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Absiract. Theoreni-proving on the computer, using procedurcs based on fhe funda.
mental theorem of Herbrand concerning the first-order predicate caleulus, is examined with
4 view towards improving the cffiviency and widening the range of practieal applicability
of these procedures, A elose analysis of the prosess of substitution (of terms for variables),
and the process of truth-funetional analysis of the results of such substitubions, reveals
that both processes can be combined into o single new process {called resolution), iterating
which is vastly more efficient than the older vyclie procedures consisting of substitution
stages alternating with truth-functional analysis stages.

The theory of the resolution process is presented in the Yorm of a system of h1~1~<ndm
logic with just one inference pringiple (the resolution prineiple). The completeness of the
gvstem is proverd; the simplest proof-procedure based on the system is then the divect -
plementation of the proof of completencss. However, this procedure is quite ineffieient,
and the paper concludes with a discussion of several principles {called search principles]
which are applicable to the design of efficient proof-procedures employing resolution as the
bagic logical process.

1. Tntroduciion

Presented in this paper is a forrulation of frst-order logic which is specifically
designed for use as the basic theoretical inslrament of a computer theoren-
proving program. Earlier theorem-proving programs have been based on systems
of first-order logie which were originally devised for other purposes. A prominent
feature of those systems of logic, which is lacking in the system described in this
puper, is the relative semplicity of their inference principles,

Traditionally, a single step in a deduction has been requirved, for pragmatic and
psychological reasons, to be simple enough, broadly speaking, to be apprehended
as orrect by a human being in a single ntellectual act. No doubt this custom
originates in the desive that cach single step of a deduction should be indubitable,
cven though the deduction as a whole may consist of a long chain of sueh steps.
The ultimate conclusion of a deduction, i the deduction is correct, follows logi-
cally from the premisses used in the deduction; but the human mind may well
find the unmediated transition from the premisses to the conclusion surprising,
hence. (psychologically) dubitable. Part of the point, then, of the logical analysis
of deduetive reasoning has been to reduce complex inferences, which are beyond
the capacity of the human mind to grasp as single steps, to chains of simpler
inferences, each of which is within the capacity of the human mind to grasp as o
single t-ransaatio m.
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I'rom the theoretical point of view, however, an inference principle need only
be seund (i.e., allow only logical consequences of premisses to be deduced from
them) and gffective (ie., it must be algorithmically decidable whether an alleged
application of the nference principle is indeed an application of it). When the
agent carrying out the application of an inference principle is a modern computing
machine, the traditional fimitation on the complexity of inlerence prineiples is
ne longer very appropriate. More powerful principles, involving perhaps a much
greater amount of combinatorial information-processing for a single application,
become a possihility.

In the system described in this paper, one such inference principle s used.
Lt is called the resolution principle, and it is machine-oriented, rather than human-
oriented, in the sense of the preceding remarks. The resolution principle is quite
powerful, both in the psychological sense that it condoncs single inferences
which are often beyond the ability of the human to grasp (other than discur-
sively), und in the theoretical sense that it alone, as sole inference principle,
forms a complete systen of first-order logic. While this latter property is of no
greab importance, iU is interesting that (as far as the author is aware) no other
complele system of first-order logic has consisted of just one inference prineiple,
if one construes the device of inlroducing a logical axiom, given outright, or by a
gchema, as a (premiss-free) inference principle.

The main advantage of the resclution principle lies in its ability o allow
us to avoid one of the major combinatorial obstacles to efficiency which have
plagued ecarlier theorem-proving procedures,

Tn Section 2 the syntax and scmantics of the partienlar formalism which is
used in this paper are explained.

2, Formal Preliminaries

The formalism used in this paper is based upon the notions of unsatisfiability
and refutation rather than upon the notions of validity and proof. Tt is well
known (ef. [2] and [5]) that in order to determine whether a finite set S of sen-
tonees of first-order logic is satisfiable, it is sufficient to assume that each sentenee
in 8 ig in prenex form with no existential quantifiers in the prefix; moreover the
matrix of each sentence in 8 can be assumed to be a disjunction of formulas
each of whieh is cither an atomic formula or the negation of an atomic formula.
Therefore our syntax is set up so that the natural syntactical unit is a finite set
8 of gentences in this special form. The quanlifier prefix is omitted from each
sentence, since it consists just of universal quantifiers binding each variable in
the sentence; furthermore the matrix of each sentence is regarded simply as the
set of its disjuncis, on the grounds that the ovder and multiplicity of the disjuncts
in a disjunction are immalerial.

Accordingly we introduce the following definitions (following in part the
nomenclature of [2] and [5]):

2.1 Variables. The following symbols, in alphabetical order, are variables:

W, U, W Xy Y, Zy Uy, Uy, Wry Try Yoy 21, Byt ,(‘)t(?-.
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9.9 Funcltion symbols, The following syinbols, in alphabetical order, are
function svmbols of degree n, for each n = 0:

[ pooom ¥ 3 it K
a b e dr e et R R, b, - ete

When 1 = 0, the superscript may be omitled. Function symbals of degree 0 are
ind ivtdual consiants.
9.3 Prechieate symbols, The [ollowing symbols, in alphabetical order, are

predicate svmbols of degree n, for each n = 0:

[-,JL’ (27!’ Rn: ]}lu’ (anj ]{1”, [Jg”’ S, CtC.

The superseript may be omitted when n is 0.

2.4 The negalion symbol. The following symbol is the negation symbol: ~

2.5 Alphabetival ovder of symbols. The set of all gymbols is well ordered in
alphabetical order by adding to the above ordering conventions the rule that
variables precede funetion symbols, funetion symbols precede predicate syinhels,
predicate symbols preeede the negation symbol, function symbols of lower degree
precede function symbols of higher degree, and predicate gymbols of lower de-
vree precede predicate symbols of higher degree.

2.6 Terms. A variable is a term, and a string of symbols consisting of a
funetion symbol of degree n Z 0 followed by » terms is a term.

27 Atomic formulas. A string of symbols eonsisting of a predicate syrbol of
dogree n = 0 followed by n terms is an atomic formula.

2.8 Laterals. An atomic formula is a literal; and I A is an atomic formula
then ~A Is a literal.

L 2.9 Complements.  If A Is an atomie formula, then the two literals 4 and ~4
are said to be each other’s complements, and to form, in either order, a comple-
wentary pair,

210 Clauses. A finite set {possibly empty) of literals is culled a clause. The
erapty clause is denoted by: O

211 Ghround literals. A literal which contains no variables is called & ground
literal.

212 Grownd clauses. A clause, each member of which is a ground literal, iz
called a pround clause. In particular 3 is a ground clause,

2.13 Well-forined expressions. Terms and literals are (the only) well formed
expressions.

2.1 Fexdcal order of well formed expressions, The set of all well formed ex-
pressions is well ordered in lexical order by the rule that A precedes B just in
case that 4 is shorter than B or, if A and B are of equal length, then A has the
alphabetically earlier symbol in the first symbol position at which A and B
have distinet symbols.

In writing well-formed expressions for illustrative purposes, we follow the
more readable plan of enclosing the n terms following & function symbol or
predicate symbol of degree n by a pair of parentheses, separating the terms, if
there are two or more, by commas, We can then unambiguously omit all super-
seripts {rom symbols, In writing finite sets, we follow the usual convention of
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enclosing the members moa pair of braces and of separating the members by
commas, with the uwnderstandivg that the ovder of wriling the members is -
material.

215 Herbrand unerses. With any get 8 of clauses there is associated a set
of ground terms called the Herbrand universe of 8, as follows: let F be the set of
all function symbols whiel ocowr o &, [T F contains any function symbols of
degree 0, the funetional vocabulary of 8 is #7; otherwise it is the set {a} U . The
Harbrand universe of S 18 then the set of all ground terms in which there oceur
only symbols 1u the functional vecabulary of S

216 Swlwraiion. If S i3 any set of clauses and P is any set of terms, then
bw [7{8) we denote the saturation of & over P, which 1s the set of all ground
clauges obtainable from members of § by replacing variables with members of
P—oceurrences of the same variable in any one clause being replaced by oceur-
rences of the same tern.

217 Models. A set of ground literals which does not inelude a coniplementary
pair 1s called a model. Tf 47 is a model and § ig a set of ground elauges, then 47
is a model of 8 if, for all € in &, C contains a member of 37, Then, in general,
if 8 is any set of clauses, and H is the Herbrand universe ol &, we say that A1 s
g model of S just in case that 47 is 4 model of H{S).

218 Satisfhability. A sct S of clauses is satisfiable if there is & model of &,
otherwise S is unsatisfiable,

From the definttion of satisfiability, it s clear that any set of clauses which
contains [ is unsatisfiable, and that the empty set of clauses s satisfiable. These
two eircumstances will appear quite natural as the development of our system
proceeds. [t is also clear that according to our semantic definitions each non-
emply clause is interpreted, as explained in the informal remarks at the begin-
ning of this section, as the universal closure of the disjunction of the liferals
whieh it contains.

2.19 Growund resolvents.  1f O and D are two ground elauses, and . © C, M < D
are two singletons {(unif sets) whose respective members form a complementary
pair, then the ground clause: (¢ — L) U (D — M) is called a ground resolvent
of & and .

Fvidently any model of {, D} is also a model of {C, D, I}, where i is a
sround resolvent of € and D. Not all pairs of ground elauses have ground re-
solvents, and soime have more than ane; but in no case, as 18 clear from the defini-
tion, can two ground ciauses have more than a finite number of ground resolvents.

2.20 Ground resolution. I S is any set of ground clauses, then the ground
vesolution of 8, dencted by ®(8), is the set of ground clauses consisting of the
members of S together with all ground resolvents of all pairs of members of S.

2.21 N-th grownd resclution. I{ 8 is any set of ground clauses, then the nth
ground resolution of N, denoted by ®7(S), is defined for each » = ¢ as {ollows:
Gr(8Y) = &yand forw 2 0, o = RIR"(S)).

This completes the first bateh of definitions. The next sections are concerned
with the various forins that Herbrand’s Theorem takes on in our system. To
each such form, there is a type of refutation procedure which that form sug-
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gests and justifies. The bagic version is stated as follows {¢f. [2, 4]):
Herpraxp’s THeoreMm.  [f S s any finde sel of clauses and H s Herbrand
wniverse, then S 1s unsalisfiable i and only 9f sowne finite subset of H{S) 1s unsaiis-

fiable.

4. Saturation Procedures

Is was noted inan earlier paper [5] that one can express Herbrand’s Theorem
in the following form:

Tuwones L. [f S is any finite sel of clauses, then S 1s unsalisfiable 1f and only
if, for some finite subsel I of the Hevbrand wndverse of S, P(S) is unsatigfiable.

This version of Herbrand’s Theorem suggests the following sort of refutation
procedure, which we call a safurafion procedure: given a finite set S of clauses,
seleet & sequence Py, Py, Ps, -+, of finite subsets of the Herbrand universe
I of S, such that P; < P; foreach j 2 0, and such that Ui P; = H. Then
examine in turn the sets Fo(S), £1{S), Po(8), - -+, for satisfiability. Lvidently,
for aty finite subset 7 of H, PP © P, for some j, and therefore P{S) € P,(8).
Therefors, by Theorem 1, if S is unsatisfable then, for some j, P;(8) is unsatis-
fiable.

OF cowrse, any specific procedure of this sort must make the selection of £y,
Py, Py, - uniformly for all finite sets of clauses. A particularly natural way
of doing this is to use the so-called levels Hy, iy, Hq, -+, of the Herbrand
universe H; where Hy consists of all the individual constants in A, and H, .1, for
n z 0, consists of all the terms in A which ave in H.. , or whose arguments aye
in H, . In [5] we called procedures using this method level-saturation procedures.
[t wag there remarked that essentially the procedures of Gilmore [4] and Davis-
Putnam [2] are level-saturation procedures,

The major combinatorial obstacle to efficiency for level-saturation procedures
is the enormous rate of growth of the finite sets H; and H,;(8) as j increases, at
least for most interesting sets S, These growth rates were analyzed in some de-
tail In {53, and some examples were there given of some quite simple unsatisfiable
S for which the earliest unsatisfiable H,(S) is so large as to be absolutely beyond
the limits of feasibility.

An interesting heuristic remark is that, for every finite set 8 of elauscs which
Is unsatisfiable and which has a vefutation one eould possibly construet, there is
at least one reasonably small finite subset of the Herbrand universe of S such
that £(&) iz unsatisfiable and such that P is menimel in the sense that Q(8) is
satisliable for each proper subset @ of P. Such a P was ealled a proof sef for S in
(5], If only, then, a benevolent and omniscient, demon were available who could
provide us, in reasonable time, with a proof set P for cach unsatisfiable finite set
S of clauses that we considered, we could simply arrange to saturate S over I
and then extract a suitable refutation of 8 from the resulting finite unsatisfiable
set 7{8) of ground elavses. This was in fact the underlying scheme of a computer
program reported in [5], in which the part of the demon is played, as best his
ingenuity allows, by the mathematician using the program. What is really
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wanted, {o be sure, ix a simulation of the proof set demon on the computer; but
this would appear, intuitively, {0 be out of the question,

It turns ous that it is not completely out of the question. In fact, the method
developed in the remainder of this paper seens to cotne yuite close to supplying
tha required demon as a computing process. In Seetion 4 we take the firgt major
step towards the development of tlis method by proving more verswns of Her-
brand’s Theorem. We also give a preliminary informal account of the rest of the
argument, pending a rigorous treatment in succeeding sections.

4. The Resofutiem Theorems and lhe Basic Lenna

Ag a specific method for testing a finite set of ground clauses for satistisbility,
the method of Davis-Putnam [4] would be hard to improve on from the point
of view of eflicieney. However, we now give another method, far less efficient
than theirs, which plays only a theoretical role in our development, and which
is much simpler to state: given the finite set S of ground clauses, form successively
the sets 8, ®(8), A(S), - - -, until either some ®"(.8) contains I, or does not
contuin 03 bul is equal to &7 1(8). 1n the former case, S is unsatisiiable; in the
latter case, S is satisfiable. One or other of these two terminating conditions
must eventually oceur, since the number of distinet clauses formable from the
{inite set of Iiterals which occur in S 18 fimite, and hence In the nested infinite
sequence:

S cCRS TR TSRSy,
not all of the inclusions are proper, since resolution introduces no new literals.

In view of the finife termination of the described process we can prove its
correctness, as stated above, in the form of the ground resolution theorem.

Grouno Resorvrony Taeorem. If S s any finde set of ground clauses, then
8 15 unsatisfiable i and only ©f &7 (N) contains 01, for some n = (.

Proor.  The “if”” part is immediate. To prove the “only if"” part, let 7 be the
ferminating set §17(8) in the sequence (4.1} above, so that T is cloged under
ground resolution. We need only show that if T does not contain 2, then T is
satisfiable, and hence § is satisfiable since S © 1. Let Ly, -- -, L; be all the
distinet atomie formulas which oceur in 1" or whose complements oceur in 7.
Let M be the model defined as follows: M, is the cmipty set; and for 0 < 5 = X
M ;s the set M ,_; U {L,}, unless some clause in T consists entirely of comple-
ments of literals in the set 3 ;. U{L,};in which case M is theset 37, U [~L].
Finally, ¥ is M, . Now if T does not contain [, 47 satisfies 7. 'or otherwise
there is a least 7, 0 < j £ %, such that some clause (say, C) in T consigts on-
tirely of complements of literals in the set ;. By the definition of M ;| therelore,
Mis M U {~L,. Hence by theleastnessof j, € contalus [; . Butsince M, is
M, U {~L}, there is some clause (say, D) i T which consists entirely of
complements of Titerals in the set M,y U{Lj}. Hence by the leastness of j, D
contaius ~L; . Then the clause B = (€ — (L} U (D — {~L,1) consists

entirely of complements of literals in the set M, | unless B is J. But B is a
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ground resolvent of €' and 1), henee is in T, hence is not 0. Thus the leastness of
jis contradicted and the theovem ig proved,

The Ground Resolution Theorem now allows us to state 2 more specifie form
of Theorem 1, namely,

TuroreM 2. If 8 s any finite set of clauses, then 8 is wnsatisfiable 9 and only
if, for some finite subset I’ of the Herbrand aniverse of S and somen = 0, ®&"(P(8))
condains [,

It is now possible to state informally the essential steps of the remaining part
of the development. We are going to generalize the notions of ground resolvent
and ground resolution, respectively, to the notions of resolvent and resolution.
by removing the restriction that the clauges involved be only ground clauses.
Any two clauses will then have zero, one or more clauses as their resolvents,
hut in noe case more than finitely many. In the special cage that ¢ and D are
ground clauses, their resolvents, if any, are precisely their ground resolvents as
already defined. Similarly, the notations ®{8), ®*(S8) will be retained, with 8
allowed to be any set of clauses. ®(8) will then denote the resolution of S, which
is the set of clauses consisting of all members of S together with all resolvents
of all pairs of members of 8. Again, ®(S) is preeisely the ground resolution of
8§, already defined, whenever 8 happens to be a set of ground clauses.

The details of how this generalization is done must await the formal definitions
in Section 3. However, an informal grasp of the general notion of resolution is
pbtainable now, prior o its exact treatment, from simply contemplating the
fundamental property which it will be shown to possess: resolulion {s semicom-
mutalive with saturation. More exactly, this property is as stated in the following
hasie Lemma, which is proved in Section 5:
© Levwa. If S s any set of clauses, and P ¢s any subset of the Hevbrand wniverse
of 8, thew: R(P(8)) € P(&(8)).

The fact ig, as will be shown here, that any ground eclause which can be ab-
tained by first instantiating over P a pair €, D of c¢lauses in 8, and then forming
& ground resolvent of the two resulting instances, can also be obtained by in-
stantiating over P one of the finitely many resolvents of ¢ and D.

1t is an easy eorollary of the basic Lemma that nth resolutions are also semi-
commutative with saturation:

Corourany. If 8 is any set of clauses and I? is any subset of the Herbrand
unperse of S, then: ®*(P(8)) © P(R'(8)) foralln = 0.

Proor. By induction on n. @' (P(8)) = P(8) = P(&"(S)), so that the
case n = 0 is trivial. And if, forn = 0, ®"(P(8)) T P(®"(8)}, then:

P = RIG=(P(8)) by definition of B+,
C B{P RS by the induction hypothesis, as ® preserves inclusion,
C P{RASD by the Lemma,
= P(®""(8)H by definition of G+,

and the Corollary is proved.
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Now by the above Corollary to the basic Lemima we may inmediately oblain
a third version of Herbrand’s Theorem from Theorem 2:
TreoreM 3. IF S 78 any findie set of clauses, then N 48 wisatisfiable i aond ondy

~

i, Jor somie frnide subsel I of the Herbrand wniverse of S, and sonien 2 0, P(R"(5))
condaing [,

Here, the order of the saturation and nth resolution operations s reversed,
Now a rather surprising simplification of Theorem 3 can be made, on the basis
of the remark that mere replacement of variables by terms cannot produce
from a nonempty clause. Hence P(A7(8)) will contain [0 1f and only if @"(.S)
contains I, From Theorem 3, therefore, we nnediately obtain our final version
of Herbrand’s Theorely, which is the main result of this paper, and which we
eall:

RrEzonvTioNn TeEorEM.  If S 4% any finite set of clawses, then S is unsatisfiable
i and only o G7(8) contains O, for some n = 0.

The statement of the Resolution Theorem is just that of the Ground Resolu-
tion Theorem with the word “ground’ omitted. Apart, therefore, fram the some-
what more complex way in which the resolvents of two elauses are computed
{described m Section 3) the method suggested by the Resolution Theorem [or
testing a finite set 5 of clauses for unsatisfiability is exactly like that given
earlier for the case that S is a set of ground clauses, and indeed it automatieally
reverts to that method when it i applied to a finite set of ground clauses, How-
ever, it 18 no longer the case in general that the nested sequence

SCRS) SRS C---TRYS) < -

nust terminate for all finite S. By Church’s Theorem this could rot be so, for
otherwise we would have a decigion procedure for satisfiability for our formula-
tion of first-order logic.

Consider now the “proof set demon” discussed in Section 3. We there supposed
that if we were given a proof set P for an unsatisfiable set S of clauses, all we
would have to do would be to compute until we encountered the first &7 (F(8))
which contains [0, in order to obtain from it a formal refutation of S, But the
Resolution Theoremn assures us that by the time we had computed ®"(8), ¥
not before, we would have turned up [, despite our ignorance of £. In this sense
the Resolution Theorem makes the proof set demon’s role unnccessary.

In Section 3 we introduce a little more formal apparatus by a second batch
of definitions, and pay ofl our debis by deflining the general notion of resolution
and proving the basie Lemma.

5. Substttubion, Unificalion and Resolulion

The following definitions zre concerned with the operation of iustantiation,
i.e. sabstitution of ferrus for vartables 1n welldormed expressions and in sets of
well formed expressions, and with the various auxiliary notions needed to define
resolution in general,

3.1 Substétuiton emponents. A substitution component is any expression of
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the form I/ V, where ¥ Is any vaviable and 7' is any term different from V. 7743
ealled the vardable of the component T/V, and 7" is called the teim of the com-
ponent T/ V.

5.2 Substitulions. A substitution I8 any finite set {possibly empty) of sub-
stitution components none of the variables of which arve the same. If £ is any set
of terms, and the terms of the components of the substitution # are all n P, we
zay that ¢ Is a substitution over . We write the substitution whose components
are Ty/Vy, -, TW/Vieas {1V, -+, Tw/Vy, with the understanding that
the order of the components is immaterial. We use lower-case Greek letters to
denote substitutions. Tn partieular, e is the emply substitution,

5.3 Instantiction.  If B is any finite string of symbols and

6= {1/ Ve, e, T/ Vi

is any substitution, then the instantiation of K by # is the operation of replacing
each oecurrence of the variable ¥, 1 £ ¢ £ k, in & by an occurrence of the
term T . The resulting string, denoted by E8, is called the instance of B by 8. Le.,
if I7is the string Fo Vo By -« Vi, B, , then F8is the stving %0, By -+ T, 1., .
1Tere, none of the substrings F; of E contain ocevrrences of the variables Vy |+ - |
V., some of the £ are possibly null, » is possibly 0, and each V., is an ocourrence
of one of the variables Vy, -+, V. Any string £6 15 called an instance of the
string B, If ¢ is any set of strings and ¢ a substitution, then the instance of ¢
by #is the set of all strings K8, where F is in €. We denote this set by ('8, and
say that it is an mstance of €,

54 Slunadardizations. If (! is any finite set of strings, and ¥V, -+, Vi are
all the distinet variables, in alphabetical order, which oceur in strings in €, then
the z-standardization of £, denoted by £¢, is the substitution {x,/Vy, -+, a0/ V]
and the y-standardization of C, denoted by e, is the substitution

if?/h/vl [ yk/vfﬂ} g

5.5 Composition of substitutions. 1 6 = [T/ Ve, -, TW/Vy}l and X are any
two substitutions, then the set 8" U X, where A is the set of all components of A
whase variables are not among 77, . , Vi, and g is the set of ail components
TNV, 1 £ ¢k, such that T is different from V5, is called the composi-
tion of @ and X, and is denoted by #A.

It ig straightforward to verify that «@ = #e = 06 for any substitution 4. Also,
composition of substitutions enjoys the associative property (fh)p = #(\u), 50
{hat we may omit parenthescs in writing multiple compositions of substitutions.

The point of the composition operation on substitutions is that, when F is any
string, and o = @), the string Ko is just the string £/6}, ie. the instance ol f£0
by A,

These properties of the composition of substitutions are established by the
folowing propositions.

3510 (FEe)h = E(a\) for all strings B ond all substilulions o, A.

Praor. et o = {Ty/Vy, -, To/Vid, A = (DyWy, -, Un/Wai and
E = BV, E - V, B, as explained in (3.3) above. Then by definition Fe =
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BT By e Tk, and (Hedn = Byl iy - Tk, where cach 7', ds 77,
and each £ 38 B0, where A is the set of all components of A whose variables
are nob among ¥y, -~ -, 17 (since none of these varables oceur in any ;). But
on = o U, where cach component of ¢ s Just T/ Vs whenever 7' is different
from V. Henee E(oN) = fd, By - T F, .

9.5.2. For any subsatibeions &, N2 &f Lo = X for all strings I, then v = \,

Proor. Let ¥y, .-, Viinclude all the variables of the components of o and
Athen Vie = Vi, for 1 £ 7 £ k. Then all the components of o and » are the

same.

5.0.3. For any substitulions o, A, g: {oAjp = o(Au).
Proor, Let £ be any string. Then by 5.5.1,

EileNu) = (E(eM))p
((Ha)N)p
(Ko ) (M)
= L{a()).

i
i

i

Henee {oddp = o(Ap) by (5.5.2).

We shall alzo have occasion fo use the following distributive property.

5.5.4. For any sets A, B of sirings and substitution \: (A UBjx = Ax U B),

8.6 Disagreement sels.  If A s any set of well-formed expressions, we call the
set B the disagreement set of A whenever B is the set of all well-formed subex.
pressions of the well-formed expressions in A, which begin at the first symbol
position at which not all well-formed expressions in A have the same symbol,
Lrearngple:

A =Pz, bz, y), w), Pla, kly), y), Plo, o, 0],
Disagreement set of A = {Alz, v}, k(y), af.

Evidently, if A4 is nonempty and is not a singleton, then the disagreement set
ol A is nonempty aud is not a singleton,

55 Unification. I 4 is any sel of well-formed expressions and 6 15 a sub-
stitution, then # is said to unify 4, or to be 4 unifier of 4, If 49 is a singleton.
Any set of well-formed expressions which has a unifier is said to be unifiable.

Evidently, if 4 unifies 4, but 4 is not a singleton, then 4 unifies the disagree-
oent set of A,

5.8 Unification. Algorithwm.  The following process, applicable to any finite
nanempty set A of well-formed expressious, is calied the Unification Algorithm:

Step 1. Setos = eand & = ¢, and go to step 2,

Step 2. If Aer is noi 2 singleton, go to step 3. Otherwise, seb oa = o and terminate,

Siep 3. Let ¥y be the earliest, and U7 the next earliest, in the lexieal ordering of the dis-
sgreement seb By of Aor - If Viis o variable, and does not ocourin Uy | seb opps = o] U/ Vid,
add 1 to k, and return to step 2. Otherwise, terminate.

This definition requires justification in the form of a proof that the given
process s in fact an algorithun, In lact the process always terminates for any
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finite nonempty set of well-formed expressions, for otharwise there would be
senerated en infinite sequence A, Agy, Aoy, - -+ ol linite noncrapty scts of well-
formed expressions with the property that caeh successive set econtains one Jess
varizble than its predecessor (namely, Ay, contains ¥V but Aoy does not). But
this s tmpoessible, sinee A contains only fnitely many distinet variables.

3.9 Most general wndfiers. 1T A is a finite nonemply set of well-formed ex-
pressions for which the Unification Algorithm terininates in step 2, the substitu-
tion &, then available as output of the Unification Algorithmn is called the most
general unifier of A4, and A is then said to be most generally unifiable.

510 Key triples.  'The ordered triple (L, &, N) of finite sets of literals is said
to be a key lriple of the ordered pair (€, 13} of clauses just in case the following
conditions are satisfied.

5101, L and M are nonempty, and L S C, M Z D,

5.10.2. N 1 the set of atomie formulas which are members, or complements
of members, of the set Li, U Mn, (eof. definition (5.4)).

5103, N iz most generally unifiable, with most general unifier oy .

3.104.  The sets Légoy and M qpoy are singletons whose members are comple-
ments.

Tividently, 2 pair {C, D) of clanges has at most a finite number of key triples,
and possibly none at ali.

.11 Resolvents. A resolvent of the two clanses € and D is any clause of the
form: (C ~ L)Eeoy U (D) — M)npoy where (L, M, N} is a key triple of {(C, D).

By the remark following definition (5.10) it is clear that two clauses € and D
ean have at most finitely many resolvents, and possibly none at all.

3.12 Resolutions. If § is any set of elauses then the resolution of &, denoted
by 8(8), is the set of all elauses which are members of § or resolvents of members
of 8.

53.13 N-lh resolution. LThe nth resolution of S, where S is any set of clauses,
is denoted by &"(&) and is defined for all n = 0 exactly analogously to definition
(2.21).

This completes our second group of definitions. The definition of ®(S) as
given is adequate for our theoretical argument, but in practice one would not
include in it both the resolvents of (¢, D) and the resolvents of (D, ), since
these are in fact identical up to a change of variables. When ¢ and D are both
ground clauses, the resolvents of (U, D} are actually identical with those of
(D, (5, and are precisely the ground resolvents of  and D, os is easily verified.

It now remains to prove the basic Lemma, which will be done after we have
first proved the following theorem establishing the basic property of unification,
which we need in the proof of the Lenuna and elsewhere in our theory:

Uniricatron Turorem, Lel A be any finile nonempty set of well-formed ex-
pressions. If A s unifiable, then A s most generally wnifiable with most general
wiifier o4, wmoreover, for any wnifier 8 of A there is u subsiitution N such thal
=g ne

Proor. It will suffiec to prove that under the hypotheses of the theorem the
Unification Algorithm will terminate, when applied to 4, at step 2; and that
for each k = 0 until the Unification Algorithm so terminates, the equation
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.14, 8 = oM
holds at step 2 for some substitution Ay . For kb = 0, {5.14) holds with X =
ginee og = e. Now asswue that, for & = 0, (3.14) holds at step 2 for some &
stitution A; . Then either Aoy is & singleton, in which ease the Unification
gorithm terminates at step 2 with o4 = o the most general uuifier of 4 ¢
A = A the required substifution; or the Unification Algorithm transfers (o s
3. In the latter case, since h; uuilies Aoy, (by (5.14), since 6 unifies A) X m
also unify the disagreement set B, of Ae, . Hence the V. and €/ defined i s
3 of the Unification Algorithin satisly the equation
3.15. Tre = Uik .

Since B, is a disagreement set, the well-formed expressions in B, cannot
hegin with the same symbol; henee they cannot all begin with gymbols which
not variables, since B, 1s unifiable. Therefore at least one well-formed express
in B, beging with a variable, and hence is a variable, since it is well-form
Since variables precede all other well-formed expressions in the lexical order, ¢
sinee V. is the carliest well-formed expression in B, it follows that V, i
variable. Now if Vi, acewrs in Uy, Ved; oceurs in U7, , but sinee ¥ and U,
distinet well-formed expressions this is impossible beeause of (5.13). Theref
T, does not oceur in U, . Henee the Unification Algorithm will not terminate
step 3, but will retwrn to step 2 with o,y = o] Ui/ Vi), Now let iy = N
LV /Vit. Then:

Moo= [T/ Vil U Mt by definition of M.t ,
LU/ Vel U Ay by (5.13),

it

Ui/ Ve U Ner since Vi does not oceur in O,
= 3/ Vi g by definition (5.5).
Henee by (5.14) ¢ = oipdinr . Thus (5.14) holds for all & = 0 uotil the U

fication Algorithm terminates in step 2, and the theorem is proved,

We are now in a position to prove the basic Leinwna, which we state here ag
for convenience.

Leyma.  If 8 is any set of clauses and P is any subset of the Herbyand wnive
of 8, then: R(P(S)) € P(Q(S)).

Proor. Assume that A € ®(P{8)). Then either A € P{8), in which «
A€ P(R(8)) since 8 & ®(S); or A is a ground resolvent of two ground clau
Co, D, where ¢ € 8,0 C S, a =TV, -, T/ Vi, where Voo, Vi
all the distinct variables of (' in alphabetical order and 7y, -+ -, Ty are in
and 8 = {U /Wy, -+, U/ W}, where Wy, -+, W,, arc all the distinet ve
ables of D in alphabetical ovder and Uy, -+, U, are in P. In that case, A
(C —-LDaU(D — M)3, where L & (¢, M & D, [ and M are nonemply, a
Lee, MB are singletons whose members are complements. Let

g = {Tlft.xl y T T;,»/.TF}; 3 Cfl/yl y "7 Dvm/ym;-

Then it follows that 4 = (€ — L)éco U (D — M)ns6 and that L = Le a
Maqp = Mp. Therefore ¢ unifies the set N of atomic formulas which are me
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bars, or eomploiments of members, of the set Le, U A7y, . Tlence by the Uiifics-
gion Theorem & has a most gencral unifier oy, and there 18 & substitution X over
P such that 4 = svh. Henee Licoyh = Lo and Mgpesh = M3, and thorefors
Licoy and Mypoy are singletons whose members are complements. [t follows
that {L, i{, ) is a key triple of {C, I3}, and hence that the clause

B = (( = LYoy (D ~ Minoy

i & resolvent of O and 0; hence B € Q(S). But since 8 = ox, il follows by
(5.5.4) that 4 = B\ and thevefore that A € P(0(S8)). The proof iz complete.

The hypotheses of the Lemma do not entail the opposite inclusion P(G(S)) ©
®RIP(SY). As a simple counterexample, cousider:

A short investigation shows that P(®{S)) containg [J (since R(S) does) while
R(PSYY does not. Thus S is unsatisfiable, but P is not a proof set for S.

6. The Resolution Principle: Refutations

The single inference principle of our system of logie, mentioned in Section 1,
is the resoluiion principle, namely: From any two clavuses C and L, one may nfer
a vesolvent of C ond D,

By a refutation of the set S of elauses we mean a finlte sequence by, -+ | fi.
of elauses such that (a) cach B;, 1 = 7 = w, Is either in S or is a resolvent
of two earlier clauscs in the sequence, and (b) £, is T,

Tt is immediate from the Resolution Theorem that a finite set S of clauses iz
unzatisfiable if and only if theve is a vefutation of 8. Thus the Resolugion Theorem
is the' completeness theorem for our system of logic.

Two exatnples of refutations will illugtrate the workings of the system,

Example 1. The set contlaining just the two clauses C; and €y, where

Cy = [Q, g(), y, bz, ), 2, k2, y, 2) )}
Co = {~G(u, v, e(0), w, f(», w), 2)}
has the refutation €y, €y, T1. Note that (¢!, , C'y) has the key triple {Cy, Ca, N,
where & is the set
10, g(xy), @, Ry, m), my, ke, 2n, @),
QG a5 e(aa)d, Yo Flon s Be)y )i
The reader can verify in a few minutes of computation with the Unification
Algorithm that ¢, is the substitution with the components:
eI filyy 5 elg(y:0)) /e
gl Y Flgty), lyy, elglyd))) /s
elgly)) i, Ry, elgly0d, Flotyd, by, elely )N/
and that then Cifpox and Cineon are singletons whose members are comple-
ments,
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This example Hustrates the way in which 2 proof set is automatically com-
pited a8 o by-product of the resolution operation. The terms of the above sub-
stiiution components becowe those of a proof set for {€, (') when the variable
i s replaced throughout by any term of the Herbrand universe of {Ch, C4), eg.
by the individaal constant “o.” 1t is interesting to note that the earliest level of
this Herbrand universe I to include such a proof set s Ay, which has of the
order of 10% members, Consequently Hs({C';, (s}) has of the order of 10”° mom-
bers. A level-saturation procedure would not find this exarple feasible.

Erample 2. A more Interesting example 1 one which was discussed In [3].
It arises [rom the {ollowing algebraic problem.

Prove that fn any associntive systens which has left and righi solulions x and y for
all cquations ©-a = b and a-y = b, there is a vight denlily element.

To formalize this problem in our logie, we deny the alleged conelusion, and try
to refute the seb containing the clauses {where 9(x, ¥, 2) is (o mean z-y = 2):
O i~Q0e, y, ), ~0ly, 2, v), ~Qx, v, w), Qlu, 2, w)}

. . . { Associativity
Coo @l w0, ~QUy, 2,20, ~Qlu, 2, w), Qle, v, wd) |

Oy Hgla, y), o, vy Existence of left and right
Oy $Q0, iz, uy, vt solutions

Cao 40z, y, iz, y1)} Clozurs under -

Cy 0 I~Qlkta), o, Blayy No right identity.

By adding the following resolvents, we get a velutaticn:
Cov A~Qy, e, ya), Gy, 3o, y2)i

Co o I~QTy, ¥, vl

Commentary. (' is the resolvent of the pair (€, () for the key triple
<{’\’Q(T: Y, U‘)r NQ“L: 7, lw)} "Q(g(fb: U}, Ly U)}, AT>

vhere N iz the set {Q(,:{:*!: Ta, Lrl)) Q(#; » Try :575); Q{g(y?: f/l); U, yz)} The oxN
computed for this ¥ by the Unification Algorithra is

e/, tif e, we/ e, gy, Y2 )/, /),
as iz easily verified, g is the only resolvent of (s, (5, and {3 is the only re-
solvent of {Cy, Cs).

This example Uustrates the way in which the single steps in a refutation made
with the resolution principle go beyond, in their complexity, the capacity of the
human mind to apprehend their correctness in one single intellectual act. By
taking larger bites, so to speak, the resolution principle in this case permits a
very compact, not to say clegant, piece of reasoning, C; and (5 are not used as
premisses in the refutation, although this has nothing to do with the resolution
principle. Henee s nonredundant refutation for this exaraple s the sequence:
Oy U e O, O, O
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7. Refulation Procedures, Search Principles

The {oregoing discussion was intended only to establish the theoretical frame-
work, in the form of a special system of logie, for the design of theorem-proving
programs, i.e. in the present case, refutation procedures. No attempt has been
made thus far to diseuss the question ol developing efficient refutation pro-
cedures, and in this final seetion of the paper we briefly discuss this question.

The raw implementation of the Resolution Theorem would produce a very
inefficient refutation procedure, namely, the procedure would consist of com-
puting, given the finite set S of clanses as input, the sequence of sets S, ®(S),
®*(8), --+, until one s encountered, say, 6" (8), which cither contains 1 or
else does not contain [ but is equal to its suceessor &™(8), Tn the forwer case,
5 refutation of 8 is obtained by tracing back the genesis of [J; in the latter case
the conclusion is that S is satisfiable. By Chureh’s Theorem [1] we know that
for some inputs S this procedure, and in general all correct refutation procedures,
will not terminate in either of these two ways but will continue computing in-
definitely.

In some cases we can foresee the nonterminating behavior. Consider the ex-
ample of the set 8§ whose members are:

Cr: 4Qe)t,  Cot {~QUz), Q(f ).

(The reader will recognize thig as the formulation, in our logie, of a fragment of
Peano’s postulates for the natural numbers, with “Q(z)” for “2 is a nabural
number,” “a’’ for “0,7 and “f(x)” for “the successor of 27.) Tt is easy fo see
that for this 8 the procedure deseribed above would generate successively the
resolvents {Q(f(a)}}, {QUf(a}))}, 1QUTT@))))y, -+, ete., ad infinitumn.

This example suggests our attempting to formulate a principle which would
allow us effcetively to recognize the particular indefinite continuation phenome-
non which it exhibits, so that we raight incorporate the principle into & refuta-
tion procedure and cause it to terminate for this S and for other similar examples.
Such a principle, which we eall the purity principle, is available, based on the
notion of a literal being pure in a set & of clauses. We deline this notion as fol-
lows.

7.1 Pwre literals.  1f S is any {inite set of clauses, € a clause in 8, and L a
literal in ' with the property that there is no key triple {{L}, M, N} for any
pair (C, D) of clauses, where D is any clauge in § — {(}, then I is said to be
pure in S.

The putity pringiple is then based on the following theorem.

Purrry TunoreM, [If S i any fintte set of clouses, and L. € C € 8 is a literal
which ds pure in S, then S is satisfiable if and only 4 S — {C} is sotisfiable.

Proor. If § is satisfiable then so is 8 — {C} since it is a subset of 8. IT 8§ — {C}
is salisfiable, then there is a model 4 of S — {C}, every literal in which occurs
in some clause of H(8), where H Is the Herbrand universe of S, Let N be the
set of all ground literals L9, where 4 is a substitution over [T, and let K consist
of all complements of members of N. Then the set P = N U (4 — K) is a
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snodel; moreover it s aonodel of 8, sinee every clause in H{CH contains a
member of 7 {nanely o member of ¥), and every clange in H{8 — {(1) eon-
tains a mentber of P, namely a member of A4 ~ K for no clange in (8 — oy
containg a member of K since olherwise, if N2 were sueh a clause, with 0 €
&= 40, then there \\Ouiu be an M T D sueh that 33 would be & singleton
e?rmi“a{ruug a member of K. Then there would be some substitution o over H
such that {Lie, 878 contained complementary singletons, Hence by the sanwe
argunent as i the proof of the Leama, there would be a kev triple (L1, 4, A
of the palr () D}, coutradicting the purity of 1o in 8. The theoren is provec I.

The purity prineiple is then simply the following: One may delete, fron a finite
sel ¥ of clowses, any clouse condaining o literad which 1s pure m S,

When 8 is the little Peano example given earlier, i.e., is the sct conlainin g just
the two clauses

Coo AQGadl,  Cot feole), QUG

we see that the underlined liteval in €y is pure in 8. Hener we may delete €/,
oblaining the set & — {7} whose only clause is

S LI

But of Lomw the underlined h‘tcml 1, trivially, pure in § - {4} ; heuce we may
delete C1, obtaining the set S — {C1f — {Cy, which is enmtv hence satisfiable,
Heuce ny the Pumty 1‘1’1@0&,&1, S 18 satisfiable.

Thus a refutation procedure incorporating the purity principle as well as the
*ecnlummz principle “converges” for more finite sets of clauses than o procedure

based on the vesolution principle alone. Such principles as the purity principle
we call search principles, to distinguish them from inference principles.

There is another search prineiple which, though not iner ezsing the range of
convergence, does help to inerease the rate of convergenee, of refutation pro-
cedures. We call this principle the subsumption principle and base it on the fol-
lowing definition.

7.2 Subsumption. I C and D are two distinet nonempty Emiqos, we say
that € subsumes [ just in case there is a substitution ¢ such that (s < D,

The following theorem establishes the basic property of sub%umptwn

Sussumprion Tunorem, If S isany finite set of clauses, and D is any clouse
w5 which is subswmed by some elause m S — (D], then 8 7s -mte'sﬁrzbﬂfz i and only
if & — 1D} s satisfiable.

Proor.  We need only show that il M iz a model of & — [}, {len M is a
model of S. Let M be a model of 8 — { D}, and suppose \,Emt ¢ = 8 — {0 sub-
surmes ), Then shere i3 a substitution ¢ such that Ce < D, bmce D& 8, the
termns of the components of ¢ must be formed from function symbols in the fune-
tional vocabulary of 8, together possibly with variables. Henee svery ground
instance of Lo over H is a ground instance of € over I , and henee contains a
member of M. Bub every ground instance DX of 1) includes the ground ingtance
Coh ol €, and henee contains o member of 3. 8o M is a model of 8 and the theo-
vem is proved,
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The subsuneplion prenciple i then siimply the followine: fine iy delets, from o
findte set S of clouses, avy elovse D awhich s subsunied by o clowse in S - 1]

T order Lo make the subswmption principle wvailable for meerporation info a
refutation procedure, we must give an algovithm for deciding whether one clause
¢ subsumes another elanse D Such an algorithin s the following Subsumption

Algorithan:

Sep 1o Let Vi, ey ¥ be alf the distinet variablos, in alphabetical order, of D Tt
v, Jaw e distinet individual constants, nous of whieh ocenr 10 C or D Lt § =
LRV Jad/ Vil Gompuie DE and go to step 2

Step 2. Sob Ay = [}, & = 0, and go to step 3,

Step 3. If Apdocs not contain I, let Ay be the set of sl plauses of the lonn (Rey -~ Mo yb,
whare K € Ay, M C AN = M U [P, Torsome 12 ¢ 14, and & s most gorerally nnifisble
with most general unifier oy 3 and go to step 4. Otherwise, torminate.

Spep 4. 1L is nonemply, add 1 to & and relurn to step 3. Otherwis

torminate,

iy

That this & an algovithm i clear from the faet that cach elause in Ay is
smalier, by at least one literal, than the clause 1o A, from which 1t was obtained,
Hence, siuce the only clanse in d, has but finitely many litorals, the sequence
Ao, Ay, -+, must eventually contain o set which eontains [J or is anpty.

That the Subsumption Algorithm i3 correct is shown by the following argu-
went that 16 terminates in step 3 if and ondy if ¢ subsumes D,

if ¢ subsumes 12, then Co & D for some o, Hence Cz0 @ D6, Honee Cp 2

D, for some p. Now assume, for & = 0, that K ¢ A, and that, for some p,
Kp & DA T K s not [, let 2 be a literal in K (1 D0, Then there is an M O K
such that N = (A U {P}) is unified by u. Therefore by the Unification Theorew
N hag a most general unifier oy , and the elause ¢ = (Key ~ dow) 5in Ay
But by the Unitieation Theorem p = owh, for some A, benee Kowh S DO

Therefore GA © D4, Since O € A, this shows that each A, , £ 2 0, eibher con-
tains (1 or is nonempty. Hence the Subsumption Algoritho docs not ternunate
in step 4. Therefore it terntinates in step 3.

I the Subsumption Algorithm terminates in step 3, for ¢ and £ as input, then
there is a finite sequence Cp , Oy, -+, Chgpr of clauses such that Oy = €, o =
O, and, for 0 £ 5 =m0, Cip = Cio; — Moy, wheve 8, S, and o) s
the most general unifier of M; U [P}, where £2 € Da. Tt follows that (sinee M yo;
contsiing no variables, 0 £ 7 = »n) we have

/

Cops = 0 = Cogay -+ 7 — Mgy Moy = oo o Mg,

Le. that oo - oy O (Myap U My U -+ U Moo) © D9 Hence, Tor some
N ON C D6, Tet ¢ be the substitution obtained frons A by the replacement, in
each component of A of J: by Vi, for L £ ¢ & m. Then Co & D,

A particularly usoful application of the subsumption principle is the follow-
ing: Suppose  resolvent 2 of ¢ and [ subsumes one of O, D then in adding
E by the resolution principle we may simultaueously delete, hy the subsump-
tion principle, that one of €, D which R subsumes. This combined eporation
armounts to replacing (' or 1J by R; accordingly we name the prineiple invelved
the replaceinent principle.
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The following example, used by Gilmore [4], Davis-Putnam [2] and Friedman
{3}, illustrates the utility of these search principles in speeding up convergence,
Consider the set S whose members are:

Cl H {P(ﬂﬂl ,Eg)}

)
Co: {NP(IIQ »f(ih s W Np(f(ffl ’ 'ijz)»f(y: 3 ?!2))7 Q(lh ’ Z/z)}
{1 2
Cor {~oPlp Sy, w0), ~PUG ), Flp, w), ~Qly, Ty, )l ~QUF Gy, 920, 7, 1))
6] () 6

and we obtain the set 8” whose only members dre:
s [y, w)
% {~QU Gy s Sl s )i

in six stages which may be followed through by deleting the underiined iiterals:
and the underlined clause, in the order indicated. This gives the set of elauses
at each stage. Deletions (1) through (35) are by virtue of the replacerent prin-
ciple; deletion (6}, of the entire clause (1, i by virtue of the purity principle.
The set 8 in turn is found im mediately to be unsatisfiable, sinee ¢y and C; have
(71 as their only resolvont.

Flmore’s 704 program failed to converge after 21 minutes’ running time, when
given this exarple. The more efficient procedure of Davis and Putnam eon-
verges, for this example, in 30 minutes of hand eomputation.

The application, to a finite set S of clauses, of any of the three search prin-
ciples we have deseribed, produces a set 8’ which either has fewer clauses than
S or has the same number of clauses as § but with one or more shorter clauses.
An obvious method of exploiting these principles in a refutation procedure is
thercfore never to add new clauses, by the resolution prineiple, except to a set
to which the three principles arve no longer applicable. We might eall such scts
trreducible. The way In which such a procedure would terminate, for satisfiable
& within its range of convergence, would then be with a set which is either empty
{85 in the Peano example) or nonempty, irreducible, and with the property
that each resolvent of any pair of its clauses is subsumed by some one of its
clauses.

There are further search prineiples of this same general sort, which are less
simple than those diseussed in this seetion. A sequel to the present paper is
planned in which the theoretical framework developed here will be used as the
basis for a more extensive treatment of search principles and of the design of
refutation procedures. This section has been merely a sketch of the general na-
ture of the problen, and a brief view of some of the approaches to it.
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