i ther in S o r i s a r e s o l v e n t
of two earlier clauses in the sequence, and (b) B~, is ~ .

i t is immediate h'om the Resolution Theorem that a finite set S of clauses is
unsatisfiable if and only if there is a refutation of S. Titus the Resolution Theorem
is the ~ completeness theorem for out' system of logic.

Two examples of refutations will illustrate the workings of the system.
Example 1. The set containing just the two clauses C~ and C~, where

C~ = { Q (z , g (z) , y, h(x , y) , z, l~(x, y, z))l

C~ = {~-.~Q(u, v, e(v), w, f(v, w) , x)}
has the refutation C~, C~, ~ . Note that (C~, C2) has the key triple (C~, C~, iV},
where N is the set

{Q(x~ , g(z~) , x~ , h(x~ , z :) , x:~, k(z~ , x~ , z~)),

Q(y~ , u~ , e (y ~) , y~ , f (y ~ , u~,), y~)l.
The reader can verify in a few minutes of computation with the Unification
Algorithrn that z~- is the substitution with the compor~ents:

yJz~ , h(y~ , e(g(y~)))/y:~

g(y~)/y~ , f(g(y~), h(y~ , e(g(y~))))/x:~

e(g(yt))/x~, /,:(y~ , e(g(yl)), f(g(y~), h(y~ , c(g(y~)))))/y4

and that then C ~ . ~ - and C2vc~o~ art singletons whose members are comple-
ments.

;~{) J . A . t{OBINSON

This example illustr~tl.es the, wa.y in which a pt'oof set is ~tuton~atieally col~i-
I)uted :~s a by-product; of the resolut.io~l operation. The tel'ms of the above sub-
stitution1 co~lpone~ts }>ecome those of a proof set for {C~ , (/~} when the variable
//~ is repl~ced throughout by ~ y tern~ of the t:[erbra~id universe of {C~, C~}, e.g.
})y the individual e()~stat~[: % . " I t is interest:ing t:o note tha t the earlies% level of
~his Herbrand universe [[to include such ~ proof set is Ills, which has of the
orgies" of :10 s4 ~.embers. Co~se(lue,~tly tts({C'~ , (.;'~}) has of the order of 10 ~ss mem-
bers. A level-satur~tioti procedure would ttol~ fi~d Lhis example feasible.

I;:ca,~zp[e 2. A more intei'esti~lg example is erie which was discussed in [5].
I t arises from the following algebraic problem.

t'rol,e ~h~t i~z an~] as'soc/e~th,e s}]sge~ wh.gch has left and right select'ions z and y for
c,}~ eq'~a~io~z,~ z . a = b a ~ t e~.y = b, the~'e i.s a right ide'ngit?] ele~zent.

To formalize this problem i~ our logic, we deny the alleged conclusion, and try
to r(:i'ute the set containing the clauses (where Q(x, y, z) is to mean z . y = z):

C~ : { -()Co, ~z, "), ~O(,!J, z, v), .~Q(z, v, ~J:), O(u, z, ¢,~)}

C~ : {-O(:v, y, ~), "~O(y, z, z'), .~O(,l~, z, ~), O(:v, v, w)}

C~ : {O(g(a', y), :r, y)]

C~ : {Q(z, hCc, y), z/)}

(::~ : {O(z, ~,f(z, ~/))}

C,~ : { ' - O (k (z) , z , aCe))}

Assoe in t iv i ty
\

Existence of left and right

solutions

Closure under •

No right identity.

By adding the following resotve~Lts, we get a refutation:

C7 : { ~ Q (y ~ , x ~ , ?ji), Q (y ~ , x6 , y~)}

C~ : { : ~ Q (y ~ , y~ , y~)}

Ca:

Com.'tr~.enlc~ry. Cr is tile resotven£ of the pair (C1 , Ca) for the key triple

({~--Q(x, :q, ~), ~.JQ(x, v, w)}, {Q(g(x, y) , x, y)}, N)

where N is the set {Q(z.4, xs , x l) , Q(x4, x2 , xa), Q (g (y l , y2), yl , y2)}. The ~r~.
computed for this N by the Unification Algorithm is

, , g(y , y /zd,

as is easily verified. Cs is the only resolvent of (C~, C7}, and [] is the only re-
solvent of ((J4,6%}.

Thks example illustrates the way in which the single steps in a refutation made
with the resolution principle go beyond, in their eornplexity, the capacity of the
human mind to apprehend their correctness irt one single intellectual act. By
taking larger bites, so to speak, the resolution principle in this ease permits a
very compact, not to say elegant, piece of reasoning. C'2 and C~ are not used as
premisses hi. the refutations, although this has nothing to do with the resolution
principle. Hence a non.redundant refutation for this example is the sequence:
C h , C a , C 4 , C ~ , C r , C s , D.

THE RESOLUTION f t{IN(~iPLE 37

7. R@~tation Proc(~dures, Search P~'ir~eiples

The foregoing discussiotl was intended only to establish the theoret:ical frame-
work, in the form of a special system of logic, for the desigu of theorem-proviug
programs, i.e. ia tile present ease, refutation procedures. No at tempt has been
made thus far to discuss the question of developing efBcie~tt refutation pro-
eedures, and in this final section of the paper we briefly discuss this question.

The raw implementation of the Resolution Theorem would produce a very
inefficient refutation procedure, namely, the procedure would consist of com-
puting, given the finite set S of clauses as input, the sdqueuce of sets S, dl(S),
0=t2(S), - . . , until one is encountered, say, 6I'~(S), which either contains [] or
else does not contain ~ but is equal to its successor (~t~~ ~(S). In the former ease,
a refutation of S is obtained by tracing back the genesis of ~ ; in the latter ease
the eonelusion is that S is satisfiable. By Church's Theorem [1] we kttow that
for some inputs S this procedure, and in general all correct refutation procedures,
will not terminate in either of these two ways but will continue computing in-
definitely.

In some eases we can foresee the nonterminating behavior. Consider the ex-
ample of the set S whose members are:

Cx : {Q(a)}, C2 : {~Q(x) , Q(f(x))}.

(The reader will recognize this as the formulation, in our logic, of a fragment of
Peano's postulates for the natural numbers, with "Q(x)" for "x is a natural
number," "a" for "0," and " f (a)" for "the successor of z".) I t is easy to see
that for this S the procedure described above would generate successively the
resolvents { Q (f(a)) }, { Q (f(f (a))) }, { Q (f (f (f (a))))}, . - . , etc., ad infinitum.

This example suggests out" attempting to formulate a principle which would
allow us effectively to recognize the particular indefinite continuation phenome-
non which it exhibits, so that we might incorporate the principle ittto a refuta-
tion procedure and cause it to terminate for this S and for other similar examples.
Such a principle, which we call the purity principle, is available, based on the
notion of a literal being pure in a set S of clauses. We define this notion as fol-
lows.

7.1 Pure literals. If S :is any finite set of clauses, C a clause in S, and L a
literal in C with the property that there is no key triple ({L}, M, N} for any
pair <C, D} of clauses, where D is any clause in S -- {C}, then L is said to be
pure in S.

The purity principle ks then based on the following theorem.
PURITY THEOREM. If S is any finite set of clauses, and L C C ~ S is a literal

which is pw'e in S, then S is satisfiable i f and only f f S - {C} is satisfiable.
PROOF. If S is satisfiable then so is S - {C} since it is a subset of S. I t S - {C}

is satisfiable, then there is a model A of S -- {C}, every literal in which occurs
in some clause of H (S) , where H is the Herbrand universe of S. Let N be the
set of all ground literals LO, where 0 ks a substitution over H, and let K consist
of all complements of members of N. Then the set P == N U (A - K) is a

~54 J . A . I{OBINSON

model; moreover it is a model e[~ < sh~ce every claus<~ in H(~) ccmtai.ns a
n-mmb~r of P (namely a member of N) , mid every clause in [/ (£ ' - {C}) con.-
taius a member of P, namely a member of A -- K; for no clause in tT(~v - {C})
contains a member of K, since otherwise, if 7)~ were, such a clause, wff, h D
N ~C ~ then h (, c would be an __ - ~ ..j, t ~', ~1] c D such that M~ would b<~ a singleto~,,_
containing a member o[' K. Then there would be some subsdhl t ion e~ over H
such that z~J~'~qce, J /d eontaim>d compIementary singletons., t:. h~ne(~, ~ by. the same
argmnent as in rile proof of the Lemma, there would be a key triple ({ L}, 34, N)
of the pair (C, D}, co~.tracticting the puri ty o [L i.u ,5. The theorem is proved.

The p%ril~ pr~TneipZe is then simply the following: One 9~zay ddete, j3'o,i, a fi~ige
act S of da~tse,, aw~/ da<~tse containi~ng a literal which is pure in S.

When N is the little Peano example given earlier, i.e., is the set eont.a.iaing just
the two clauses

C,: {O(a)}, C~: {~O(:~), Q(f(z))}

we see that the underlined literal itt Cs is pure iu S. I{erme we may delete C2,
obtaining the set S -- {G:} whose only clause is

c' , : {OZ.J }.

But of course tl~e underlined literal is, trivially, pure in S - I CJ ; hence we may
delete Q , obtaining tt~e set S - {Cj - {C2}, which is empty, hence satisfiable.
Hence by the Pm'i ty Theorem, S is satisfiable.

Thus a refutation procedure incorporating the pur i ty principle as well as [he
resolution principle "converges" for more finite sets of clauses than a procedure
based on the resolution priuciple alone. Such principles as the pm'ity prineiple
we call ,ear& principle,, to distinguish them from inference principles.

There is another search principle which, though riot increasing the range of
convergence, does help to increase the rate of convergence, of refutat ion pro-
eedures. We ealt this principle the ,ubs'~tmption principle and base it on the %l-
lowing definition.

7.2 S%b,~m, ptior< If C and D are two distinct nonempty clauses, ~e say
that C subsumes D just ia case there is a substi tut ion ~- such that (:'~r Z D.

The fol lowing theorem establishes the basic property of subsumption.
SuBsu:~PT~ox TUEO~:E:~. I f S is any finite set of clause.% and D is any clause

in S which "is ~ztbsumed by some da~zse in S -- {D}, then S is ,s'ati.sfiable .(f and onlg
iT' S - S D~ is .s'atisfiable.

P~{ooF. We need only show that if M is a model of S -- {D}, ther~ 2]4 is a
model of S. Let M be a model of S - {D}, and suppose that (', ~ ~ ,.~ - {D} sub-
sumes D. Then there is a substitlttion. ~r such that C(~ G2 D met. D ft. S , the
terms of the ('.ornponents of ¢ must be formed from furw.tion symbols in the fum>
tionaI voeabulary of S, together possibly with variables, t-tenee every grouml
instarme of C¢ over H is a ground instance of C over H, and hence eont, ains a
member of M. But every grotmd insta,nce/)X of D includes the ground instance
Cck of C, and hence contains a member of M. So M is a model of N aml the theo-
rem is proved.

THE ItEBOLUEION P[(INC[PLI!; 39

The ~.~d;,~"~mp&on p~'i~wiple is then shnply the foIlowi ~g: One m~W dch:a~, from ~
fi'nite set S of eka~e.% an:/dcru, se D which is s~d~<t nf;d b:: ~ clau~e in ,,'5 - {I)}.

in order t:o make the subsumptioa principle available for incorporation i ~o a
re[uta~ion proeedm'e, we must give an aigorithn~ for deddh>?< whet}tot oue clause

,.uch au algov[th ~ is the t'ctlox~il g ~ubsumphou 6: sltbs[lllles another clause D. R -, .
Algoritl~ ~

Step 1. I .e t V1 , " - , V~,~ be ~*[I t he dist, inc t varia}> es, in Mp}ud)etical o rder , of D. Let
J l , " '" , ,1,. be distiI~(:¢ ind iv idua l c o n s t a n t s , n o u e of which occur in C or D. l,~t 0

• t { . t , / V j , " " , J . j ~ . . . ~ . C o m p u t e DO a a d go to s t e p 2.
Step 2. Se t , l .0 = {C} , /:. = O, and go to s tep 3.
SleR 3. If' A:~ does n o t coI~tain ~ , let zl;:+~ bc the sc t. of all c l auses o[the fo rm (Kc~x - Me:v),

w h e r e K C A~; M C N , , \ : = M U ~)l , __ ~I 1, [or some I-' ~ l)O, amd \"]:S m o s t goner ally uuifi 4)t(
with m o s t genera l unif ier ¢~ ; ariel go to s tep 4. O t h e r w i s % t e r m i n a t e .

Step 4. If A:,t. is n o n e m p t y , a.dd 1 to L: a n d r e t u r u {o s t ep ,%. ()t, herwise , t e r m i n a t e .

That t.his is an Mgorithm is elear from the tad~ theft each e, lause in /lx.~.~ is
smaller, by a t least one literM, than the clause in A, from which it was obtained.
Hence, since the only clause in Ao has but finitely m a u y titerals, the sequence
A o, A, , . . . , must even~uMly contMn a set which contains g? or is empty.

Tha t the $ubsulnpt ion Algori thm is correct is shown by the following argu-
me~.t that it t e rmina tes in step 3 if and on ly if C subsumes D.

If C stibsumes D, then 6'(r ~ D for some <~. Hence C'~0 cz DO. l[eime (;'~ !~:]
DO, R)r some ~. Now assume, for lc ~ 0, t h a t K ~:i A~ aad that, for soa:~(: ~,
Ku ~ DO. If K is not [7, let P be a literM in K u ~ DO. Tl:~em there is ~m M ;;7; K
sticix that N = (M U {P}) is unified by >. There[ore by tim UMfie~d)iou 'l:heor(3m
N h a s a most general unifier ~ , and tile clause G = (K a , v - ill<v) is ia A~,.t.~ .

[But by the Unification Theorem ~ = coX, £er SOIal(? X, hence K(:a. qT~ DO.
Therefore GX G DO. Siace C E A0, this shows du~t each A~:,/,:)~ (), either cow-
t, aias ~ or is nonempty . Hence the S u b s u m p t k m Algori thm does not termiual;e
i t /step 4. Tt " mrmore it te rminates in step 3 .

If the Subsmnpt ion Algor i thm te rmina tes in sts p 3, for C' amJ l) as input, then
there is a finite sequence Co , C1 , • • • , 6.,,-.k~ of clauses, sueh tha t Co 6, (',,, ~.~ ::

' = (] i ¢ i ~ , and, for 0 =< j ~ n, C~_: - M y ~ , where ella c: Ca, aad r*i is
the most general unifier of M: U {P}, where I) (!i DO. I t folh)ws tha t (since M y :
e(mtains no variables, 0 N j N n) we have

C,,+i = [] = C¢0~l " ' " o~ -- 211000 -- 3liai M: ' . , ,

• r- ~~ U U M:-, ,) C DO. t ie,me, for some i.e. t h a t C~ocq .- ~r,, ~ (M : 0 U M : q " ' " .._
X, CX C D0. Let ¢ be the subst i tut ion ob ta ined fi'om X by the replaeemeut, i~
each eomponen.t of X of J~ by V~, for 1 = < i =< m. Then. 6'¢ =:- D.

A part icularly useful applicat ion of th.e sttbsumptio~l p r i aco le is t, he follow-
ing: Suppose a resolvent k'. of C and D subsumes ome of C, D; then in. adding
t~ by the resolution principle we m a y s imul taneous ly delete, by the s u b s t l m p -

tion principle, t ha t one of C, D w h i c h R st:tbsunms. This combined operation
amounts to replacing C or D by R; accordingly we name the principle inw)lved

the replacement principle.

40 J. A. ROBINSON

The following example, used by Gilmore [4], Davis-Putnam [2] and Friedman
[3], illustrates the utility of these search principles in speeding up convergence.
Consider the set S whose members are:

Cl : { P (x l , x 2) }

(6)

C2 : { u P (y 2 , f (y , , y~)), ~ P (f (y l , y~),f(y~ , y~)), Q(yl , y2)}
(1) (2)

(C:~ : {~P(y2 , f (y t , y2)), ~ P (f (y , , y2), f (y , , y~)), ~--'Q(y~ , f(y~ , y2)), ~ Q (f (y ~ , y~),.f(y~ , y~)) }

(3) (4) (5)

and we obtai~t tile set S' whose only members re'e:

C,~ : {Q(y l , y2)}

C~ : { ~ Q (f (y l , y 2) , f (y L , y~))}

in six stages which may be followed through by deleting the underlined literals,
and the underlined clause, in the order indicated. This gives the set of clauses
at each stage. Deletions (1) through (5) are by virtue of the replacement prin-
ciple; deletion (6), of the entire clause C~, is by virtue of the purity principle.
The set S' in turn is found immediately to be unsatisfiable, since C4 and C5 have
[] as their only resolvent.

Gilmore's 704 program failed to converge after 21 minutes' running time, when
given this example. The more efficient procedure of Davis and Put~am con-
verges, for this example, in 30 minutes of hand computation.

The application, to a finite set S of clauses, of any of the three search win-
eiples we have described, produces a set S ~ which either has fewer clauses than
S or has the same number of clauses as S but with one or more shorter clauses.
An obvious method of exploiting these principles in a refutation procedure is
therefore never to add new clauses, by the resolution principle, except to a set
to which the three principles are no longer applicable. We might call such sets
irreducible. The way in which such a procedure would terminate, for satisfiable
S within its range of convergence, would then be with a set, which is either empty
(as in the Peano example) or nonempty, irreducible, and with the property
t ha t each resolvent of any pair of its clauses is subsumed by some one of its
clauses.

There are further search principles of this same general sort, which are less
simple than those discussed in this section. A sequel to the present paper is
planned in which the theoretical framework developed here will be used as the
basis for a more extensive treatment of search principles and of the design of
refutation procedures. This section has been merely a sketch of the general na-
tu re of the problem, and a brief view of some of the approaches to if,.

Acknowledgments. I should like to express my indebtedness to my colleagues
Dr. George A. Robinson and Dr. Lawrence T. Wos, of the Argonne National
Laboratory, and to Professor William Davidon of Haverford College, for their

q't[l~; [~iE$OLUTION P R I N C I P L E 41

i~raluable insights and cri t icisms eonceraing the basic eoacepts of this paper .
i\[y thanks are also due to the A C M referees, and to Dr. T. Hai lper in of the
Sandia Corporat iol , , whose c o m m e a t s on and cri t icisms of a pr ior vers ioa of the
paper great ly fac i l i ta ted the wr i t ing of the present complete revision.

t{ECEIVED 8EP'rl~:~l~, 1963; ~ v ~ s ~ AuoxJs't ~, 1964

REFERENCES

1. C~ultcu, A. A note oa the Entscheidungsproblem. J. S~tmb. Logic 1 (1936), 40-41.
Correction, ibid., 101-102.

;. Daws, M., aaD Pb'q'N~, H. A computing procedure for quantification theory. J . AC.,lf
7 (Mar. 1960), 201--215.

3. FetEr)X*AN, J. A semi-decision procedure for the functi(mal calculus. J. ACM 10 (Jan.
1963), 1-24.

4. G~,~roa~, P. C. A proof method for quantifieatioa theory. I B M J. [lea. Develop. 4
(1960), 28-35.

5. ROBINSON, J. A. Theorem-proviag on the computer. J . ACM 10 (Apr. 1963), 163-174.

