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1. INTRODUCTION

Computers have finite memory. Very often, the total memory allocated by a
program as it is run on a computer far exceeds the size of the computer's memory.
Thus, a practical discipline of programming must provide some form of memory
recycling.

One of the key achievements of early work in programming languages was the
invention of the notion of block structure and the associated implementation
technology of stack-based memory management for recycling of memory. In block-
structured languages, every point of allocation is matched by a point of de-alloca-
tion and these points can easily be identified in the source program (Naur, 1963;
Dijkstra, 1960). Properly used, the stack discipline can result in very efficient use
of memory, the maximum memory usage being bounded by the depth of the call
stack rather than the number of memory allocations.

The stack discipline has its limitations, however, as witnessed by restrictions in
the type systems of block-structured languages. For example, procedures are typi-
cally prevented from returning lists or procedures as results. There are two main
reasons for such restrictions.

First, for the stack discipline to work, the size of a value must be known at latest
when space for that value is allocated. This allows, for example, arrays which are
local to a procedure and have their size determined by the arguments of the proce-
dure; by contrast, it is not in general possible to determine how big a list is going
to become, when generation of the list begins.

Second, for the stack-discipline to work, the life-time of values must comply with
the allocation and de-allocation scheme associated with block structure. When
procedures are values, there is a danger that a procedure value refers to values
which have been de-allocated. For example, consider the following program:
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(let x=(2, 3)

in (fn y O (*1 x, y))

end

)(5)

This expression is an application of a function (denoted by (let } } } end)) to the
number 5. The function has formal parameter y and body (*1x, y), where *1
stands for first projection. (fn is pronounced * in SML.) Thus the operator expres-
sion is supposed to evaluate to (fn y O (*1 x, y)), where x is bound to the pair
(2, 3), so that the whole expression evaluates to the pair (2, 5). However, if we
regard the let } } } end construct as a block construct (rather than just a lexical
scope), we see why a stack-based implementation would not work: we cannot de-
allocate the space for x at the end, since the first component of x is still needed by
the function which is returned by the entire let expression.

One way to ease the limitations of the stack discipline is to allow programmer
controlled allocation and de-allocation of memory, as is done in C. (C has two
operations, malloc and free, for allocation and de-allocation, respectively.)
Unfortunately, it is in general very hard for a programmer to know when a block
of memory does not contain any live values and may therefore be freed; conse-
quently, this solution very easily leads to so-called space leaks, i.e., to programs that
use much more memory than expected.

Functional languages (such as Haskell and Standard ML) and some object-
oriented languages (e.g., JAVA) instead let a separate routine in the runtime
system, the garbage collector, take care of de-allocation of memory [3; 14; 15].
Allocation is done by the program, often at a very high rate. In our example, the
three expressions (2, 3), (fn y O (*1 x, y)), and (*1 x, y) each allocate
memory each time they are evaluated. The part of memory used for holding such
values is called the heap; the rôle of the garbage collector is to recycle those parts
of the heap that hold only dead values, i.e., values which are of no consequence to
the rest of the computation.

Garbage collection can be very fast, provided the computer has enough memory.
Indeed, there is a much quoted argument that the amortized cost of copying gar-
bage collection tends to zero as memory tends to infinity [2, p. 206]. It is not the
case, however, that languages such as Standard ML free the programmer com-
pletely from having to worry about memory management. To write efficient SML
programs, one must understand the potential dangers of, for example, accidental
copying or survival of large data structures. If a program is written without concern
for space usage, it may well use much more memory than one would like; even if
the problem is located (using a space profiler, for example), turning a space-wasting
program into a space-efficient one may require major changes to the code.

The purpose of the work reported in this paper is to advocate a compromise
between the two extremes (completely manual vs completely automatic memory
management). We propose a memory model in which memory can be thought of
as a stack of regions; see Fig. 1. Each region is like a stack of unbounded size which
grows upwards in the picture until the region in its entirety is popped off the region
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FIG. 1. The store is a stack of regions; every region is uniquely identified by a region name

(e.g., r0) and is depicted by a box in the picture.

stack. For example, a typical use of a region is to hold a list. A program analysis
automatically identifies program points where entire regions can be allocated and
de-allocated and decides, for each value-producing expression, into which region
the value should be put.

More specifically, we translate every well-typed source language expression, e,
into a target language expression, e$, which is identical with e, except for certain
region annotations. The evaluation of e$ corresponds, step for step, to the evalua-
tion of e. Two forms of annotation are

e1 at \

letregion \ in e2 end

The first form is used whenever e1 is an expression which directly produces a value.
(Constant expressions, *-abstractions and tuple expressions fall into this category.)
The \ is a region variable ; it indicates that the value of e1 is to be put in the region
bound to \.

The second form introduces a region variable \ with local scope e2 . At runtime, first
an unused region, identified by a region name, r, is allocated and bound to \. Then e2

is evaluated (probably using the region named r). Finally, the region is de-allocated.
The letregion expression is the only way of introducing and eliminating regions.
Hence regions are allocated and de-allocated in a stack-like manner.

The target program which corresponds to the above source program is

e$#letregion \4 , \5

in letregion \6

in let x=(2 at \2 , 3 at \6) at \4

in (*y.(*1 x, y) at \1) at \5

end

end

5 at \3

end
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We shall step through the evaluation of this expression in detail in Section 4.
Briefly, evaluation starts in a region stack with three regions (\1 , \2 , and \3);
evaluation then allocates and de-allocates three more regions (\4 , \5 , and \6) and
at the end, \1 , \2 , and \3 contain the final result.

The scheme forms the basis of the ML Kit with Regions, a compiler for the
Standard ML Core language, including higher-order functions, references and
recursive datatypes. The region inference rules we describe in this paper address life
times only. A solution to the other problem, handling values of unknown size, is
addressed in [5]. An important optimisation turns out to be to distinguish between
regions, whose size can be determined statically and those that cannot. The former
can be allocated on a usual stack.

Using C terminology, region analysis infers where to insert calls to malloc and
free��but beware that the analysis has only been developed in the context of
Standard ML and relies on the fact that SML is rather more strongly typed than
C. For a strongly typed imperative language like JAVA, region inference might be
useful for freeing memory (unlike C, JAVA does not have free). For readers who
are interested in code generation, Appendix A shows the three-address program
which the ML Kit produces from the above program, using both region inference
and the additional optimisations described in [5]. However, this paper is primarily
about the semantics of regions, not their implementation.

Experience with the Kit is that, properly used, the region scheme is strong
enough to execute demanding benchmarks and to make considerable space savings,
compared to a garbage-collected system [5]. We have found that most of the
allocation is handled well by the automatic region analysis; occasionally it is too
conservative and here a garbage collector would probably be useful, especially if the
programmer does not know the region inference rules; for now, we have chosen
instead to make (usually small) transformations to the source programs to make
them more ``region friendly.'' We shall describe some of those transformations
towards the end of this paper.

A very important property of our implementation scheme is that programs are
executed ``as they are written'', with no additional costs of unbounded size (see
Appendix A for a detailed example). The memory management directives which are
inserted are each constant time operations. This opens up the possibility of using
languages with the power of Standard ML for applications where guarantees about
time and space usage are crucial, for example in real time programming or embedded
systems.

The key problem which is addressed in this paper is to prove that the region
inference system is safe, in particular, that de-allocation really is safe, when the
analysis claims that it is safe.

We do this as follows. We first define a standard operational semantics for our
skeletal source language, giving both a static and a dynamic semantics (Section 3).
We then define a region-based operational semantics for a target language; the
target language is identical to the source language, except that programs have been
annotated with region information (Section 4). In the dynamic semantics of the
source language, there is no notion of store; in the target language semantics,
however, there is a store which is organised as a stack of regions. We then specify

113REGION-BASED MEMORY MANAGEMENT



File: 643J 261306 . By:CV . Date:20:03:97 . Time:13:01 LOP8M. V8.0. Page 01:01
Codes: 3601 Signs: 3242 . Length: 52 pic 10 pts, 222 mm

the translation from source language to target language in the form of an inference
system (Section 5). We then define a representation relation between values in a
standard semantics for our skeletal language and values in a region-based semantics
(Section 7) and show that, for every subexpression e of the original program, as far
as the rest of the computation (after the evaluation of e) is concerned, e and its
image in the target program evaluate to related values, when evaluated in related
environments (Section 9). Restricting attention to what the rest of the computation
can observe turns out to be crucial: some connections between values in the source
language semantics and in the region-based semantics are lost when memory is re-
used in the region-based semantics. The key point is that on that part of target
machine which can be observed by the rest of the computation, every value used
in the source language is faithfully represented by a value in the target language.

This representation relation is defined as the maximal fixed point of a certain
monotonic operator. Properties of the relation are proved using a method of proof
which we call rule-based co-induction (Section 8.1).

Algorithms for region inference are beyond the scope of this paper; however, we
shall give some hints about how the region inference rules we present can be
implemented (Section 10).

2. RELATED WORK

The main differences between the region stack and the traditional stack discipline
for block-structured languages are as follows. First, when a value is created in our
scheme, it is not necessarily put into the topmost region. In the case of function
closures, for example, the closure is put as far down the stack as is necessary in
order to be sure that the closure will still exist should it ever be accessed. Second,
not all regions have a size which can be determined at the time the region is
allocated. Finally, the scheme works for higher-order functions and recursive
datatypes and allocation is based on the basis of the type system of the language,
not the grammar.

Ruggieri and Murtagh [22] propose a stack of regions in conjunction with a
traditional heap. Each region is associated with an activation record (this is not
necessarily the case in our scheme). They use a combination of interprocedural and
intraprocedural data-flow analysis to find suitable regions to put values in. We use
a type-inference based analysis, and this is crucial for the handling of polymorphism
and higher-order functions.

Inoue and Yagi [13] present an interesting technique for compile-time analysis
of runtime garbage cells in lists. Their method inserts pairs of HOLD and
RECLAIM' instructions in the target language. HOLD holds on to a pointer, p
say, to the root cell of its argument and RECLAIM' collects those cells that are
reachable from p and fit the path description '. HOLD and RECLAIM pairs are
nested, so the HOLD pointers can be held in a stack, not entirely unlike our stack
of regions. In our scheme, however, the unit of collection is one entire region, i.e.,
there is no traversal of values in connection with region collection. The path
descriptions of Inoue and Yagi make it possible to distinguish between the
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individual members of a list. This is not possible in our scheme, as we treat all the
elements of the same list as equal. Inoue and Yagi report a 1000 reclamation rate
for garbage list cells produced by Quicksort [13, p. 575]. We obtain a 1000

reclamation rate (but for 1 word) for all garbage produced by Quicksort, without
garbage collection [26].

Hudak [11] describes a reference counting scheme for a first-order call-by-value
functional language. Turner et al. [27] use a type system inspired by linear logic to
distinguish between variables which are used at most once and variables which may
be used more than once. These analyses provide somewhat different information
from ours: we only distinguish between ``no use'' and ``perhaps some use.''

Georgeff [10] describes an implementation scheme for typed lambda expressions
in so-called simple form together with a transformation of expressions into simple
form. The transformation can result in an increase in the number of evaluation
steps by an arbitrarily large factor [10, p. 618]. Georgeff also presents an
implementation scheme which does not involve translation, although this relies on
not using call-by-value reduction, when actual parameters are functions.

The device we use for grouping values according to regions is unification of
region variables, using essentially the idea of Baker (1990), namely that two value-
producing expressions e1 and e2 should be given the same ``at \'' annotation, if and
only if type checking, directly or indirectly, unifies the type of e1 and e2 . Baker does
not prove safety, however, nor does he deal with polymorphism.

To obtain good separation of lifetimes, we use explicit region polymorphism, by
which we mean that regions can be given as arguments to functions at runtime. For
example, a declaration of the successor function fun succ(x)=x+1 is compiled
into

fun succ[\, \$](x)=letregion \"

in (x+(1 at \")) at \$

end

Note that succ has been decorated with two extra formal region parameters
(enclosed in square brackets to distinguish them from value variables such as x).
The new succ function has type scheme

\\, \$ . (int, \) wwwww�
[get( \), put( \$)]

(int, \$ )

meaning that, for any \ and \$, the function accepts an integer at \ and produces
an integer at \$ (performing a get operation on region \ and a put operation on
region \$ in the process). Now succ will put its result in different regions, depending
on the context:

} } } succ[\12 , \9](5 at \12) } } } succ[\1 , \4]( y)

We make the additional provision that a recursive function, f, can call itself with
region arguments which are different from its formal region parameters and which
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may well be local to the body of the recursive function. Such local regions resemble
the activation records of the classical stack discipline.

We use ideas from effect inference [12, 16, 17] to find out where to wrap
letregion \ in . . . end around an expression. Most work on effect inference uses
the word ``effect'' with the meaning ``side-effect'' or, in concurrent languages, ``com-
munication effect'' [21a]. However, our effects are side-effects relative to the under-
lying region-based store model, irrespective of whether these effects stem from
imperative features or not.

The idea that effect inference makes it possible to delimit regions of memory and
delimit their lifetimes goes back to early work on effect systems. Lucassen and Gif-
ford [16] call it effect masking ; they prove that (side-) effect masking is sound with
respect to a store semantics where regions are not reused. Talpin [23] and Talpin
and Jouvelot [24] present a polymorphic effect system with (side-) effect masking
and prove that it is sound, with respect to a store semantics where regions are not
reused.

The first version of the proof of the present paper was recorded in a technical
report [25], which in turn was used as the basis for the proof outline in [26]. In
order to simplify the proofs, several modifications to the early proofs have been
made. The main differences are: (a) we have adopted the value restriction on poly-
morphism, resulting in simpler proofs; in particular, a difficult lemma��Lemma 4.5
in [25]��is not required under the value restriction; (b) the dynamic semantics of
the target language has been extended with region environments; (c) the definition
of consistency has been strengthened to prevent closures with free region variables
(these used to complicate the proof) (d) the proofs have been rewritten and
reorganised around the idea of rule-based co-induction.

Aiken et al. [1] have developed a program analysis which can be used as a post-
pass to the analysis described in the present paper. Their analysis makes it possible
to delay the allocation of regions and to promote the de-allocation, sometimes
leading to asymptotic improvements in space usage and never leading to worse
results than region inference without their analysis added.

3. THE SOURCE LANGUAGE, SExp

The skeletal language treated in this paper is essentially Milner's polymorphically
typed lambda calculus [18]. We assume a denumerably infinite set Var of ( program)
variables. We use x and f to range over variables. Finally, c ranges over integer con-
stants. The grammar for the source language is:

e : :=c | x | *x .e | e1e2 | let x=e1 in e2 end

| letrec f(x)=e1 in e2 end

Let SExp denote the set of source language expressions. The addition of pairs and
tuples to the theory is straightforward. (References, exceptions, and recursive
datatypes have been added in the implementation, but correctness of the translation
of these constructs has not been proved.) Call-cc, concurrency primitives, and other
substantial extensions of Standard ML have not been studied. Nor is it clear
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whether region inference can be made to bear on lazy functional languages. The fact
that ML is typed is essential; the fact that it has polymorphism is not essential for
what follows.

3.1. Notation

In the rest of this paper we shall use the following terminology. A finite map is
a map with finite domain. Given sets A and B, the set of finite maps from A to B
is denoted A w�fin B. The domain and range of a finite map f are denoted Dom( f )
and Rng( f ), respectively. When f and g are finite maps, f+g is the finite map
whose domain is Dom( f ) _ Dom(g) and whose value is g(x), if x # Dom(g), and
f (x) otherwise. For any map f and set A, we write f a A to mean the restriction of
f to A. We sometimes write a tuple of region variables, for example, in the form
\1 } } } \k , i.e, without parentheses and commas.

We often need to select components of tuples��for example, the region name of
an address. In such cases, we rely on variable names to indicate which component
is being selected. For example, ``r of a'' means ``the region name component of a ''.
(As we shall see, an address is a pair of the form (r, o), where r is a region name
and o is an offset.)

3.2. Static Semantics for Source

Following Damas and Milner (1982), we have ML types and ML type schemes
defined by

{ML : :=int | : | {ML � {ML ML type

_ML : :=\:1 } } } :n .{ML ML type scheme (n�0),

where : ranges over a denumerably infinite set TyVar of type variables. An ML type
{ML

0 is an instance of an ML type scheme _ML=\:1 } } } :n .{ML, written _ML�{ML
0 ,

if there exist {ML
1 , ..., {ML

n such that {ML[{ML
1 �:1 , ..., {ML

n �:n]={ML
0 . An ML type

environment is a finite map from program variables to ML type schemes. We use
TEML to range over type environments. When o is an ML type, type scheme, or
type environment, ftv(o) denotes the set of type variables that occur free in o.

In Milner's original type discipline, polymorphism is associated with let. It has
turned out that there are advantages to restricting polymorphism so that in let
x=e1 in e2 end, x only gets a type scheme if e1 is a syntactic value. (In the present
language, a syntactic value is an integer constant or a lambda abstraction.) This
restriction is known as the value restriction. Besides making it easier to prove
soundness in connection with references and other language extensions, imposing
this restriction also makes the proofs of correctness of region inference simpler (we
have done both). In fact, we shall take the restriction one step further, and only
allow polymorphism in connection with letrec. Any program which satisfies the
value restriction can be turned into an equivalent program which only has
letrec-polymorphism, by simply turning every let x=e1 in e2 end into
letrec x$(z)=e1 in e2[x$(0)�x] end where x$ and z are fresh variables. In the
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theory that follows we therefore only have polymorphism in connection with
letrec. With this convention, let x=e1 in e2 end is just syntactic sugar for
(*x .e2)(e1). We show the rules for let even so, to make it easier to follow the
examples:

TE ML(x)=_ML _ML�{ML

TE ML |&x :{ML

TEML+[x [ {ML
1 ] |&e : {ML

2

TEML |&*x .e : {ML
1 � {ML

2

TE ML |&e1 : {ML
0 � {ML TE ML |&e2 :{ML

0

TE ML |&e1e2 :{ML

TE ML |&e1 : {ML
1 TE ML+[x [ {ML

1 ] |&e2 : {ML

TE ML |&let x=e1 in e2 end :{ML

TE ML+[ f [ {ML] |&*x .e1 :{ML [:1 , ..., :n] & ftv(TE ML)=<
TE ML+[ f [ \:1 } } } :n .{ML] |&e2 :{ML

2

TE ML |&letrec f (x)=e1 in e2 end :{ML
2

3.3. Dynamic Semantics for Source

A non-recursive closure is a triple (x, e, E), where E is an environment, i.e., a
finite map from variables to values. We use E to range over environments; the set
of environments is denoted Env. A recursive closure takes the form (x, e, E, f ) ,
where f is the name of the recursive function in question. A value is either an integer
constant or a closure. We use v to range over values; the set of values is denoted
Val.

Evaluation rules appear below. They allow one to infer statements of the form
E |&e � v, read: in environment E the expression e evaluates to value v. A closure
representing a recursive function is ``unrolled'' just before it is applied (rule (5)):

Expressions [E |&e � v].

E |&c � c (1)

E(x)=v
E |&x � v

(2)

E |&*x .e � (x, e, E) (3)

E |&e1 � (x0 , e0 , E0) E |&e2 � v2 E0+[x0 [ v2] |&e0 � v
E |&e1e2 � v

(4)

E |&e1 � (x0 , e0 , E0 , f ) E |&e2 � v2

E0+[ f [ (x0 , e0 , E0 , f )]+[x0 [ v2] |&e0 � v
E |&e1e2 � v

(5)
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E |&e1 � v1 E+[x [ v1] |&e2 � v
E |&let x=e1 in e2 end � v

(6)

E+[ f [ (x, e1 , E, f )] |&e2 � v
E |&letrec f(x)=e1 in e2 end � v

(7)

4. THE TARGET LANGUAGE, TExp

We assume a denumerably infinite set RegVar=[\1 , \2 , ...] of region variables;
we use \ to range over region variables. The grammar for the target language,
TExp, is

e : :=c | x | f[\1 , ..., \n] at \ | *x .e at \

| e1e2 | let x=e1 in e2 end

| letrec f [\1 , ..., \k](x) at \=e1 in e2 end

| letregion \ in e end

As is common, functions are represented by closures; but region-polymorphic func-
tions (introduced by letrec f [ } } } ](x)= } } } ) are represented by so-called region
function closures, which are different from closures. In the expression form *x .e at
\, the \ indicates the region into which the closure representing *x .e should be put.
(Hence, the at \ qualifies *x .e, not e.) In

letrec f [\1 , ..., \k](x) at \=e1 in e2 end

the \ indicates where the region function closure for f should be put. A subsequent
application f [\$1 , ..., \$n] at \$ extracts this region function closure from the store,
applies it to actual arguments \$1 , ..., \$k , and creates a function closure in \$.

For any finite set [ \1 , ..., \k] of region variables (k�0), we write letregion
\1 , ..., \k in e end for letregion \1 in } } } letregion \k in e end } } } end.

We shall not present a separate static semantics for the target language, for such
a semantics can be extracted from the translation rules in Section 5. We thus
proceed to the dynamic semantics.

4.1. Dynamic Semantics for Target

Assume a denumerably infinite set RegName=[r1, r2, ...] of region names ; we
use r to range over region names. Region names serve to identify regions at run-
time. Further, assume a denumerable infinite set, OffSet, of offsets; we use o to
range over offsets.

A region is a finite map from offsets to storable values. A storable value is either
an integer constant, a function closure, or a region function closure. We use sv to
range over storable values; the set of storable values is denoted StoreVal. A variable
environment is a finite map from program variables to values. We use VE to range
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over variable environments; the set of variable environments is denoted TargetEnv.
A region environment is a finite map from region variables to region names. We use
R to range over region environments; the set of region environments is denoted
RegEnv. A function closure is a quadruple (x, e$, VE, R) , where x is a program
variable, e$ is a target language expression, and VE and R give meaning to the
free program and region variables of *x .e$. A region function closure is a tuple
of the form ( \1 } } } \k , x, e, VE, R) . Region function closures represent region-
polymorphic functions; the region variables \1 , ..., \k are required to be distinct and
are referred to as the formal parameters of the region function closure.

An address is a pair (r, o) of a region name and an offset. We use a to range over
addresses and Addr to denote the set of addresses. For any address a, we write r
of a to mean the first component (i.e., the region name) of a. A store is a finite map
from region names to regions. We use s to range over stores; the set of stores is
denoted Store.

A value is an address. We use v to range over values; the set of values is denoted
TargetVal.

We shall be brief about indirect addressing: whenever a=(r, o) is an address, we
write s(a) to mean s(r)(o). Similarly, we write s+[(r, o) [ sv] as a shorthand for
s+[r [ (s(r)+[o [ sv])]. Moreover, we define the planar domain of s, written
Pdom(s), to be the finite set [(r, o) # Addr | r # Dom(s) 7 o # Dom(s(r))]. Finally,
we write ``s""[r]'' (read: s without r) to mean the store s a (Dom(s)"[r]).

The inference rules for the dynamic semantics of TExp are shown below. They
allow one to infer sentences of the form s, VE, R |&e$ � v$, s$, read: In store s,
variable environment VE, and region environment R, the target expression e$ evaluates
to value v$ and (a perhaps modified) store s$.

Rule 10 the evaluation rule for application of a region function closure. A func-
tion closure is created from the region closure. One can imagine that a runtime-
error occurs if the premises cannot be satisfied (for example, because \$i � Dom(R),
for som \$i). However, the correctness proof shows that the premises always can be
satisfied for programs that result from the translation.

Rule 14 concerns region-polymorphic and (possibly) recursive functions. For
reasons explained in Section 5.2, we have chosen to combine the introduction of
recursion and region polymorphism in one language construct. Functions defined
with letrec need not be recursive, so one can also use the letrec construct to
define region functions that produce non-recursive functions. Rule 14 creates a
region closure in the store and handles recursion by creating a cycle in the store:
first a ``fresh address'' is chosen (by side-conditions r=R(\), o � Dom(s(r)); the
environment VE $=VE+[ f [ (r, o)] is stored in the region function closure
(\1 , ..., \k , x, e1 , VE $, R) , which in turn is stored in the fresh address chosen
earlier. Any reference to f in e1 will then yield the region function closure itself, by
Rule 10, as desired (since letrec introduces recursion). Moreover, in any function
application, the operator expression will evaluate to a pointer to an ordinary
function closure (x, e, VE0 , R0), even if the operator expression is of the
form f [\$1 , ..., \$k] at \. Consequently, a single rule for function application
suffices.

Finally, the pushing and popping of the region stack is seen in Rule 15.
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Expressions [s, VE, R |&e � v, s$].

R(\)=r o � Dom(s(r))
s, VE, R |&c at \ � (r, o), s+[(r, o) [ c]

(8)

VE(x)=v
s, VE |&x � v, s

(9)

VE( f )=a s(a)=(\1 , ..., \k , x, e, VE0 , R0)
r=R( p) o � Dom(s(r)) sv=(x, e, VE0 , R0+[\i [ R( \$i); 1�i�k])

s, VE, R |& f [ \$1 , ..., \$k] at \ � (r, o), s+[(r, o) [ sv]
(10)

r=R( \) o � Dom(s(r))
s, VE, R |&*x .e at \ � (r, o), s+[(r, o) [ (x, e, VE, R)]

(11)

s, VE, R |&e1 � a1 , s1 s1(a1)=(x0 , e0 , VE0 , R0)
s1 , VE, R |&e2 � v2 , s2 s2 , VE0+[x0 [ v2], R0 |&e0 � v, s$

s, VE, R |&e1 e2 � v, s$
(12)

s, VE, R |&e1 � v1 , s1 s1 , VE+[x [ v1], R |&e2 � v, s$
s, VE, R |&let x=e1in e2 end � v, s$

(13)

r=R( \) o � Dom(s(r)) VE $=VE+[ f [ (r, o)]
s+[(r, o) [ (\1 , ..., \k , x, e1 , VE $, R)], VE $, R |&e2 � v, s$

s, VE, R |&letrec f [\1 , ..., \k](x) at \=e1 in e2 end � v, s$
(14)

r � Dom(s) s+[r [ [ ]], VE, R+[\ [ r] |&e � v, s1

s, VE, R |&letregion \ in e end � v, s1""[r]
(15)

We now illustrate the use of the rules by two examples, comment on the design deci-
sions embodied in the rules and finally prove some properties about the semantics.

4.2. Example: Function Values

Let us consider the evaluation of the expression e$ from Section 1. Since \1 , \2 ,
and \3 occur free in e$, they must be allocated before the evaluation of e$ begins.
We show three snapshots from the evaluation of e$, namely (a) just after the closure
has been allocated, (b) just before the closure is applied, and (c) at the end; we
assume six regions with names r1 , ..., r6 , which become bound to \1 , ..., \6 , respec-
tively. Notice the dangling, but harmless, pointer at (b):

121REGION-BASED MEMORY MANAGEMENT



File: 643J 261314 . By:XX . Date:20:02:97 . Time:10:29 LOP8M. V8.0. Page 01:01
Codes: 2292 Signs: 1335 . Length: 52 pic 10 pts, 222 mm

4.3. Example: Region Polymorphism

This example illustrates region polymorphism and the use of polymorphic recur-
sion. Consider the following source expression, which computes the 15th Fibonacci
number:

letrec fib(x)=if x=0 then 1

else if x=1 then 1

else fib(x&2)+fib( x&1)

in fib(15) end

The corresponding target expression is shown in Fig. 2. In the target expression,
the fib function takes two arguments, namely \3 , which is the region where x is
located, and \4 , which is the place where fib is supposed to put its result. Due to
the presense of polymorphic recursion in the region inference system, the recursive
calls of fib use regions different from \3 and \4 (and the two recursive calls use
separate regions). For example, the first call first reserves space for the result of the
call (\5), then reserves space for the actual argument (\8), then creates the actual
argument, performs the call, de-allocates the actual argument, and uses the result,
till it can be discarded (after the +).

The letrec stores the following cyclic region function closure in the store at
some new address, a:

(\3\4 , x , if ..., [fib [ a], [\1 [ r1 , \2 [ r2])

Assuming that \13 is bound to r3 , the application of fib to 15 near the end of the
program stores the following function closure in the region denoted by \12 :

(x , if ..., [fib [ a], [ \1 [ r1 , \2 [ r2 , \3 [ r3 , \4 [ r1])
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FIG. 2. The Fibonacci function annotated with regions. The result will be a single integer in \1 .

We see that region inference has produced allocations and de-allocations very
similar to those of a traditional stack-based implementation. Indeed, the maximal
memory usage in this example is proportional to the maximum depth of the recur-
sion, as it would be in a pure stack discipline.

4.4. Design Choices

The region-based semantics relies on a number of design choices, some of which
are crucial.

First, it is crucial that the sets RegName and OffSet can be any (denumerable)
sets. We do not assume that these sets are ordered or that there is any notion of
address locality. Thus no particular physical implementation of the region stack is
built into the theory. This is essential since real computers have a flat address space,
whereas the region stack conceptually is two-dimensional. The particular implemen-
tation choice used in the ML Kit is described in [5].

Second, it is crucial that the semantics uses so-called ``flat environments''; the
alternative (``linked environments'') is to represent the environment as a linked list
of environment frames. This is a popular representation in block-structured
languages and in some functional languages. With linked environments, closure
creation is cheap, but it does not work with regions, at least if the environment
frames are interspersed with regions on one stack! In Example 4.2, it is essential
that we copy the environment into the closure for *y .(*1 x, y) at \1 so that
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the binding for x is not destroyed when we leave the scope of x and \6 and hence
pop the stack.

There are also some inessential choices. There is no need to represent all objects
boxed (in the ML Kit, integers and other values that fit in one machine word are
represented unboxed). Recursion could probably have been implemented using
unfolding of closures rather than cycles in the store. Finally, there is no deep need
to keep the region environment and the variable environment separate in closures
(the ML Kit merges the two) but we do so to make it clear that region names are
not values.

4.5. Properties of Region-Based Evaluation

We can now state formally that the complete evaluation of an expression does
not decrease the store. For arbitrary finite maps f1 and f2 , we say that f2 extends
f1 , written f1 �f2 , if Dom( f1)�Dom( f2) and for all x # Dom( f1), f1(x)=f2(x). We
then say that s2 succeeds s1 , written s2 c= s1 (or s1C= s2), if Dom(s1)�Dom(s2) and
s1(r)�s2(r), for all r # Dom(s1).

Lemma 4.1. If s, VE, R |&e � v, s$ then Dom(s)=Dom(s$ ) and s C= s$.

The proof is a straightforward induction on the depth of inference of s, VE,
RE |&e � v, s$. The formula Dom(s)=Dom(s$) in Lemma 4.1 expresses that the
store resulting from the elaboration has neither more nor fewer regions than the
store in which the evaluation begins, although other regions may have been
allocated temporarily during the evaluation. The evaluation of e may write values
in existing regions, so it is possible to have s(r)/s$(r), for some r. However, e never
removes or overwrites any of the values that are in s.

4.6. Syntactic Equality of Expressions

Let e$ be a target expression. The set of program variables that occur free in e$
is written fpv(e$ ). The set of region variables that occur free in e$ is frv(e$ ).

Both in the source language and in the target language, we shall consider two
expressions equal, if they can be obtained from each other by renaming of bound
variables. This extends to closures. For example, (x1 , e1 , VE1) and (x2 , e2 , VE2)
are considered equal if VE1=VE2 and *x1 .e1 and *x2 .e2 are equal in the above
sense. Moreover, we even allow that the free variables of *x2 .e2 may be a renaming
of the free variables of *x1 .e1 , provided of course that the corresponding change
has been made in the domain of VE1 to obtain VE2 . (Loosely speaking, this
corresponds to admitting value environments as declarations and then allowing the
usual renamings permitted in an expression of the form let VE1 in *x1 .e1 end.)
Finally, we consider (x, e, VE1) and (x, e, VE2) equal, if VE1 a fpv(*x .e)=
VE2 a fpv(*x .e). This allows us to introduce and delete unused program variables
in the domains of environments inside closures.

Similarly, for any region closure (\� , x, e, VE, R) we allow the renamings of
\� , x, fpv(e) and frv(e) and the introduction or elimination of unused program
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variables that one would expect if the closure were written let VE, R in *\� , x1 .e1

end.
Equality on semantic objects in each of the two dynamic semantics is then

defined to be the smallest equivalence relation which is closed under the three trans-
formations described above.

5. REGION INFERENCE

The rules that specify which translations are legal are called the region inference
rules. In Section 5.1 we present region types and other semantic objects that occur
in the region inference rules; the rules themselves are presented in Section 5.2. In
Sections 5.3 and 5.4 we state and prove properties of the region inference system;
for example, that the translation is a refinement of Milner's type discipline.

5.1. Semantic Objects

Region Types. We assume three denumerably infinite, pairwise disjoint sets:

: # TyVar type variables

\ or p # RegVar region variables

= # EffectVar effect variables

To avoid too many subscripts and primes, we use both p (for ``place'') and \ to
range over region variables. An atomic effect is a term of the form

' : :=put( \) | get( \) | = atomic effect

We use ' to range over atomic effects. An effect is a finite set of atomic effects. We
use . to range over effects. For a concrete example, the effect of expression e$ in
Example 4.2 is [put( \1), put( \2), put( \3)].

Types and types with places are given by

{ : :=int | : | + w�= .. + type

+ : :=({, \) type with place

In a function type

+ w�= .. +$ (16)

the object = .. is called an arrow effect. Formally, an arrow effect is a pair of an
effect variable and an effect; we refer to = and . as the handle and the latent effect,
respectively. If a function f has type (16) then the latent effect . is to be interpreted
as the effect of evaluating the body of f. Effect variables are useful for expressing
dependencies between effects. For example, the target expression

e$#(*f. (*x. f (x)) at \4) at \5

125REGION-BASED MEMORY MANAGEMENT



File: 643J 261318 . By:CV . Date:20:03:97 . Time:13:02 LOP8M. V8.0. Page 01:01
Codes: 3490 Signs: 2507 . Length: 52 pic 10 pts, 222 mm

can be given type

{e$=_((:1 , \1) ww�=1 .< (:2 , \2), \3) wwww�=2 .[put( \4)]

(17)
((:1 , \1) wwwww�=3 .[get( \3), =1] (:2 , \2), \4)

In (17) the last occurrence of =1 indicates that for all e1 and e2 of the appropriate
type, if e1 evaluates to some function, g, and e2 evaluates to some value, v, then
the evaluation of (e$e1)e2 may involve an application of g. (As it happens, the
evaluation would indeed involve an application of g, but the type does not
express that.)

Equality of types is defined by term equality, as usual, but up to set equality of
latent effects. For example, the arrow effects = .[put(\), get(\$ )] and = .[get(\$),
put(\)] are considered equal.

One might wonder why we have a pair = .. on the function arrow rather than
just, say, an effect .. The reason is that the region inference algorithms we use rely
on unification, just as ML type inference does [7]. Thus the effect sets on function
arrows pose a problem for the existence of principal unifiers. A solution is to use
arrow effects together with certain invariants about the use of effect variables. The
basic idea is that effect variables uniquely ``stand for'' effects: if =1 ..1 and =2 ..2 both
occur in a proof tree formed by the inference algorithm and =1==2 then it will
also be the case that .1=.2 . Moreover, if two arrow effects =1 ..1 and =2 ..2 both
occur in a proof tree and =2 # .1 then .2 �.1 : the presence of =2 in .1 implies
that .2 subsumes the entire effect .1 which =1 stands for. With these repre-
sentation invariants and using the special notion of substitution defined below,
one can prove the existence of principal unifiers, even though types ``contain''
effects (which are sets). A detailed account of how this is done is beyond
the scope of this paper. Also, the invariants mentioned above are not needed for
proving the soundness of region inference, so we shall not consider them in what
follows.

Substitution. A type substitution is a map from type variables to types; we use
St to range over type substitutions. A region substitution is a map from region
variables to region variables; we use Sr to range over region substitutions. An effect
substitution is a map from effect variables to arrow effects; we use Se to range over
effect substitutions. A substitution is a triple (St , Sr , Se); we use S to range over
substitutions. Substitution on types, region variables, and effects is defined as
follows. Let S=(St , Sr , Se); then

Effects.

S(.)=[put(Sr ( \)) | put( \) # .]

_ [get(Sr ( \)) | get( \) # .]

_ [' | _=, =$, .$ .= # . 7 =$ ..$=Se(=) 7 ' # [=$] _ .$].
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Types and Region Variables.

S(int)=int S(:)=St(:) S( \)=Sr( \)

S({, \)=(S({), S( \))

S( + w�= .. +$ )=S( +) wwwww�=$ . (.$ _ S(.)) S( +$ ), where =$ ..$=Se(=).

For a concrete example, consider the substitution S=(Sr , St , Se), where

Se(=)={=8 .[get( \1), put( \2)]
=

if ===1 ;
otherwise

St(:)={int
:

if :=:1 or :=:2 ;
otherwise

Sr( \)=\ for all \

where =1 , \1 , \2 , :1 and :2 refer to (17). Now we have

S({e$)=_((int, \1) wwwwww�
=g .[get( \1), put( \2)]

(int, \2), \3) wwww�
=2 .[put( \4)]

(18)
((int, \1) wwwwwwwwww�

=3 .[get( \1), get( \3), put( \2), =8]
(int, \2), \4)

This more specific type for e$ is appropriate if e$ occurs in the application expression:

e$((*n : (int, \1) . (n+1) at \2) at \3) (19)

for which one will then be able to infer the type and place

((int, \1) wwwwwwwwww�
=3 .[get( \1), get( \3), put( \2), =8]

(int, \2), \4).

In applying substitutions to semantic objects with bound names (e.g., a type
scheme) bound variables are first renamed to avoid capture, when necessary.
Substitutions compose; Id is the identity substitution.

The support of a type substitution St , written Supp(St), is the set [: # TyVar |
St(:){:]. Similarly for region substitutions. The support of an effect substitution
Se , written Supp(Se), is the set [= # EffectVar | Se(=){= .<]. The support of a sub-
stitution S=(St , Sr , Se), written Supp(S), is defined as Supp(St) _ Supp(Sr) _

Supp(Se). Whenever St , Sr , and Se are finite maps of the appropriate types we take
the liberty of considering the triple (St , Sr , Se) a substitution, without explicitly
extending the finite maps to total maps.

Type Schemes. Type schemes resemble the type schemes of Damas and Milner
[7] but with additional quantification over region variables and effect variables,

_ : :=\( ) .{ simple type scheme

| \\1 } } } \k :1 } } } :n=1 } } } =m .{
�

compound type scheme,
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where n�0, k�0 and m�0. The following definitions are stated for compound
type schemes but are easily extended to simple type schemes. For a type scheme
_=\\1 } } } \k :1 } } } :n =1 } } } =m .{

�
, the bound variables of _, written bv(_), are the set

[\1 , ..., \k , :1 , ..., :n , =1 , ..., =m].

We sometimes write the sequences of bound variables as vectors: :� , \� , and =� , respec-
tively. Two type schemes are equivalent if they can be obtained from each other by
renaming and reordering of bound variables. A type {$ is an instance of _, written
_�{$, if there exists a substitution S such that Supp(S )�bv(_) and S({)={$.
When we want to make S explicit, we say that {$ is an instance of _ via S, written
_�{$ via S. Equivalent type schemes have the same instances.

We sometimes write { as a shorthand for the simple type scheme \( ) .{, not to
be confused with the compound type scheme \( ) .{

�
, since compound type schemes

have a special significance: they are used exclusively as types of region-polymorphic
functions, even for those region-polymorphic functions that take an empty list of
actual region parameters. The underlining serves to make it clear whether a type
scheme is to be regarded as simple or compound.

A type environment is a finite map from program variables to pairs of the form
(_, \). We use TE to range over type environments.

The semantic objects are summarised in Fig 3. The notion of free variables extend
to larger semantic objects, such as type environments. (For example, a type variable
is said to occur free in TE if it occurs free in TE(x), for some x.) For any semantic
object A, frv(A) denotes the set of region variables that occur free in A; ftv(A)
denotes the set of type variables that occur free in A; fev(A) denotes the set of effect
variables that occur free in A; and fv(A) denotes the union of the above.

FIG. 3. Semantic objects of region inference.
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5.2. The Inference System

The inference rules allow the inference of statements of the form

TE |&e O e$ :+, .

read: in TE, e translates to e$, which has type and place + and effect .. The region
inference rules are non-deterministic: given TE and e, there may be infinitely many
e$, +, and . satisfying TE |&e O e$ :+, .. This non-determinism is convenient to
express type-polymorphism, but we also use it to express freedom in the choice of
region variables. Indeed, the region inference rules allow one to put all values in a
single region, although, in practice, this would be the worst possible choice.

Region-based Translation of Expressions [TE |&e � e$ :+, .]

TE |&c O c at \ : (int, \), [put(\)] (20)

TE(x)=({, \)
TE |&x O x : ({, \), <

(21)

TE( f )=(_, \$ ) _=\\1 } } } \k :� =� .{1

_�{ via S .=[get(\$), put(\)]
TE |&f O f [S(\1), ..., S(\k)] at \: ({, \), .

(22)

TE+[x [ +1] |&e O e$: +2 , .
.�.$ {=+1w�= ..$ +2 frv(e$ )�frv(TE, {)
TE |&*x .e O *x .e$ at \ : ({, \), [put(\)]

(23)

TE |&e1 O e$1 : (+$ w�= .. +, \), .1 TE |&e2 O e$2 :+$, .2

TE |&e1e2 O e$1e$2 : +, . _ .1 _ .2 _ [=, get( \)]
(24)

TE |&e1 O e$1 : ({1 , \1), .1

TE+[x [ ({1 , \1)] |&e2 � e$2 :+, .2

TE |&let x=e1 in e2 end O let x=e$1 in e$2 end :+, .1 _ .2

(25)

TE+[ f [ (\\� =� .{
�
, \0)] |&*x .e1 O *x .e$1 at \0 : ({, \0), .1

fv(:� , \� , =� ) & fv(TE, .1)=<
TE+[ f [ (\:� \� =� .{

�
, \0)] |&e2 � e$2 : +, .2

TE |&letrec f (x)=e1 in e2 end O
letrec f [\� ](x) at \0=e$1 in e$2 end :+, .1 _ .2

(26)

TE |&e O e$ :+, . \ � frv(TE, +)
TE |&e O letregion \ in e$ end :+, ."[put( \), get( \)]

(27)

TE |&e O e$ :+, . = � fev(TE, +)
TE |&e O e$: +, ."[=]

(28)

In Rule 21, note that the effect of referring to x is empty; this is because the
effects only relate to access of the region store s, not the environments VE and R.
In Rule 22 the instances of the bound region variables become actual region
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parameters in the target expression. The resulting effect includes get(\$ ) and put(\),
for we access the region closure in \$ and create an ordinary function closure in \.

In Rule 23, the effect of creating the function closure at region \ is simply
[put( \)]. Following Talpin and Jouvelot [24], one is allowed to make the infor-
mation about the function less precise by increasing the latent effect. This is useful
in cases where two expressions must have the same functional type (including the
latent effects on the arrows) but may evaluate to different closures. The freedom to
increase effects is also useful when one wants to prove that every well-typed Exp-
program of Milner [18] can be translated with the region inference rules��see
Lemma 5.2 below. We shall explain the side-condition frv(e$)�frv(TE, {) in a
moment.

In Rule 24 we see that the latent effect is brought out when the function is
applied. The get(\) in the resulting effect is due to the fact that we must access the
closure at \ in order to perform the function application.

In Rule 25 notice that the type scheme of x has no bound variables of any kind.
The absence of bound type variables is due to the value restriction (see Section 3.2).
The absence of bound region variables is due to the fact that introducing bound
region variables (and hence delaying the evaluation of e$1) may change the seman-
tics of the program if e$1 is not a value. (When e$1 is a value, one can rewrite the let
to a letrec and use Rule 26 to obtain region polymorphism.) Finally, one could
allow quantification of effect variables in Rule 25, as indeed we did in [25], but
effect quantification in simple type schemes appears to be of limited practical use
and it complicates the proof of Lemma 8.3 below considerably [25], so we have
abandoned it.

In Rule 26, note that f is region-polymorphic, but not type-polymorphic, inside
e1 , its own body. In e2 , however, f is polymorphic in types, regions and effects.
Without the limitation on type-polymorphism inside e1 , region inference would not
be decidable.

Rule 27 concerns the introduction of letregion expressions. The basic idea,
which goes back to early work on effect systems [17], is this. Suppose
TE |&e O e$ :+, . and assume that \ is a region variable which does not occur free
in TE or in + (typically, \ occurs free in ., indicating that \ is used in the computa-
tion of e$). Then \ is purely local to the evaluation of e$, in the sense that the rest
of the computation will not access any value stored in \.

Example. Once again, consider the expression e$ from Section 1. Let e$0 be the
subexpression

e$0#let x=(2 at \2 , 3 at \6) at \4

in (*y .(*1x, y) at \1) at \5

end

The type environment in force when this expression is produced is TE0=[ ]; the
type and place of e$0 is

+0=((int, \3) wwwwwww�
=1 .[get( \3), put( \1)]

((int, \2) V (int, \3), \1), \5);
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and the effect of e$0 is .0=[put(\2), put(\6), put(\4), put(\5)]. Note that \6 is the
only region variable which occurs free in .0 but occurs free neither in TE0 nor in
+0 . Rule 27 allows us to discharge \6 , resulting in the effect [put(\2), put(\4),
put(\5)] and the ``letregion \6 in . . . end'' in e$.

Next, Rule 28 allows one to discharge an effect variable from the effect of an
expression; no letregion is introduced, since the discharge does not influence
evaluation.

We owe the reader an explanation for the side-condition frv(e$)�frv(TE, {) in
Rule 23. It is often the case that every region variable which occurs free in a trans-
lated expression occurs free either in the type or in the effect of the expression.
However, here is an example where this does not hold,

[ ] |&(*f .1)(*x .2) O ((*f .1 at \1) at \2)((*x . 2 at \3) at \4) : (int, \1), .

where .=[put(\2), put(\4), get(\2), put(\1)]. Here we see that \3 is free in the
target expression but occurs free neither in the effect nor in the resulting type and
place. The reason is that 2 at \3 will never be evaluated (i.e., it is ``dead code''). The
purpose of the side-condition on Rule 23 is to prevent the body of the function from
containing free region variables which only occur in dead code. Such region
variables complicate arguments about renaming of region variables, specifically
they complicate the proof of Lemma 8.3, if allowed. We therefore impose the side-
condition on Rule 23. Note, however, that one can always satisfy this side-condition
by repeatedly applying Rule 27 to the function body, just before applying Rule 23,
for in Rule 27 there is no requirement that \ must occur free in ..

As mentioned earlier, the region inference rules give rise to a static semantics
for the target language: one just consistency replaces sentences of the form
TE |&e O e$ :+, . by TE |&e$ :+, .. However, we prefer the present formulation,
which emphasises that the rules specify a translation.

5.3. Region Inference Is a Refinement of Milner's Type System

In this section we prove that the region inference system is a refinement of
Milner's type discipline [18] in the sense that an expression can be translated with
the region rules if and only if it is well typed according to Milner's type discipline,
as defined in Section 3.2. In particular, this shows that the problem of determining
whether a closed expression can be region-annotated is decidable.

We first show that an expression can be translated only if it is well typed. To this
end, we define a function, ?, (for ``projection'') from semantic objects in the region
rules to the semantic objects in the Milner rules:

?(:)=:; ?(int)=int; ?( + w�= .. +$ )=?(+) � ?(+$)

?({, \)=?({); ?(\\� :� =� .{)=\:� .?({); ?(_, \)=?(_); ?(TE )=? b TE.

Lemma 5.1. If TE |&e O e$ :+, . then ?(TE ) |&e :?(+).
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The proof is a straightforward induction on the depth of TE |&e O e$ :+, ..
Next we show that every well-typed term can be translated. To this end we define

a relation, R, between Milner's objects and ours. Let \0 be some fixed region variable
and let =0 be some fixed effect variable. The basic idea is to choose \0 everywhere
we need a region variable in the translation and to choose =0 .[get(\0), put(\0), =0]
everywhere we need an arrow effect in the translation. Unfortunately, we cannot
simply make R a map, because of the distinction between simple and compound
type schemes. So we define R inductively as follows:

: R : int R int
{ R + {$ R +$

({ � {$) R(+ wwwwwww�
=0 .[get(\0), put(\0), =0]

+$)

{ R {$
\( ) .{ R \( ) .{$

{ R {$
\:� .{ R \:� .{$

{ R {$
{ R ({$, \0)

_ R _$
_ R (_$, \0)

Dom(TE )=Dom(TE $ ) \x # Dom(TE ) .TE(x) R TE $(x)
TE R TE $

Clearly, for every TE there exists a TE $ such that TE R TE $.

Lemma 5.2. If TE |&e :{ and TE R TE $ then TE $ |&e O e$ :+, . for some e$, + and
. which satisfy { R +, frv(+)=[\0], frv(e$)�[\0] and .�[get(\0), put(\0), =0].

Proof. By induction on the depth of inference of TE |&e :{. We show only two
cases, as the rest are straightforward.

[e#x]. By assumption we have TE(x)=_ and _�{. Since TE R TE $ we
then have TE $(x)=(_$, \0) for some _$ which satisfies _ R _$. Now _$ may be
simple or compound, but if it is compound it has no quantified region variables. Let
+=({$, \0) be the unique type with place satisfying { R +. Then _$�{$ and the
desired conclusion follows either by Rule 21 or by Rule 22.

[e#*x .e1]. Here {={1 � {2 for some {1 and {2 and TE |&*x .e1 :{ must have
been inferred from the premise TE+[x [ {1] |&e1 :{2 . We have (TE+[x [ {1])
R(TE $+[x [ +1]), where +1 is the unique type with place related to {1 . By induction
there exist e$1, +2 and .0 such that TE $+[x [ +1] |&e1 O e$1 :+2 , .0 ,
frv(+2)=[\0], frv(e$1)�[\0] and .0 �[get(\0), put(\0), =0]. Now Rule 23 con-
veniently allows us to use this inclusion to prove TE $ |&*x .e1 O *x .e$1 at
\0 : (+1 wwwwwww�

=0 . [get(\0), put(\0), =0]
+2 , \0), [put(\0)] from which the desired results

follows. K

5.4. Substitution Lemma

Lemma 5.3. For all substitutions S, if TE |&e O e$ :+, . then S(TE ) |&e O
S(e$ ) :S(+), S(.).

The proof is a straightforward induction on the depth of the inference of
TE |&e O e$ :+, ., using appropriate variants of S in the case for letrec.

Next, we shall state a lemma to the effect that the operation of making type
schemes in the type environment more type-polymorphic does not decrease the set
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of possible translations. Formally, we say that _1 is at least as type-polymorphic as
_2 , written _1 c= _2 , if _1 and _2 are identical, or _1 and _2 are both compound
and _1=\:� ._2 , for some :� . Furthermore, we write TE1 c= TE2 if Dom(TE1)=
Dom(TE2) and, for all x # Dom(TE1), if (_1 , \1)=TE1(x) and (_2 , \2)=TE2(x)
then _1 c= _2 and \1=\2 .

Lemma 5.4. If TE |&e O e$ :+, . and TE $ c= TE then TE $ |&e O e$ :+, ..

We omit the proof, which is a straightforward induction on the depth of inference
of TE |&e O e$ :+, .. We note, however, that the similar statement concerning
region polymorphism (replacing _=\:� =� .{

�
by _$=\\� :� =� .{

�
) is not true, because

applications of region functions in the target expression can be affected by such a
change.

Fortunately, it is precisely the ability to make assumed type schemes more type-
polymorphic that we need.

6. USING EFFECTS TO DESCRIBE CONTINUATIONS

For the proof of the soundness of the translation scheme, we need to relate the
values of the dynamic semantics of the source and target language. We refer to this
relation as the consistency relation.

Since all values are addresses in the target language semantics, the consistency
relation must involve stores. Consistency also naturally depends on types: at type
int, source level integers can only be consistent with pointers to integers in the
target; at a functional type, only closures can be related, and so on. The region
inference rules yield expressions, types with places, and effects��all of which can
contain free occurrences of region variables. To relate these region variables to the
region names which identify regions at runtime, we need a region environment, R,
and the following definition:

Definition 6.1. A region environment R connects effect . to store s, if frv(.)�
Dom(R) and for all \ # frv(.), R( \) # Dom(s).

Based on these considerations, assume that we have defined consistency as a
relation

C�RegEnv_TypeWithPlace_Val_Store_TargetVal

where C(R, +, v, s, v$) is read: in region environment R and store s, source value v is con-
sistent with target value v$ at type with place +. The obvious idea would now be some-
how to lift this relation first from types with places to type schemes, C(R, _, v, s, v$),
and then, by pointwise extension, to environments, (R, TE, E, s, VE ). We might then
try to prove the following statement:

Conjecture 6.1. If TE |&e O e$ :+, ., and E |&e � v and C(R, TE, e, s, VE ) and R
connects . to s then there exists a store s$ and a target value v$ such that s, VE,
R |&e$ � v$, s$ and C(R, +, v, s$, v$).
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However, there is a problem with this conjecture. Informally, it states that con-
sistency is preserved by evaluation. Unfortunately, we cannot expect that to hold!
To see what the problem is, consider Example 4.2 once more. According to the
conjecture, at point (b) we should have that the source language closure
(y, (*1x, y), [x [ (2, 3)]) and the closure found in region r5 are consistent. In
a sense they are consistent: application of the two closures map consistent
arguments to consistent results. But notice that the consistency which used to exist
between the source environment [x [ (2, 3)] and its representation in the target
semantics was partly destroyed when the region r6 was popped from the region
stack. Thus we see that, intuitively speaking, consistency gradually deteriorates
during computation. The saving factor, it turns out, is that there is always enough
consistency left for the rest of the computation to succeed, without running into any
of the inconsistencies!

To make these intuitions precise, we need some notion of ``consistency with
respect to the rest of the computation.'' One possibility is to work explicitly with
continuations or evaluation contexts. However, we have not explored this
possibility, since all we need for the purpose of the soundness proof is a very simple
summary of which regions are accessed by the rest of the computation. Specifically,
it suffices to summarise the rest of the computation by an effect, .$, which describes
which of the currently existing regions are accessed by the rest of the computation.
Thus we define a relation

C�RegEnv_TypeWithPlace_Val_Store_TargetVal_Effect,

where C(R, +, v, s, v$, .$), also written C(R, +, v, s, v$) w.r.t. .$, is read: at type with
place +, in region environment R and store s, source value v is consistent with target
value v$ with respect to the effect .$ (where .$ represents the effect of the rest of the
computation). In our example, .$ is [put(\3), get(\5), put(\1)], connected via the
region environment to regions r3 , r5 and r1 . The fact that the rest of the computa-
tion does not access the current contents of r6 is evident from the fact that no
region variable free in .$ is connected to r6 ! That is why the environments in the
two closures are consistent with respect to the rest of the computation. The second
version of our conjecture becomes:

Conjecture 6.2. If TE |&e O e$ :+, . and E |&e � v and C(R, TE, e, s, VE ) w.r.t.
(. _ .$) and R connects . _ .$ to s then there exist a store s$ and a target value
v$ such that s, VE, R |&e$ � v$, s$ and C(R, +, v, s$, v$) w.r.t. .$.

In other words, if we start out with consistency to cover both the evaluation of
e$ (whose effect is .) and the rest of the computation (whose effect is .$) then after
the computation of e$, we will have enough consistency left for the rest of the
computation.

However, Conjecture 6.2 is not quite strong enough to be proved by induction.
Consider a source language closure (x, e, E) and a target closure (x, e$, VE, R) ,
which we think of as representing (x, e, E). When the source closure is applied, the
body e will be evaluated in an environment E+[x [ v2], where v2 is the argument
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to the function. Assuming that v$2 is some target value consistent with v2 , the corre-
sponding evaluation in the target language takes the form s, VE+[x [ v$2],
R |&e$ � } } } . However, the region environment in which e$ is evaluated is not
necessarily the same as the region environment R$ which is in force at the point
where the application takes place, for more regions may have been allocated
since the closure was created. Moreover, R$ is important for establishing that
E+[x [ v2] and VE+[x [ v$2] are consistent, since v2 and v$2 will be known to
be consistent in R$, not in R. And we must establish consistency of E+[x [ v2]
and VE+[x [ v$2] in order to use induction to prove that the results of the func-
tion applications are consistent.

Example. Consider the target expression

letregion \1

in let x=3 at \1

in letregion \2

in let f=(*y . (x+y) at \0) at \2

in letregion \3

in f(4 at \3)
end

end
end

end
end

Consider the point of the evaluation just after the closure for f has been created.
Let us say that the region environment is R1=[\0 [ r0 , \1 [ r1 , \2 [ r2]. Then
the store is

s1=[r0 [ [ ], r1 [ [ox [ 3], r2 [

[of [ (y, (x+y) at \0 , [x [ (r1 , ox)], R1)].

We can reasonably expect to have

C(R1 , [x [ (int, \1)], [x [ 3], s1 , [x [ (r1 , ox)]) w.r.t. .1 , (29)

where .1=[get(\1), get(\2), put(\0)], which is the net effect of the remainder of
the computation at that point. (``Expect'' because we have not defined C yet.) Next,
consider the point where the actual argument 4 to f has been stored, the closure
for f has been fetched and we are just about to evaluate the body of f. Now the
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region environment has become R2=R1+[\3 [ r3], the store has become
s2=s1+[r3 [ [o4 [ 4]] and we can reasonably expect to have

C(R2 , (int, \3), 4, s2 , (r3 , o4)) w.r.t. .2 , (30)

where .2=[get(\1), get(\3), put(\0)], i.e., the effect of the continuation at that
point. From (29) and (30) we can reasonably expect to obtain

C(R2 , [x [ (int, \1), y [ (int, \3)]

[x [ 3, y [ 4], s2 , [x [ (r1 , ox), y [ (r3 , o4)]) w.r.t. .2

But evaluation of the function body is going to take place in R1 (see Rule 12). Thus
the theorem needs to be strong enough to handle the situation that the region
environment in which consistency is established is not the same as the region
environment in which the expression is evaluated. Incidentally, this is similar to the
situation in block-structured languages, where an an inner block can call a function
declared in an enclosing block. (Indeed, it appears that although the variable
environments do not obey a stack discipline, the region environments do.)

We therefore prove that the theorem holds not just for R but also for other
region environments R$ which ``agree'' with R:

Definition 6.2. Let R and R$ be region environments and let . be an effect. We
say that R and R$ agree on ., if R a frv(.)=R$ a frv(.).

We are now able to state the main theorem, which we shall prove, once we have
defined the consistency relation:

Theorem 6.1. If TE |&e O e$ :+, . and C(R, TE, E, s, VE ) w.r.t. . _ .$ and
E |&e � v and R connects . _ .$ to s and R$ and R agree on . _ .$ and
frv(e$ )�DomR$ then there exist s$ and v$ such that s, VE, R$ |&e$ � v$, s$ and
C(R$, +, v, s$, v$ ) w.r.t. .$.

The premise ``frv(e$ )�Dom R$ '' is included only to make the proof simpler; it helps
to ensure that closures in the target language will not contain free region variables.

Note that we use the effect of the rest of the computation as an approximation
to what data is ``live.'' The notion usually employed by garbage collectors (namely
that data is live, if it is reachable in the memory graph) is incomparable: we have
already seen that data which is reachable in the memory graph is actually dead and
can be de-allocated using region inference; conversely, sometimes data which we
keep alive in a region is not actually used by the rest of the computation and a
garbage collector would detect it.

7. CONSISTENCY

For simplicity, we first present the consistency relation in the form of inference
rules without reference to the underlying mathematics. We shall later explain that
the rules can be viewed as describing a maximal fixed point of a certain monotonic
operator. For now, it suffices to read the rules as follows: the conclusion of a rule
holds if and only if the premises hold.
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Rules 31�35 characterize consistency between source values and storable target
values sv (defined in Section 4.1). These rules are used in Rules 36 and 37, to
characterize consistency between source and target values (recall that target values
are addresses). It is precisely in rules Rule 36 and 37 we see the significance of the
idea of representing the rest of the computation by the effect .: if get(\) � ., then
any claim about consistency of values at region \ is allowed, for \ then denotes
``garbage''. However, by Rule 36, if v$=(r, o) # Pdom(s) and r=R(\) then the value
stored at address v$ has to be consistent with the source value, v, as described
by Rules 34 and 35. (Recall that (r, o) # Pdom(s) abbreviates r # Dom(s) 7

o # Dom(s(r)).) Rule 38 says that consistency of environments is the pointwise
extension of consistency of values.

Rule 31 should be straightforward. In Rule 32, note that TE does not occur in the
conclusion of the rule: one has to ``invent'' a TE which can justify the target expres-
sion as a compilation result of the source expression. Also, the environments E and
VE must be consistent at TE. The region environment R may be regarded as the
region environment which is in force when the closures are applied; as we saw
earlier, this is not necessarily the same as the region environment which was in
force when the target closure was created (R$ in the rule). For the purpose of the
soundness theorem, we clearly need to know that R and R$ are related somehow,
and it turns out that it suffices to require that they agree on .. The condition
frv(e$ )�(R$) ensures that the target closure contains no free region variables; the
two first premises of the rule already ensure that fpv(e$ )�Dom(VE ), i.e., that the
closure contains no free program variables. Again this is good hygiene, which is
useful in the proofs (specifically of Lemma 8.3).

Rule 33 is similar to Rule 32, but deals with recursion. For the premises to be
satisfied, TE mush have f in its domain. Moreover, since recursion is handled by
unfolding in the source language semantics, it is E+[ f [ (x, e, E, f )] and VE
that have to be consistent, rather than just E and VE.

Rule 34 is similar to Rule 33, but it relates recursive closures and region function
closures at compound type schemes. For simple type schemes, one uses Rule 35
together with Rules 31�33.

Types and Storable Values [C(R, +, v, s, sv) w.r.t. .].

i # Int
C(R, (int, \), i, s, i ) w.r.t. .

(31)

TE |&*x .e O *x .e$ at \ : ({, \), [put( \)]
C(R$, TE, E, s, VE ) w.r.t. .

R$ and R agree on . frv(e$ )�Dom(R$ )
C(R, ({, \), (x, e, E) , s, (x, e$, VE, R$) ) w.r.t. .

(32)

TE |&*x .e O *x .e$ at \ : ({, \), [put( \)]
C(R$, TE, E+[ f [ (x, e, E, f )], s, VE ) w.r.t. .

R$ and R agree on . frv(e$ )�Dom(R$ )
C(R, ({, \), (x, e, E, f ) , s, (x, e$, VE, R$ )) ) w.r.t. .

(33)
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Type Schemes and Storable Values [C(R, (_, \), v, s, sv) w.r.t. .].

TE+[ f [ (_, \)] |&*x .e O *x .e$ at \ : ({, \), [put( \)]
_=\\1 } } } \k :1 } } } :n=1 } } } =m .{

�
bv(_) & fv(TE, \)=<

R$ and R agree on . frv(e$ )�Dom(R$ ) _ [ \1 , ..., \k]
C(R$, TE+[ f [ (_, \)], E+[ f [ (x, e, E, f )], s, VE ) w.r.t. .

C(R, (_, \), (x, e, E, f ), s, ( \1 , ..., \k , x, e$, VE, R$) ) w.r.t. .
(34)

C(R, ({, \), v, s, sv) w.r.t. .
C(R, (\( ) .{, \), v, s, sv) w.r.t. .

(35)

Type Schemes and Addresses [C(R, (_, \), v, s, v$ ) w.r.t. .].

v$=(r, o) R( \)=r v$ # Pdom(s) C(R, (_, \), v, s, s(v$ )) w.r.t. .
C(R, (_, \), v, s, v$ ) w.r.t. .

(36)

get( \) � .
C(R, (_, \), v, s, v$ ) w.r.t. .

(37)

Environments [C(R, TE, E, s, VE ) w.r.t. .].

Dom TE=Dom E=Dom VE
\x # Dom TE .C(R, TE(x), E(x), s, VE(x)) w.r.t. .

C(R, TE, E, s, VE ) w.r.t. .
(38)

The relation C is defined as the maximal fixed point of an operator F: P(C) �
P(C), where P means powerset and C is defined by:

C=RegEnv_TypeWithPlace_Val_Store_StoreVal_Effect

_ RegEnv_(TypeScheme_RegVar)_Val_Store_StoreVal_Effect

_ RegEnv_(TypeScheme_RegVar)_Val_Store_TargetVal_Effect

_ RegEnv_TyEnv_Env_Store_TargetEnv_Effect.

The members of C are referred to as (consistency) claims. We use # to range over
claims and 1 to range over sets of claims. For example, a claim of the form
(R, (_, \), v, s, sv, .) is read: (it is claimed that) storable value sv is consistent with
source value v and has type scheme _ and resides at \ in the store s and region
environment R, with respect to effect ..

Note that (P(C ), �) is a complete lattice. We now define an operator
F: P(C ) � P(C ). The definition is expressed using the syntax of inference rules,
but it could equally well be expressed as a non-recursive definition by cases; for
given 1�C, F(1) is defined as the unique set [# # C | # # F(1 ) can be inferred by
one of the inference rules]. Since the rules are very similar to rules 31�38 we shall
not explain them further.

138 TOFTE AND TALPIN



File: 643J 261331 . By:CV . Date:20:03:97 . Time:13:02 LOP8M. V8.0. Page 01:01
Codes: 2699 Signs: 1330 . Length: 52 pic 10 pts, 222 mm

Types and Storable Values [(R, +, s, sv, .) # F(1 )].

i # Int
(R, (int, \), i, s, i, .) # F(1 )

(39)

TE |&*x .e O *x .e$ at \ : ({, \), [put( \)]
(R$, TE, E, s, VE, .) # 1

R$ and R agree on . frv(e$ )�Dom(R)
(R, ({, \), (x, e, E) , s, (x, e$, VE, R$) , .) # F(1)

(40)

TE |&*x .e O *x .e$ at \ : ({, \), [put( \)]
(R$, TE, E+[ f [ (x, e, E, f )], s, VE, .) # 1

R$ and R agree on . frv(e$ )�Dom(R$)
(R, ({, \), (x, e, E, f ) , s, (x, e$, VE, R$) , .) # F(1 )

(41)

Type Schemes and Storable Values [(R, (_, \), v, s, sv, .) # F(1 )].

TE+[ f [ (_, \)] |&*x .e O *x .e$ at \ : ({, \), [put( \)]
_=\\1 } } } \k :1 } } } :n=1 } } } =m .{ bv(_) & fv(TE, \)=<
R$ and R agree on . frv(e$ )�Dom(R$ ) _ [ \1 , ..., \k]

(R$, TE+[ f [ (_, \)], E+[ f [ (x, e, E, f )], s, VE, .) # 1
(R, (_, \), (x, e, E, f ) , s, (\1 , ..., \k , x, e$, VE, R$) , .) # F(1 )

(42)

(R, ({, \), v, s, sv, .) # 1
(R, (\( ) .{, \), v, s, sv, .) # F(1 )

(43)

Type Schemes and Addresses [(R, (_, \), v, s, v$, .) # F(1 )].

v$=(r, o) R( \)=r v$ # Pdom(s) (R, (_, \), v, s, s(v$ ), .) # 1
(R, (_, \), v, s, v$, .) # F(1)

(44)

get( \) � .
(R, (_, \), v, s, v$, .) # F(1 )

(45)

Environments [(R, TE, E, s, VE, .) # F(1 )].

Dom TE=Dom E=Dom VE
\x # Dom TE . (R, TE(x), E(x), s, VE(x), .) # 1

(R, TE, E, s, VE, .) # F(1 )
(46)

The operator F is monotonic: 1�1 $ implies F(1 )�F(1 $ ). Thus, by Tarski's
fixed point theorem, there exists a greatest fixed point for F and this greatest fixed
point is also the greatest set 1 satisfying 1�F(1 ). Let 1 * be this greatest fixed
point.

Definition 7.1. We take C to be 1 * and we write, for example, C(R, +, v, s, v$ )
w.r.t. . to mean (R, +, v, s, v$, .) # C.
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We use co-induction to prove properties of the consistency relation: to prove that
a set 1 of claims is consistent, (i.e., that 1�1 *) it suffices to prove 1�F(1 ).

8. PROPERTIES OF CONSISTENCY

In this section we prove important lemmas about the consistency relation C.
Besides being useful in the proof of the main theorem (Theorem 6.1) they address
issues such as why it is safe to re-use a de-allocated region even when there are
dead pointers into it. The lemmas will be proved using a special style of co-induc-
tive proof, which we call rule-based co-induction.

8.1. Rule-Based Co-induction

Rule-based co-inductive proof is a style of proof which makes it possible to pre-
sent a co-inductive proof in a form which resembles ordinary induction on depth
of inference. The scenario is that a set, C, is given, together with an operator
F: P(C ) � P(C ) which is monotonic with respect to set inclusion. F is defined by
a finite set of inference rules (in our case, Rules 39�46). Let 1 * be the maximal
fixed point of F: 1 *=� [1�C | 1�F(1 )]. Now consider a lemma which states
that, for some given relation R�C_C:

\#, #$ # C if # # 1 * and #R#$ then #$ # 1 *. (47)

Let 1R=[#$ # C | _# # 1 * .#R#$]. We refer formally to the members #$ of 1R as the
consequences of the lemma. Then (47) can be stated 1R�1 *. By the principle of
co-induction, it suffices to prove 1R�F(1R), i.e., that

\#$ # C if there exists # # 1 * such that #R#$ then #$ # F(1R).

Thus the co-inductive proof can be organised as follows: take any #$ # C. Let # # 1 *

be such that #R#$. Show #$ # F(1R), i.e., show that #$ can be inferred by the inference
rules that define F, using only premises which are themselves consequences of the
lemma. Often, this is proved by a case analysis on # (note: not #$ ), since # # 1 *

implies that # can be inferred by an application of one of the rules that define F

from premises which are themselves in 1 *. Note that proving #$ # F(1R) is equiv-
alent to inferring #$ # 1 *, using the fixed-point rules for F (in our case:
Rules 31�38) and only using premises #i$ which are themselves consequences of the
lemma (i.e., \i _#i # 1 * .#i R#i$). Thus we can word the co-inductive proof almost as
if it were a normal inductive proof on the depth of inference related to mininal fixed
points, using the fixed point rules for F rather than the rules that define F.

We name this style of co-inductive proof rule-based co-induction. We emphasise
that a rule-based co-inductive proof is not a proof on ``depth of inference''��for the
co-inductive proof establishes claims that are not conclusions of any finite proof
tree constructed by the fixed point rules.
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8.2. Preservation of Consistency

The first lemma states that consistency is preserved under decreasing effect and
increasing store. This is to be expected: it is easier to obtain consistency with
respect to an observer if the observer observes a little rather than a lot; and the
larger the store is, the easier it is for it to contain bits of target values which are
consistent with a given source value.

Lemma 8.1. If C(R, +, v, s1 , v$ ) w.r.t. .1 and .2 �.1 and s1 C= s2 then
C(R, +, v, s2 , v$ ) w.r.t. .2 .

Lemma 8.1 is a special case of the following lemma:

Lemma 8.2. If C(R1 , +, v, s1 , v$ ) w.r.t. .1 and .2 �.1 and R2 and R1 agree on
.2 and s1 a (Rng(R2 a frv(.2))) C= s2 then C(R2 , +, v, s2 , v$ ) w.r.t. .2 . Similarly for
the other forms of C.

Notice that the domain of s1 need not be a subset of the domain of s2 for
Lemma 8.2 to apply. This is crucial in the proof of the main theorem, in the case
for letregion. Here s1 will be the store resulting from a computation which
involves local regions; s2 will be the result of removing the local regions from s1 .
The region variables that are free in .1 , but not in .2 , will be the variables of the
local regions.

Proof. We prove Lemma 8.2 and the corresponding statements concerning the
other forms of consistency by rule-based co-induction. The cases for the inference
rules (31) to (38) are arranged according to judgement forms. In all cases, we
assume

.2 �.1 (48)

R2 and R1 agree on .2 (49)

s1 a (Rng(R2 a frv(.2))) C= s2 (50)

Types and Storable Values [C(R, +, v, s, sv) w.r.t. .]. Assume

C(R1 , +, v, s1 , sv) w.r.t. .1 . (51)

By the remarks in Section 8 it suffices to prove that C(R2 , +, v, s2 , sv) w.r.t. .2 can
be inferred using Rules 31�38, from premises which are themselves conclusions of
the lemma.

Recall that Rules 31�38 express that C is a fixed-point of F : one has (51) if and
only if either the ``premises'' (i.e., the formulae above the line) of Rule 31 hold, or
the premises of Rule 32 hold, or the premises of Rule 33 hold. We deal with each
case in turn:

[Rule 31]. Here +=(int, \), for some \, and v=sv=i, for some i # Int. But
then C(R2 , +, v, s2 , sv) w.r.t. .2 , by Rule 31.
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[Rule 32]. Here there exist {, \, TE, x, e, E, e$, VE, R$ such that (51) is inferred
from premises

TE |&*x .e O *x .e$ at \ : ({, \), [put(\)] (52)

C(R$, TE, E, s1 , VE ) w.r.t. .1 (53)

R$ and R1 agree on .1 frv(e$ )�Dom(R$ ) (54)

and +=({, \), v=(x, e, E ) , and sv=(x, e$, VE, R$) . But then, by (54), (48) and
(49) we have

R$ and R2 agree on .2 . (55)

Obviously, R$ agrees with itself on .2 and, by (55) and (50), s1 a (Rng(R$ a frv(.2)))
C= s2 . Thus, using also (48) and (53), we have that the claim

C(R$, TE, E, s2 , VE ) w.r.t. .2 (56)

is a consequence of the lemma.2 Thus by Rule 32 on (52), (55) and (56) we have
C(R2 , +, v, s2 , sv) w.r.t. .2 , as desired (since (56) is a consequence of the lemma).

[Rule 33]. Similar to the previous case.

Type Schemes and Storable Values [C(R, (_, \), v, s, sv) w.r.t. .]. Assume
C(R1 , (_, \), v, s1 , sv) w.r.t. .1 , which can be inferred by Rule 34 or by Rule 35. The
case for Rule 34 is similar to the case for Rule 32. So consider the case for Rule 35.
Here _ takes the form \( ) .{ and we have C(R1 , ({, \), v, s1 , sv) w.r.t. .1 . Thus the
claim C(R2 , ({, \), v, s2 , sv) w.r.t .2 is a consequence of the lemma. But then, by
Rule 35, we have C(R2 , (_, \), v, s2 , sv) w.r.t. .2 , as required (since the premise
used, i.e., C(R2 , ({, \), v, s2 , sv) w.r.t. .2 , is a consequence of the lemma).

Type Schemes and Addresses [C(R, (_, \), v, s, v$ ) w.r.t. .]. Assume that

C(R1 , (_, \), v, s1 , v$ ) w.r.t. .1 (57)

inferred by Rule 36 or Rule 37. Case analysis:

[get( \) # .2] Then get( \) # .1 , so by (36) there exist r, o such that v$=(r, o)
and

R1(\)=r (58)

v$ # Pdom(s1) (59)

C(R1 , (_, \), v, s1 , s1(v$ )) w.r.t. .1 . (60)

By (49) on (58) we have

R2( \)=r (61)
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Thus (59) and (50) give

v$ # Pdom(s2) and s2(v$ )=s1(v$ ). (62)

By (60), (48), (49) and (50) we have that the claim C(R2 , (_, \), v, s2 ,
s1(v$ )) w.r.t. .2 is a consequence of the lemma; i.e., by (62), that the claim

C(R2 , (_, \), v, s2 , s2(v$ )) w.r.t. .2 (63)

is a consequence of the lemma. Thus Rule 36 on (61), (62), and (63) gives
C(R2 , (_, \), v, s2 , v$ ) w.r.t. .2 , since the premise used is a consequences of the
lemma.

[get( \) � .2]. Then C(R2 , (_, \), v, s2 , v$ ) w.r.t. .2 by Rule 37.

Environments [C(R, TE, E, s, VE ) w.r.t. .]. The case for Rule 38 is straight-
forward.

8.3. Region Renaming

In order to prove that re-use of old regions is safe (Lemma 8.4), we shall want
to rename region variables that occur free in some semantic object A but do not
occur free in the effect of the rest of the computation, to other region variables that
do not occur free in the effect of the rest of the computation. Let Sr be a region sub-
stitution. The yield of Sr , written Yield(Sr), is the set [Sr(\) | \ # Supp(Sr)].

Definition 8.1. Let A be a semantic object, let . be an effect, and let
S=(St , Sr , Se) be a substitution. We say that S is a region renaming of A with
respect to . if S a frv(A) is injective, (Supp(Sr) _ Yield(Sr)) & frv(.)=< and
Supp(Se)=Supp(St)=<.

It is not in general the case that C(R, +, v, s, v$ ) w.r.t. . implies C(R, S(+), v, s, v$ )
w.r.t. ., for all substitutions S; the reason is that S might map region variables in
the set frv(+)"frv(.) to variables that are free in ., thereby making consistency
harder to achieve. However, the following special case holds:

Lemma 8.3. If C(R, +, v, s, v$ ) w.r.t. . and S is a region renaming of + with
respect to . then C(R, S(+), v, s, v$ ) w.r.t. .. Similarly for the other consistency
judgement forms.

Intuitively: as far as . is concerned, a region variable \ # frv( +)"frv(.) denotes
a garbage region which is no different from any other garbage region!

Proof. By rule-based co-induction on C(R, +, v, s, v$ ) w.r.t. . (and the other
consistency judgement forms). The cases are ordered according to judgement forms.

Types and Storable Values [C(R, +, v, s, sv) w.r.t. .]. Assume that S is a region
renaming of + with respect to . and that

C(R, +, v, s, sv) w.r.t. .. (64)

Now (64) must be the conclusion of one of the following rules:
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[Rule 31]. By (64) we have +=(int, \), for some \, and v=sv # Int. Thus
C(R, S( +), v, s, sv) w.r.t. ..

[Rule 32]. By (64) there exist TE, x, e, e$, R$, E, {, \ and VE such that

TE |&*x .e O *x .e$ at \ : ({, \), [put( \)] (65)

C(R$, TE, E $, s, VE ) w.r.t. . (66)

R$ and R agree on . frv(e$ )�Dom(R$ ) (67)

+=({, \), v=(x, e, E) , sv=(x, e$, VE, R$) , (68)

where E $=E. (The reason for introducing E $ will become clear later.) To prove
C(R, S( +), v, s, sv) w.r.t. . we wish to find TE0 , R0 , and e$0 satisfying

TE0 |&*x .e O *x .e$0 at S( \) :S({, \), [put(S( \))] (69)

C(R0 , TE0 , E $, s, VE ) w.r.t. . (70)

R0 and R agree on . frv(e$0)�Dom(R0) (71)

sv=(x, e$0 , VE, R0) (72)

and that the claim (70) is itself a consequence of the lemma. Comparing (65) and
(69), a tempting idea is simply to apply S throughout (65), taking e$0 to be S(e$ ).
However, S is not necessarily a region renaming on TE, so (70) would not
necessarily be a consequence of the lemma.

Therefore, let [\1 , ..., \n]=frv(TE )"frv(+, .) and let [\$1, ..., \$n] be distinct new
region variables, new in the sense that [\$1, ..., \$n] & frv(S(+), .)=<. Let
S$=S+[\i [ \i$ | 1�i�n], let TE0=S$(TE ), and let e$0=S$(e$ ). Then S$ is a
region renaming of (TE, +) with respect to .. Further, R0 is defined as follows. Let
Dom(R0) be frv(e$0). Since (65) must have been inferred by Rule 23, we have
frv(e$ )�frv(TE, {). Thus S$ is injective on frv(e$ ). Then for every region variable
\$ # frv(e$0) there exists one and only one region variable \ # frv(e$ ) such that
S$(\)=\$. Define R0(\$ ) to be R$(\). By these definitions, (x, e$, VE, R$) and
(x, e$0, VE, R0) are equal. By Lemma 5.3 on (65) and the fact that S$({, \)=S({, \)
we obtain (69), as desired. Notice that R0 and R$ agree on ., since S$ is a region
renaming with respect to .. Thus (71) also holds. Then, by Lemma 8.2 on (66) we
have C(R0 , TE, E$, s, VE ) w.r.t. .. But then, since S$ is a region renaming of TE
with respect to . we have that the claim (70) is itself a consequence of the lemma,
as desired. Finally Rule 32 on (68)�(72) gives C(R, S(+), v, s, sv) w.r.t. ., as desired.

[Rule 33]. Almost identical to the previous case: use E$ =E+[ f [ (x, e, E, f )]
and v=(x, e, E, f ) instead of E$=E and v=(x, e, E) . Conclude using Rule 33
instead of using Rule 32.

Type Schemes and Storable Values [C(R, (_, \), v, s, sv) w.r.t. .]. Assume that
(_$, \$ )=S(_, \), that S is a region renaming of (_, \) with respect to ., and that

C(R, (_, \), v, s, sv) w.r.t. .. (73)

Then (73) is the conclusion of one of the following rules:
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[Rule 34]. Then there exist TE, f, x, e, e$, \1 } } } \k , :1 } } } :n , =1 } } } =m , {, VE
and R$ such that

TE+[ f [ (_, \)] |&*x .e O *x .e$ at \ : ({, \), [put( \)] (74)

_=\\1 } } } \k \:1 } } } :n \=1 } } } =m .{
�

and bv(_) & fv(TE, \)=<

R$ and R agree on . frv(e$ )�Dom(R$ ) _ [ \1 , ..., \k] (75)

C(R$, TE+[ f [ (_, \)], E+[ f [ (x, e, E, f )], s, VE ) w.r.t. . (76)

v=(x, e, E, f ) , sv=( \1 , ..., \k , x, e$, VE, R$) . (77)

As in the previous two cases, S is not necessarily a region renaming of
TE+[ f [ (_, \)]. Let [ \old

1 , ..., \old
l ]=([ \1 , ..., \k] _ frv(TE, {))"frv((_, \), .).

Let [ \new
1 , ..., \new

l ] be distinct new region variables, new in the sense that
[\new

1 , ..., \new
l ] & frv(S(_, \), .)=<. Let S$=S+([ ], [\old

1 [ \new
1 , ..., \old

l [ \new
l ], [ ]).

Then

S$ is a region renaming on ([ \1 , ..., \k] , TE, {, \) with respect to .. (78)

Let TE $=S$(TE ) and let e$0=S$(e$ ). By Lemma 5.3 on (74) we have

TE $+[ f [ (S$(_), \$ )] |&*x .e O *x .e$0 at \$ : (S${, \$ ), [put(\$ )], (79)

where we have used S$( \)=\$. Since S $ is the identity on every type and effect
variable, we have

S$(_)=\S$\1 } } } S$\k :1 } } } :n =1 } } } =m .S$({). (80)

Moreover,

([S$\1 , ..., S$\k], [:1 , ..., :n], [=1 , ..., =m]) & fv(TE $, \$ )=< (81)

since S$ is injective on frv([ \1 , ..., \k], TE, \). Define R0 as follows. Let
Dom(R0)=frv(e$0)"[S $(\1), ..., S$( \k)]. From (74) and Rule 23 we get frv(e$ )�
frv(TE+[ f [ (_, \)], {). By (78), for every \$ # e$0 there exists a unique \ # frv(e$ )
such that S$( \)=\$. Let R0( \$ )=R$( \). The closures ( \1 , ..., \k , x, e$, VE, R$)
and (S $\1 , ..., S$\k , x, e$0 , VE, R0) are now equal. Moreover, by (78), R0 and R$
agree on .. But then, by (75), we have

R0 and R agree on . frv(e$0)�Dom(R0) _ [S$\1 , ..., S$\k]. (82)

By Lemma 8.2 on (76), using that R0 and R$ agree on ., we get

C(R0 , TE+[ f [ (_, \)], E+[ f [ (x, e, E, f )], s, VE ) w.r.t. .. (83)
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Notice that S$ is a region renaming of TE+[ f [ (_, \)] with respect to .. Thus
from (83) we get that the claim

C(R0 , TE $+[ f [ (S$(_), \$ )], E+[ f [ v], s, VE ) w.r.t. . (84)

is a consequence of the lemma. By Rule 34 on (79), (80), (81), (82), and (84) we
have

C(R, (S$(_), \$ ), (x, e, E, f ) , s, (S$\1 , ..., S$\k , x, e$0, VE, R0) ) w.r.t. ., (85)

which is the desired result.

[Rule 35]. By (73) and Rule 35 we have that _ is simple and takes the form
\( ) .{ and C(R, ({, \), v, s, sv) w.r.t. .. Thus the claim C(R, S$({, \), v, s, sv) w.r.t. .
is a consequence of the lemma. Thus C(R, (S$(_), \$ ), v, s, sv) w.r.t. ., as desired.

The cases for the remaining rules (Rules 36�38) are straightforward.

8.4. Region Allocation

Consistency is not in general preserved under increasing effects or shrinking
stores. For example, for all addresses a, we have C([\ [ r], (int, \), 3, [ ], a)
w.r.t. . if .=<, but not if .=[get(\)], since the store is empty. Yet there is one
point where we do need to increase effects, namely in the case of the main proof
concerning expressions of the form

e$#letregion \ in e$1 end.

Starting from an assumption of the form C(R, TE, E, s, VE ) w.r.t. . we wish
to extend s with a new region, yielding s$=s+[r [ [ ]], increase . to
. _ [put(\), get(\)] (the get and put effects representing the effects of e$1 on the
new region) and still be able to claim C(R+[\ [ r], TE, E, s$, VE ) w.r.t.
. _ [put(\), get(\)]. That this is possible is not trivial, for the region r may have
been in use earlier (and there may even be dead pointers into the old region named
r). However, if we extend the observing effect with a region variable which is not
free in the type environment, then consistency really is preserved:

Lemma 8.4. If C(R, TE, E, s, VE ) w.r.t. . and \ � frv(TE, .), r � Dom(s) and
frv(.$)�[\] then C(R+[\ [ r], TE, E, s+[r [ [ ]], VE ) w.r.t. .$ _ ..
Similarly for the other forms of C.

Proof. The proof is by rule-based co-induction. We assume

frv(.$)�[\] (86)

r � Dom(s). (87)

For brevity, let s$=s+[r [ [ ]]. We now have a case analysis with one case for
each of Rules 31 to 38.
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Types and Storable Values [C(R, +, v, s, sv) w.r.t. .]. Assume

C(R, ({, \0), v, s, sv) w.r.t. . (88)

\ � frv(({, \0), .). (89)

Then (88) is the conclusion of one of the following rules:

[Rule 31]. Here v=sv=i, for some i # Int and {=int. Hence C(R+[\ [ r],
({, \0), v, s$, sv) w.r.t. . _ .$ by Rule 31 itself.

[Rule 32]. Here (88) is inferred from premises

TE |&*x .e O *x .e$ at \0 : ({, \0) : [put(\0)] (90)

C(R0 , TE, E, s, VE) w.r.t. . (91)

R0 and R agree on . frv(e$)�Dom(R0) (92)

v=(x, e, E) and sv=(x, e$, VE, R0) (93)

Without loss of generality we can assume

\ � frv(TE) (94)

for if \ # frv(TE ) we can do the following. Let \$ be a fresh region variable, fresh
in the sense that \$ � frv(TE, ., {). Consider the substitution S=[\ [ \$]. By (89)
and Lemma 5.3 on (90) we have

S(TE ) |&*x .e O *x .S(e$) at \0 : ({ ,\0) : [put(\0)]. (95)

Moreover, S is a region renaming of TE with respect to ., so Lemma 8.3 on (91)
gives

C(R0 , S(TE ), E, s, VE ) w.r.t. .. (96)

Let R$0 be the region environment defined as follows. If \ � Dom(R0) then let
R$0=R0 . Otherwise let R$0 have domain Dom(R$0)=Dom(R0)"[\] _ [\$] and
values

R$0(\$0)={R0(\$0)
R0(\)

if \$0{\
if \$0=\$.

Let sv$=(x, S(e$), VE, R$0) . Since frv(e$)�Dom(R0) we have that sv and sv$ are
equal and frv(S(e$))�Dom(R$0). Also, R$0 and R0 agree on . (since either \$ nor
\ is free in .). Thus by Lemma 8.2 on (96) we have

C(R$0 , S(TE ), E, s, VE ) w.r.t. .. (97)

Thus we can assume that (94) holds.

147REGION-BASED MEMORY MANAGEMENT



File: 643J 261340 . By:CV . Date:20:03:97 . Time:13:02 LOP8M. V8.0. Page 01:01
Codes: 2681 Signs: 1386 . Length: 52 pic 10 pts, 222 mm

By (91) and (94) we have that the claim

C(R0+[\ [ r], TE, E, s$, VE ) w.r.t. . _ .$ (98)

is itself a conclusion of the lemma. Moreover, from (92) and (86) we have

R0+[\ [ r] and R+[\ [ r] agree on . _ .$. (99)

By Rule 32 on (90), (98), (99) and the fact that frv(e$)�Dom(R0+[\ [ r]) we get

C(R+[\ [ r], ({, \0), v, s$, sv$) w.r.t. . _ .$ (100)

where sv$=(x, e$, VE, R0+[\ [ r]). By (90) and Rule 23 we have frv(e$)�
frv(TE, {) so by (89) and (94) we have \ � frv(e$). Thus sv and sv$ are equal; thus
(100) is the desired result.

[Rule 33]. Similar to the previous case.

Type Schemes and Storable Values [C(R, (_, \0), v, s, sv) w.r.t. .]. Assume that

C(R, (_, \0), v, s, sv) w.r.t. . (101)

\ � frv((_, \0), .), (102)

where (101) must be the conclusion of one of the following rules:

[Rule 34]. Here _ is compound and there exist TE, f, x, e, \1 , ..., \k , :1 , ..., :n ,
=1 , ..., =m , R0 , and VE such that

TE+[ f [ (_, \0)] |&*x .e O *x .e$ at \0 : ({, \0), [put(\0)] (103)

_=\\1 } } } \k \:1 } } } :n \=1 } } } =m .{
�

bv(_) & fv(TE, \0)=< (104)

R0 and R agree on . frv(e$)�Dom(R0) _ [\1 ,..., \k] (105)

C(R0 , TE+[ f [ (_, \0)], E+[ f [ (x, e, E, f )], s, VE ) w.r.t. . (106)

v=(x, e, E, f ) and sv=( \1 , ..., \k , x, e$, VE, R0). (107)

As in the case for Rule 32 we may assume

\ � frv(TE+[x [ (_, \0)]) (108)

without loss of generality. By (106) and (108) we get that the claim

C(R0+[\ [ r], TE+[ f [ (_, \0)], E+[ f [ (x, e, E, f )], s$, VE ) w.r.t. . _ .$

(109)

is a consequence of the lemma. Let R$0=R0+[\ [ r] and let R$=R+[\ [ r]. By
(105) and (102) we have

R$0 and R$ agree on . _ .$ (110)
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Thus by Rule 34 on (103), (110) and (109) we have

C(R$, (_, \0), v, s$, ( \1 , ..., \k , x, e$, VE, R$0) ) w.r.t. . _ .$ (111)

From (103) and Rule 23 we have frv(e$)�frv(TE+[ f [ (_, \0)], {). This with (108)
gives that if \ # frv(e$) then \ # [\1 , ..., \k]. Thus sv and ( \1 , ..., \k , x, e$, VE, R$0)
are equal, so (111) really is the desired result.

[Rule 35]. Here _ is simple. Write _ in the form \( ) .{. Then \ � frv(({, \0), .),
by (102). By (101) and Rule 35 we have C(R, ({, \0), v, s, sv) w.r.t. .. But then the
claim C(R+[\ [ r], ({, \0), v, s$, sv) w.r.t. . _ .$ is a consequence of the lemma.
Thus C(R+[\ [ r], (_, \0), v, s$, sv) w.r.t. . _ .$, by Rule 35.

Type Schemes and Addresses [C(R, (_, \0), v, s, v$) w.r.t. .]. Assume that

C(R, (_, \0), v, s, v$) w.r.t. . (112)

\ � frv(_, \0 , .). (113)

Then (112) is the conclusion of one of the following rules:

[Rule 36]. Here R(\0)=r of v$, v$ # Pdom(s) and

C(R, (_, \0), v, s, s(v$)) w.r.t. .. (114)

By (113) we have (R+[\ [ r])(\0)=R(\0)=r of v$. Since r � Dom(s) we have
v$ # Pdom(s$) and s$(v$)=s(v$). By (114) and (113) we have that the claim
C(R+[\ [ r], (_, \0), v, s$, s$(v$)) w.r.t. . _ .$ is a consequence of the lemma.
Then, by Rule 36, we have C(R+[\ [ r], (_, \0), v, s$, v$) w.r.t. . _ .$, as desired.

[Rule 37]. Since get(\0) � . and (86) and, by (113), \{\0 , we have get(\0) �

. _ .$. Thus C(R+[\ [ r], (_, \0), v, s$, v$) w.r.t. . _ .$, by Rule 37 itself.

Environments [C(R, TE, E, s, VE ) w.r.t. .]. The case for Rule 38 is straight-
forward. K

Lemma 8.5. If C(R, TE, E, s, VE ) w.r.t. . then C(R, TE, E, s, VE ) w.r.t. . _ [=].
Similarly for the other forms of C.

Proof. Straightforward co-inductive proof. K

8.5. Recursion

The source and target languages handle recursion differently. The source
language ``unrolls'' a closure each time a recursive function is applied��see Rule 5.
In the target language a closure for a recursive function contains a pointer back to
itself��see Rule 14. To prove the correctness of our translation, we must show that
the two representations are consistent at the point where we create the cycle in the
store.

Lemma 8.6. If C(R, TE, E, s, VE ) w.r.t. . and _ is a compound type scheme
\\� :� =� .{

�
, with bv(_) & fv(TE, \)=<, and TE+[ f [ (_, \)]|&*x .e O *x .e$ at \:
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({, \), [put(\)] and R$ and R agree on . and frv(e$)�Dom(R$) _ frv(\� ) and
R(\)=r and r # Dom(s) and o � Dom(s(r)) then

C(R, TE+[ f [ (_, \)], E+[ f [ (x, e, E, f )],

s+[(r, o) [ ( \� , x, e$, VE$, R$)], VE$) w.r.t. .,

where VE$=VE+[ f [ (r, o)].

Proof. Let TE$=TE+[ f [ (_, \)], E$=E+[ f [ (x, e, E, f )], VE$=VE+
[ f [ (r, o)] and s$=s+[(r, o) [ ( \� , x, e$, VE$, R$)]. By Lemma 8.2 it suffices to
prove

C(R$, TE$, E$, s$, VE$) w.r.t. ..

The proof is by co-induction. Let

q1=(R$, (_, \), (x, e, E, f ) , s$, ( \� , x, e$, VE$, R$), .)

q2=(R$, (_, \), (x, e, E, f ) , s$, (r, o), .)

q3=(R$, TE$, E$, s$, VE$, .).

Let 1 $=1 * _ [q1 , q2 , q3] and show 1 $�F(1 $). We consider q1 , q2 , and q3 in
turn.

[q1]. Since q3 # 1 $ and _=\\� :� =� .{
�
, with bv(_) & fv(TE, \)=<, and TE+

[ f [ (_, \)]|&*x .e O *x .e$ at \ : ({, \), [put(\)] and R$ agrees with itself on .
and frv(e$)�Dom(R$) _ frv(\� ) we have q1 # F(1 $), by rule 42.

[q2]. If get(\) � . then q2 # F(1 $), by Rule 45. Assume get(\) # .. Since R and
R$ agree on . we have R$(\)=R(\)=r. Since also r # Dom(s$) and q1 # 1 $ we have
q2 # F(1 $), by rule 44.

[q3]. By Lemma 8.2 on C(R, TE, E, s, VE ) w.r.t. . we have C(R$, TE, E, s$, VE )
w.r.t. .. Thus Dom(TE )=Dom(E )=Dom(VE ) and for every x # Dom(TE ) we have
C(R$, TE(x), E(x), s$, VE(x)) w.r.t. ., i.e., for x{f, C(R$, TE$(x), E$(x), s$, VE$(x))
w.r.t. .. Since also q2 # 1 $ we have q3 # F(1 $) by Rule 46.

9. PROOF OF THE CORRECTNESS OF THE TRANSLATION

This section is the proof of Theorem 6.1. The proof is by depth of the derivation
of E |&e � v, each with an inner induction on the depth of inference of
TE |&e O e$: +, .. There are seven cases, one for each rule in the dynamic semantics
of the source language. For each of these cases, the inner induction consists of a
base case, in which TE |&e O e$: +, . was inferred by one of the syntax-directed
rules (i.e., rules 20�26) plus an inductive step, where Rule 27 or 28 was applied. It
turns out the the inner inductive steps are independent of e, so we start out by
doing them once and for all. Then we deal with each of the seven syntax-directed
cases.

150 TOFTE AND TALPIN



File: 643J 261343 . By:CV . Date:20:03:97 . Time:13:02 LOP8M. V8.0. Page 01:01
Codes: 2075 Signs: 925 . Length: 52 pic 10 pts, 222 mm

In all the cases, we assume

TE |&e O e$: +, . (115)

C(R, TE, E, s, VE ) w.r.t. . _ .$ (116)

E |&e � v (117)

R connects . _ .$ to s (118)

R$ and R agree on . _ .$ (119)

frv(e$)�Dom R$. (120)

[Inner inductive step (a): Rule 27 was applied]. Assume that (115) takes the
form

TE |&e O letregion \ in e$1 end : +, . (121)

and is inferred by Rule 27 from the premises

TE |&e O e$1 : +, .+ (122)

.=.+ "[put(\), get(\)] (123)

\ � frv(TE, +). (124)

By Lemma 5.3 we can choose \ such that \ � frv(.$) as well as (123)�(124).
Thus \ � frv(TE, . _ .$). Let r be an address satisfying r � Dom(s). Let R+=
R+[\ [ r] and s+=s+[r [ [ ]]. Then by Lemma 8.4 on (116) we get

C(R+, TE, E, s+, VE ) w.r.t. .+ _ .$. (125)

Let R$+=R$+[\ [ r]. By (118) we have

R+ connects .+ _ .$ to s+ (126)

and by (119)

R$+ and R+ agree on .+ _ .$. (127)

By (120) we have

frv(e$1)�Dom R$+. (128)

By the inner induction applied to (122), (125), (117), (126), (127), and (128) there
exist s$1 and v$ such that

s+, VE, R$+ |&e$1 � v$, s$1 (129)

C(R$+, +, v, s$1 , v$) w.r.t. .$ (130)
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Let s$=s$1""[r]. Rule 15 on (129) gives

s, VE, R$ |&letregion \ in e$1 end � v$, s$

Note that R$+ and R$ agree on .$ (as \ � frv(.$)). Also, s$1 a (Rng(R$ a frv(.$)))C=s$
by (118) and (119). Then by Lemma 8.2 on (130) we get C(R$, +, v, s$, v$) w.r.t. .$, as
required.

[Inner inductive step (b): Rule 28 was applied]. Assume that (115) is inferred
by Rule 28 on premises TE |&e O e$: +, .+, .=.+"[=] and = � fev(TE, +). By
Lemma 8.5 on (116) we get C(R, TE, E, s, VE ) w.r.t. .+ _ .$. Also, R connects
.+ _ .$ to s; R$ and R agree on .+ _ .$ and frv(e$)�Dom(R$). Thus by the inner
induction there exist s$ and v$ such that s, VE, R$ |&e$ � v$, s$ and C(R$, +, v, s$, v$)
w.r.t. .$, as desired.

[The syntax-directed cases].

[Constant, Rule 1]. Since R connects [put(\)] _ .$ to s and R$ and R agree
on [put(\)] _ .$ we have that r=R$(\) exists and r # Dom(s). Take o � Dom(s(r)).
By Rule 8 we then have s, VE, R$ |&c at \ � (r, o), s+[(r, o) [ c]. Letting
v$=(r, o) and s$=s+[(r, o) [ c] we furthermore get C(R$, (int, \), v, s$, v$) w.r.t.
.$, by (36), (35) and (31), as desired.

[Variable, Rule 2]. There are two cases, depending on whether TE associates
a simple or a compound type scheme with the variable. We deal with each of these
in turn:

[Variable with simple type scheme]. Assume that (115) was inferred using
Rule 21. Then e=e$=x, for some variable x. Moreover, TE(x)=(_, p), for some p
and simple _. Let { be the type for which _=\( ) .{. Then +=({, p) and .=<. The
evaluation (117) must have been by Rule 2, so we have v=E(x). Let s$=s. By
(115) and (116) we have x # Dom(VE ). Thus, letting v$=VE(x), we have
s, VE, R$ |&x � v$, s$, as desired. By Rule 38 on (116) we have C(R, (_, p), v, s$, v$)
w.r.t. .$, i.e., C(R, ({, p), v, s$, v$) w.r.t. .$, as desired (recall that we identify \( ) .{
and {).

[Variable with compound type scheme]. Assume that (115) was obtained
by Rule 22. Then e is a variable, f ; e$ is of the form f[S(\1), ..., S(\k)] at p and
+=({, p), for some {; and

TE |&f O f[S\1 , ..., S\k] at p: ({, p), . (131)

was inferred by application of Rule 22 to the premises

TE( f )=(_, p$) _=\\1 } } } \k :� =� .{1 (132)

_�{ via S (133)

.=[get( p$), put( p)]. (134)
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Then (117) must have been inferred by Rule 2, so we have v=E( f ). By (116) and
f # Dom(TE ) we have

C(R, (_, p$), v, s, v$1) w.r.t. . _ .$

where v$1=VE( f ). Since get( p$) # ., the definition of C (rules 36 and 34) gives
v$1 # Pdom(s) and r of v$1=R( p$) and v is a recursive closure

v=(x0 , e0 , E0 , f0) (135)

and s(v$1)=( \1 , ..., \k , x0 , e$0 , VE0 , R0) , for some e$0 , VE0 and R0 . Furthermore,
there exist TE0 , :1 , ..., :n , =1 , ..., =m and {0 such that

C(R0 , TE0+[ f0 [ (_, p$)], E0+[ f0 [ v], s, VE0) w.r.t. . _ .$ (136)

TE0+[ f0 [ (_, p$)] |&*x0 .e0 O *x0 .e$0 at p$: ({0 , p$), [put( p$)] (137)

bv(_) & fv(TE0 , p$)=< (138)

R0 and R agree on . _ .$ (139)

frv(e$0)�Dom R0 _ [\1 , ..., \k]. (140)

Without loss of generality, we can assume that \1 , ..., \k are chosen so as to satisfy

[\1 , ..., \k] & frv(.$)=<. (141)

By (134), (118), and (119) we have R$( p) # Dom(s). Let r$=R$( p). Let o$ be an
offset not in Dom(s(r$)). Let v$=(r$, o$), let R$0=R0+[\i [ R$(S(\i)); 1�i�k]
and let sv=(x0 , e$0 , VE0 , R$0) . Notice that R$(S(\i)) exists, by (120). Let s$=
s+[(r$, o$) [ sv]. It follows from Rule 10 that

s, VE, R$ |&f[S(\1), ..., S(\k)] at p � v$, s$, (142)

as desired. It remains to prove that

C(R$, ({, p), v, s$, v$) w.r.t. .$ (143)

We now consult Rules 31�38 concerning C. If get( p) � .$, we are done. But even if
get( p) # .$ we have v$ # Pdom(s$) and r of v$=r$=R$( p) as required by Rule 36. It
remains to prove that

C(R$, ({, p), v, s$, sv) w.r.t. .$. (144)

Let TE=TE0+[ f0 [ (_, p$)]. Since (137) must have been inferred by Rules 23
and 28 we equally have

TE |&*x0 .e0 O *x0 .e$0 at p: ({, p), [put( p)] (145)
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From (119), (139) and [\1 , ..., \k] & frv(.$)=< we get

R$0 and R$ agree on .$. (146)

From Lemma 8.2 on (136) we get

C(R$0 , TE, E0+[ f0 [ v], s$, VE0) w.r.t. .$. (147)

From (140) we get

frv(e$0)�Dom R$0 . (148)

By Rule 33 on (145), (146), (147), and (148) we have C(R$, ({, p), v, s$, (x0 , e$,
VE0 , R$0) ) w.r.t. .$ as desired.

[Lambda abstraction, Rule 3]. Assume that (115) was inferred by Rule 23;
then (115) takes the following form:

TE |&*x .e1 O *x .e$1 at p: +, [put( p)]. (149)

Moreover, (117) was inferred by Rule 3 yielding

v=(x, e1 , E). (150)

Since R connects . to s we have R( p) # Dom(s). Let r=R( p) and let o be an offset
not in Dom(s(r)). Let v$=(r, o) and s$=s+[v$ [ (x, e$1 , VE, R$)]. By (119) we
have R$( p)=r. Thus by Rule 11 we have

s, VE, R$ |&*x .e$1 at p � v$, s$. (151)

Notice that C(R$, TE, E, s$, VE ) w.r.t. .$, by Lemma 8.2 and (119). Also frv(e$1)�
Dom R$, by (120). Thus by Rules 32, 35, and 36 (or by (37)) we have
C(R, +, v, s$, v$) w.r.t. .$ as required.

[Application of non-recursive closure, Rule 4]. Here e#e1 e2 , for some e1

and e2 , and e$#e$1 e$2 , for some e$1 and e$2 and (115) was inferred by Rule 24 on the
premises

TE |&e1 O e$1 : (+$ ww�= ..0 +, p), .1 (152)

TE |&e2 O e$2 : +$, .2 (153)

.=.1 _ .2 _ [=, get( p)] _ .0 . (154)
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Moreover, (117) was inferred by Rule 4 on the premises

E |&e1 � v1 , v1=(x0 , e0 , E0) (155)

E |&e2 � v2 (156)

E0+[x0 [ v2] |&e0 � v. (157)

Let .$1=.2 _ [=, get( p)] _ .0 _ .$, i.e., the effect that remains after the computa-
tion of e$1 . Note that . _ .$=.1 _ .$1 ; so from (116), (118), and (119) we get

C(R, TE, E, s, VE) w.r.t. .1 _ .$1 (158)

R connects .1 _ .$1 to s (159)

R$ and R agree on .1 _ .$1 . (160)

Also, from (120), we get

frv(e$1)�Dom R$ 7 frv(e$2)�Dom R$. (161)

By induction on (152), (158), (155), (159), (160), and (161) there exist s1 and v$1
such that

s, VE, R$ |&e$1 � v$1 , s1 (162)

C(R$, (+$ ww�= ..0 +, p), v1 , s1 , v$1) w.r.t. .$1 . (163)

Notice that get( p) # .$1 . Thus, by the definition of C, (163) tells us that
v$1 # Pdom(s1) and r of v$1=R$( p) and there exist e$0 , VE0 , TE0 and R0 such that

s1(v$1)=(x0 , e$0 , VE0 , R0) (164)

TE0 |&*x0 .e0 O *x0 .e$0 at p: (+$ ww�= ..0 +, p), [put( p)] (165)

C(R0 , TE0 , E0 , s1 , VE0) w.r.t. .$1 (166)

R0 and R$ agree on .$1 (167)

frv(e$0)�Dom R0 . (168)

Let .$2=[=, get( p)] _ .0 _ .$, i.e., the effect that remains after the computation of
e$2 . By Lemma 4.1 on (162) we have s C= s1 . Furthermore, we have .2 _ .$2�
. _ .$, so by Lemma 8.1 on (116) we have

C(R, TE, E, s1 , VE) w.r.t. .2 _ .$2 . (169)

Also, from (118) and (119) we get

R connects .2 _ .$2 to s1 (170)

R$ and R agree on .2 _ .$2 . (171)
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By induction on (153), (169), (156), (170), (171), and (161) there exist s2 and v$2
such that

s1 , VE, R$ |&e$2 � v$2 , s2 (172)

C(R$, +$, v2 , s2 , v$2) w.r.t. .$2 . (173)

Let TE+
0 =TE0+[x0 [ +$]. Now (165) must have been inferred by Rules 23

and 28. Thus there exists a .$0 such that .$0�.0 and

TE+
0 |&e0 O e$0 : +, .$0 . (174)

We have s1 C= s2 , by Lemma 4.1 on (172). By Lemma 8.2 on (166), (167), and
.$0�.0 we then have

C(R$, TE0 , E0 , s2 , VE0) w.r.t. .$0 _ .$ (175)

and by Lemma 8.1 on (173) and .$0�.0 we get

C(R$, +$, v2 , s2 , v$2) w.r.t. .$0 _ .$. (176)

Let E+
0 =E0+[x0 [ v2] and let VE+

0 =VE0+[x0 [ v$2]. Combining (175) and
(176) we get

C(R$, TE+
0 , E+

0 , s2 , VE+
0 ) w.r.t. .$0 _ .$. (177)

Also, by (118), (119), and s C= s2 we get

R$ connects .$0 _ .$ to s2 (178)

and by (167)

R0 and R$ agree on .$0 _ .$. (179)

Then by induction on (174), (177), (157), (178), (179), and (168) there exist s$ and
v$ such that

s2 , VE+
0 , R0 |&e$0 � v$, s$ (180)

C(R0 , +, v, s$, v$) w.r.t. .$. (181)

From (162), (164), (172), and (180) we get s, VE, R$ |&e$1 e$2 � v$, s$, as desired.
Moreover, by Lemma 8.2 on (181) and (167), we have C(R$, +, v, s$, v$) w.r.t. .$, as
desired.

[Application of recursive closure, Rule 5]. This case is similar to the previous
case, but we include it for the sake of completeness. We have e#e1e2 , for some e1
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and e2 , and e$#e$1 e$2 , for some e$1 and e$2 and, by Rule 24, there exist +$, p, =, .0 ,
.1 and .2 such that

TE |&e1 O e$1 : (+$ ww�= ..0 +, p), .1 (182)

TE |&e2 O e$2 : +$, .2 (183)

.=.1 _ .2 _ .0 _ [get( p), =]. (184)

Also, assume that (117) was inferred by application of Rule 5 on premises

E |&e1 � v1 v1=(x0 , e0 , E0 , f ) (185)

E |&e2 � v2 (186)

E0+[ f [ v1]+[x0 [ v2] |&e0 � v. (187)

To use induction the first time, we split the effect . _ .$ into .1 _ .$1 , where .$1=
.2 _ .0 _ [get( p), =] _ .$. By (116), (118) and (119) we have

C(R, TE, E, s, VE) w.r.t. .1 _ .$1 (188)

R connects .1 _ .$1 to s (189)

R$ and R agree on .1 _ .$1 . (190)

Also, by (120), we have

frv(e$1)�Dom R$ 7 frv(e$2)�Dom R$. (191)

By induction on (182), (188), (185), (189), (190), and (191), there exist v$1 and s1

such that

s, VE, R$ |&e$1 � v$1 , s1 (192)

C(R$, (+$ ww�= ..0 +, p), v1 , s1 , v$1) w.r.t. .$1 . (193)

Notice that get( p) # .$1 . Thus by (193) and the rules for C (Rules 33, 35, and 36)
we have v$1 # Pdom(s1) and r of v$1=R$( p) and there exist e$0 , VE0 , TE0 , and R0

such that

s1(v$1)=(x0 , e$0 , VE0 , R0) (194)

TE0 |&*x0 .e0 O *x0 .e$0 at p : (+$ ww�= ..0 +, p), [put( p)] (195)

C(R0 , TE0 , E0+[ f [ v1], s1 , VE0) w.r.t. .$1 (196)

R0 and R$ agree on .$1 (197)

frv(e$0)�Dom R0 . (198)
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To use induction a second time, we split the remaining effect .$1 into .2 _ .$2 , where
.$2=.0 _ [get( p), =] _ .$. We have s C= s1 , by Lemma 4.1. Then, by Lemma 8.1 on
(116), we have

C(R, TE, E, s1 ,VE) w.r.t. .2 _ .$2 . (199)

Moreover, (118) and (119) imply that

R connects .2 _ .$2 to s1 (200)

R$ and R agree on .2 _ .$2 . (201)

By induction on (183), (199), (186), (200), (201), and (191) there exist s2 and v$2
such that

s1 , VE, R$ |&e$2 � v$2 , s2 (202)

C(R$, +$, v2 , s2 , v$2) w.r.t. .$2 . (203)

Let TE+
0 =TE0+[x0 [ +$]. Now (195) must have been inferred by Rules 23 and

28. Thus there exists an effect .$0 with .$0�.0 and

TE+
0 |&e0 O e$0 : +, .$0 . (204)

By Lemma 8.2 on (196) and (197) we have

C(R$, TE0 , E0+[ f [ v1], s2 , VE0) w.r.t. .$2 . (205).

Let E+
0 =E0+[ f [ v1]+[x0 [ v2] and let VE+

0 =VE0+[x0 [ v$2]. From (205)
and (203) and .$0�.0 we have

C(R$, TE+
0 , E+

0 , s2 , VE+
0 ) w.r.t. .$0 _ .$. (206)

From (197) we get

R0 and R$ agree on .$0 _ .$. (207)

By (118), (119) and s C= s2 we get

R$ connects .$0 _ .$ to s2 . (208)

By induction on (204), (206), (187), (208), (207), and (198) there exist s$ and v$
such that

s2 , VE+
0 , R0 |&e$0 � v$, s$ (209)

C(R0 , +, v, s$, v$) w.r.t. .$. (210)

158 TOFTE AND TALPIN



File: 643J 261351 . By:CV . Date:20:03:97 . Time:13:02 LOP8M. V8.0. Page 01:01
Codes: 2328 Signs: 1073 . Length: 52 pic 10 pts, 222 mm

Rule 12 on (192), (202), (194), and (209) gives s, VE, R$ |&e$1e$2 � v$, s$, as desired.
Moreover, Lemma 8.2 on (210) and (207) gives the desired C(R$, +, v, s$, v$)
w.r.t. .$.

[let expressions, Rule 6]. Assume that (115) was inferred by Rule 25; then
(115) takes the form

TE |&let x=e1 in e2 end O let x=e$1 in e$2 end : +, .. (211)

Moreover, (115) and (117) must be inferred by Rules 25 and 6 from the premises

TE |&e1 O e$1 : ({1 , p1), .1 (212)

TE+[x [ ({1 , p1)] |&e2 O e$2 : +, .2 (213)

.=.1 _ .2 (214)

E |&e1 � v1 (215)

E+[x [ v1] |&e2 � v. (216)

Let .$1 be the effect that remains after the evaluation of e$1 ; i.e., let .$1=.2 _ .$.
Note that . _ .$=.1 _ .$1 , so by (116), (118) and (119) we have

C(R, TE, E, s, VE) w.r.t. .1 _ .$1 (217)

R connects .1 _ .$1 to s (218)

R$ and R agree on .1 _ .$1 . (219)

By (120) we have

frv(e$1)�Dom R$ 7 frv(e$2)�Dom R$. (220)

By induction on (212), (217), (215), (218), (219), and (220) there exist s1 and v$1
such that

s, VE, R$ |&e$1 � v$1 , s1 (221)

C(R$, ({1 , p1), v1 , s1 , v$1) w.r.t. .$1 . (222)

By Lemma 8.2 on (222) we get

C(R, ({1 , p1), v1 , s1 , v$1) w.r.t. .$1 . (223)

By Lemma 8.1 on (116) we get

C(R, TE, E, s1 , VE) w.r.t. .$1 . (224)
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Combining these two, we get

C(R, TE+[x [ ({1 , p1)], E+[x [ v1], s1 , VE+[x [ v$1]) w.r.t. .2 _ .$. (225)

By (118) and (119) and s C= s1 we have

R connects .2 _ .$ to s1 (226)

R$ and R agree on .2 _ .$. (227)

By induction on (213), (225), (216), (226), (227), and (220) there exist s$ and v$
such that

s1 , VE+[x [ v$1], R$ |&e$2 � v$, s$ (228)

C(R$, +, v, s$, v$) w.r.t. .$. (229)

Here (229) is one of the desired results. Moreover, by Rule 13 on (221) and (228)
we get the desired s, VE, R$ |&let x=e$1 in e$2 end � v, s$.

[letrec, Rule 7]. In this case (115) takes the form

TE |&letrec f (x)=e1 in e2 end O

letrec f[\1 , ..., \k](x) at p=e$1 in e$2 end : +, . (230)

and is inferred by application of Rule 26 to the premises

TE+[ f [ (\\1 } } } \k =� .{
�
, p)] |&*x .e1 O *x .e$1 at p : ({, p), .1 (231)

fv(:� , \� , =� ) & fv(TE, .1)=< (232)

TE+[ f [ (_$, p)] |&e2 O e$2 : +, .2 (233)

.=.1 _ .2 , (234)

where \� =\1 } } } \k and _$=\:� \� =� .{. Moreover, (117) was inferred by Rule 7 on the
premise

E+[ f [ (x, e1 , E, f )] |&e2 � v. (235)

Since (231) must have been inferred by Rules 23 and 28, we have .1=[put( p)]. By
(118) and (119) we have R$( p)=R( p) # Dom(s). Let r1=R( p). Let o1 be an offset
with o1 � Dom(s(r1)). Let v1=(r1 , o1). Let VE$=VE+[ f [ v1] and let s+=
s+[v1 [ ( \1 , ..., \k , x, e$1 , VE$, R$)]. By Lemma 5.4 on (231) we have that

TE+[ f [ (_$, p)] |&*x .e1 O *x .e$1 at p : ({, p), .1 . (236)
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Let TE+=TE+[ f [ (_$, p)] and let E+=E+[ f [ (x, e1 , E, f )]. By (120) we
have

frv(e$1)�Dom R$ _ [\1 , ..., \k] 7 frv(e$2)�Dom R$. (237)

By Lemma 8.6 on (116), (232), (236), (119), and (237) we have
C(R, TE+, E+, s+, VE$) w.r.t. . _ .$. Then by Lemma 8.1 we get

C(R, TE+, E+, s+, VE$) w.r.t. .2 _ .$. (238)

Also, by (118) and (119), we get

R connects .2 _ .$ to s+ (239)

R$ and R agree on .2 _ .$. (240)

By induction on (233), (238), (235), (239), (240), and (237) there exist s$ and v$
such that

s+, VE$, R$ |&e$2 � v$, s$ (241)

C(R$, +, v, s$, v$) w.r.t. .$. (242)

From (241) and Rule 14 we get

s, VE, R$ |&letrec f[\1 , ..., \k](x) at p=e$1 in e$2 end � v$, s$. (243)

Now (242) and (243) are the desired results.
This concludes the proof of Theorem 6.1.

10. ALGORITHMS

The algorithms used for implementing the region inference rules in the ML Kit
will not be described here. We shall give a brief overview, however. First, ordinary
ML type inference is performed using Milner's algorithm W, extended to all of Core
ML. The output of this phase is an explicitly typed lambda term, e0 , say. Then
region inference is done in two phases. First e0 is decorated with fresh region and
effect variables everywhere a region and effect variable will be required in an
explicitly typed version the fully region annotated target expression. This phase is
called spreading. During spreading, every recursive function f of type scheme _ML,
say, is given the most general type scheme _0 which has _ML as its projection (in
the sense of Section 5.3). For example, a letrec-bound int � int function will
be given type scheme \\1\2= . (int, \1) w�= .< (int, \2). The spreading phase per-
forms the unifications suggested by the inference rules. For example, the two
occurrences of +$ in Rule 24 suggest a unification of the types and places of operator
and operand. Spreading employs rules 27 and 28 as aggressively as possible (i.e.,
after every application of rules 22, 24, 25, and 26). The resulting program, call it
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e1 , is well annotated with regions, except for the fact that the type schemes assumed
for recursive functions may be too general, compared to the type schemes that were
inferred for the lambda expressions which define the functions.

The second phase is called fixed-point resolution and takes e1 as input. For each
recursive function in e1 , the region inference steps (unification, introduction of
letregions, etc.) are iterated, using less and less general type schemes for the recur-
sive functions, till a fixed point is reached. This is similar in spirit to Mycroft's algo-
rithms for full polymorphic recursion [20].

It is possible to extend the notion of principal unifiers for types to a notion of
principal unifier for region-annotated types, even though region-annotated types
contain effects. This relies on invariants about arrow effects that were outlined in
Section 5.1. One can prove that every two types {1 and {2 that have the same under-
lying ML type have a most general unifier, provided all the arrow effects in {1 and
{2 satisfy the invariants.

The reason for the separation of spreading and fixed-point resolution is that,
unless one takes care, the iteration used to handle the polymorphic region recursion
does not terminate. In particular, there is a danger of arrow effects that grow ever
larger, as more fresh region and effect variables are generated. The division into
spreading and fixed-point resolution solves this problem by only generating fresh
variables during the spreading phase. It can then be shown that the second phase
always terminates. This approach does not always give principal types, for there are
cases where that function in the fixed-point resolution which is responsible for
forming type schemes is refused the opportunity to quantify region and effect
variables even though it is permitted by the inference rules. When this happens, the
implementation simply prints a warning about the possible loss of principal types
and continues with a less-than-principal type scheme. Fortunately, this happens
rather infrequently in practice, and since the soundness result of the present paper
shows the correctness for all derivations TE |&e O e$: +, ., safety is not violated.

11. LANGUAGE EXTENSIONS

In this section we outline some of the extensions that have been made to the
region inference rules in order to handle references, exceptions, and recursive
datatypes in the ML Kit.

11.1. References

Assume primitives ref, !, and := for creating a reference, de-referencing, and
assignment, respectively. For the purpose of region inference, these can be treated
as variables with the following type schemes:

ref : \:\1\2= . (:, \1) wwww�= .[put(\2)] ((:, \1) ref, \2)

! : \:\1\2= . ((:, \1) ref, \2) wwww�= .[get(\2)] (:, \1)

:=: \:\1\2\3\4 = . (((:, \1) ref, \2) V (:, \1), \3) wwwwww�= .[put(\2), put(\4)] (unit, \4).
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The most interesting of these is assignment. The new contents of the reference is
represented by a pointer (or by a word, if the value is in unboxed representation).
The assignment updates the reference with this pointer (or word). Thus there is a
put effect on the region where the reference resides. The assignment does not make
a copy the stored value. Thus assignment is a constant time operation, but the
downside is that the old and the new contents must be in the same regions (see the
two occurrences of \1 in the type for :=). Thus, for values with boxed representa-
tion, all the different contents of the reference will be kept alive for as long as the
reference is live. In ``mostly functional'' programs this does not seem to be a serious
problem and even if there are many side-effects, one can still expect reasonable
memory usage as long as the references are relatively short-lived. Long-lived
references that contain boxed values and are assigned freshly created contents often
are hostile to region inference.

11.2. Exceptions

Our approach here is simple-minded: exception values are put into global
regions. Every evaluation of an exception declaration gives rise to an allocation in
some global region. Application of a unary exception constructor to an argument
forces the argument to be in global regions as well. Thus if one constructs many
exception values using unary exception constructors, one gets a space leak (indeed,
the space leaking region \122 in Fig. 5 contains constructed exception values). If one
uses nullary constructors only, there is only going to be one allocation for each
evaluation of each exception declaration.

11.3. Recursive Datatypes

So far, every type constructor has been paired with one region variable. For
values of recursive datatypes, additional region variables, the so-called auxiliary
region variables, are associated with type constructors. For example, consider the
declaration of the list datatype:

datatype 'a list=nil | : : of 'a V 'a list

The region-annotated version of the type : list takes the form
(:, \1)(list[\2] , \3), where \1 stands for a region which contains the list elements,
\3 contains the spine of the list (i.e., the constructors nil and : :), and \2 is an
auxiliary region which contains the pairs, to which :: is applied. Thus lists are kept
``very boxed'': in region \3 every cons cell takes up two words, the first a tag (saying
``I am cons'') and the second a pointer to the pair to which : : is applied. The region
\2 is called auxiliary because it holds values which are internal to the datatype dec-
laration; there will be one auxiliary region for each type constructor or product
type formation in each constructor in the datatype. However, all occurrences of
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the type constructor being declared are put in the same region. Hence : : receives
type

\\1\2 \3: . ((:, \1) V ((:, \1)list[\2] , \3), \2) wwww�= .[put(\3)] ((:, \1) list[\2] , \3).

Sequential datatype declarations pose an interesting design problem:

datatype t1=C of int

datatype t2=C of t1 V t1

datatype t3=C of t2 V t2

} } }

datatype ti=C of ti&1 V ti&1

} } }

In the declaration of ti , should one give the two occurrences of ti&1 on the right-
hand side the same or different regions? If one gives them the same regions, one
introduces unnecessary sharing; if one gives them different regions, the number of
auxiliary region variables grows exponentially in i, potentially leading to slow
region inference. A third possibility is to put a limit on the number of auxiliary
region variables one will allow. We have chosen the third solution, but a systematic
empirical study of different solutions has not been conducted.

12. STRENGTHS AND WEAKNESSES

The region inference rules were first implemented in a prototype system [26] and
then in the ML Kit [5]. Neither of these systems uses garbage collection. This
section records some of the experience gained from these systems, with special
emphasis on how details of the region inference rules influence memory manage-
ment. We first illustrate consequences of the region inference rules by a series of
small, but complete, examples. Then we report a few results from larger bench-
marks run on the ML Kit. Throughout, we use Standard ML syntax [19]; roughly,
fun is translated into letrec and val into let.

12.1. Small Examples

The examples are grouped according to the general point they are intended to
make.

12.1.1. Polymorphic Recursion

Generally speaking, polymorphic region recursion favours recursive functions
that have a balanced call tree (as opposed to an iterative computation, where the
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call tree is a list). We illustrate this with two examples. The first is the exponential
version of the Fibonacci function:

fun fib n=if n<=1 then 1 else fib(n&2)+fib(n&1)

val fib15=fib 15;

Due to region polymorphism, the two recursive calls of fib use different regions,
local to the body (see Fig. 2). The memory usage appears in Fig. 4.

The next example, called reynolds2 [5], is a depth-first search in a tree, using
a predicate to record the path from the root to the present node:

datatype 'a tree=
Lf

| Br of 'a V 'a tree V 'a tree
fun mk& tree 0=Lf

| mk& tree n=let val t=mk& tree(n&1)
in Br(n, t, t)
end

fun search p Lf=false
| search p (Br(x, t1, t2))=

if p (x) then true
else search (fn y O y=x orelse p (y)) t1

orelse
search (fn y O y=x orelse p y) t2

val reynolds2=search (fn & O false) (mk& tree 20)

Due to the polymorphic recursion, the recursive call of search does not put the
closures for (fn y O y=x orelse p (y)) in the same region as p, so the space
usage will be proportional to the depth of the tree. This leads to good memory
utilisation (Fig. 4).

FIG. 4. Memory used in running sample programs on the ML Kit with Regions, Version 29a3:
(i) maximal space (in bytes) used for variable size regions (one region page is 800 bytes); (ii) maximal
space (in bytes) used for fixed size regions; (iii) maximal stack size during execution (in bytes); (iv) num-
ber of bytes holding values at the end of the computation (regions on stack+data in variable sized
regions).
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By contrast, consider the first-order variant, called reynolds3, which uses a list
to represent the path. It is obtained by replacing the search function of
reynolds2 by

fun member(x, [])=false
| member(x, x' :: rest)=

x=x' orelse member(x, rest)
fun search p Lf=false

| search p (Br(x, t1, t2))=
if member(x, p) then true
else search (x :: p) t1 orelse

search (x :: p) t2
val reynolds3=search [] (mk & tree 20)

As we saw in Section 11, region inference does not distinguish between a list and
its tail, so all cons cells (one for each node in the tree) are put in the same region.
This gives poor memory utilisation, the difference from reynolds2 being
exponential in the depth of the tree (Fig. 4). More generally, in connection with a
recursive datatype, one should not count on polymorphic recursion to separate the
life-times of a value v of that type and other values of the same type contained
in v.

12.1.2. Tail Recursion

Another common pattern of computation is iteration. This is best implemented
using a recursive function whose type scheme takes the form \:� \� =� . (+ w�= .. +) (note
that the argument and result types are the same, even after region annotation).
Such a function is called a region endomorphism. Here is how to write a simple loop
to sum the numbers 1 to 100:

fun sum(p as (acc, 0))=p
| sum(acc, n)=sum(n+acc, n&1)

val sumit=*1(sum(0, 100));

In ML, all functions in principle take one argument, in this case a tuple, and
that is how it is implemented in the ML Kit. One might think that 100 pairs
would pile up in one region; however, an analysis called the storage mode analysis
[5] discovers that the region can be reset just before each pair is written, so
that in fact the region will only ever contain one pair. Memory usage is independent
of the number of iterations, in this example. By contrast, the non-tail-recursive
version

fun sum' 0=0
| sum' n=n+sum'(n&1)

val sum'it=sum' 100

uses stack space proportional to the number of iterations.
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The next program, appel1, is a variant of a program in [2]:

fun s(0)=nil
| s(i)=0 :: s(i&1)

fun length []=0
| length(x :: xs)=1+length xs

val N=100
fun f(n, x)=

let val z=length x
in if n=0 then 0 else f(n&1, s N)
end

val appel1=f(N, nil)

Here f(n, nil) uses space 3(N 2), although 3(N) should be enough. The problem
is that at each iteration a list of length N is created, put in a fresh region, and then
passed to the recursive call, which only uses the list to compute z. The list,
however, stays live till the end of the recursive call: Rule 23 and 27 tell us that the
*-bound x will be allocated throughout the evaluation of the body of f. The cure
in this case is not to use the polymorphic recursion:

fun f(p as (n, x))=
let val z=length x
in if n=0 then 0 else f(if true then (n&1, s N) else p)
end

val appel2=f(N, nil)

Now the storage mode analysis will discover that the region containing the entire
list can be reset at each iteration; this is tail call optimisation for recursive
datatypes! The above transformation is a rather indirect way of instructing the
region inference algorithm that one does not want polymorphic recursion and if the
optimiser eliminated the conditional, it would not even have the desired effect. It
would probably be better to allow programmers to state their intentions directly.
Memory consumption is in Fig. 7.

12.1.3. Higher-Order Functions

If a function f is lambda-bound, it is not region-polymorphic (Rule 23). For
example, consider
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fun foldl f acc []=acc

| foldl f acc (x :: xs)=foldl f (f(acc, x)) xs

fun concat list =foldl (op ^) " " list

fun blanks 0=[]

| blanks n=" " : : blanks(n&1)

val N=100

val string1 =concat(blanks N)

Despite the fact that foldl is region-polymorphic, the lambda-bound f is not, so
all applications of the concatenation operator ^ in concat will put their results in
the same region, leading to 3(N2) space usage. To obtain 3(N ) space usage, one
specializes foldl to ^ , uncurries the resulting function, and turns it into a region
endomorphism:

fun concat' (p as (acc, []))=p

|concat'(acc, (x :: xs))=concat'(acc ^ x, xs)

fun concat(list) =*1(concat'(" ", list))

fun blanks 0=[]

| blanks n=" " : : blanks(n&1)

val string2 =concat(blanks 100)

12.2. Larger Benchmarks

A number of benchmarks from the New Jersey Standard ML benchmark suite
have been ported to the Kit and compared (space and time usage) against execu-
tion as stand-alone programs under Standard ML of New Jersey, version 93. The
largest benchmark is Simple (1148 lines), a program which originally used arrays
of floating point numbers extensively. To make it run on the Kit (which does not
support arrays) arrays were translated into lists of references, so the ported
program is probably not indicative of how one would write the program without
arrays to start with. Life (252 lines) uses lists very extensively; Mandelbrot (170
lines) uses floating points extensively; Knuth-Bendix (752 lines) does extensive
dynamic allocation of data structures that represent terms.

Initially, programs often use more space when running on the Kit; for example,
Fig. 5 shows a region profile for the original version of the Knuth�Bendix bench-
mark, produced using Hallenberg's region profiler [10a]. The region profiler can
also pinpoint the program points which are responsible for space leaks. The source
program is then changed, to make it more region friendly. Interestingly, transfor-
mations that are good for region inference often are good for SML�NJ too (see
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FIG. 5. Region profile for Knuth�Bendix before optimisations. One region ( \122) of unbounded size,
indicated as r122inf in the picture, is responsible for most of the space leak. Additional profiling
reveals that a single program point (the application of an exception constructor to a constant string) is
responsible for all values in that region.

FIG. 6. Region profile for Knuth�Bendix after optimizations.
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FIG. 7. Comparison between stand-alone programs created with the ML Kit (using the HP PA-
RISC code generator) and SML of New Jersey, respectively. Here ``orig'' means original program, while
``impr'' means improved for region inference. All times are user time in seconds on an HP 9000 s700,
measured using the unix time command. Space is maximal resident memory in kilobytes, measured
with top, and includes code and runtime system. All values are average over three runs.

Knuth�Bendix in Fig. 7 for an example). This is not very surprising: when the static
analysis is able to infer shorter lifetimes, it may well be because the values actually
need to be live for a shorter time, and this is good for garbage collection too. The
region profile of the improved Knuth�Bendix completion is shown in Fig. 6; see
Fig. 7 for a comparison with SML of New Jersey, version 93.

12.3. Automatic Program Transformation

Apart from functions that are deliberately written as region endomorphisms, the
general rule is that the more regions are separated, the better (since it makes more
aggressive recycling of memory possible). The Kit performs optimisations which
separate regions. These include replacing let x=e1 in e2 end by e2[e1 �x] in
cases where e1 is a syntactic value and either x occurs at most once in e2 or the
value denoted by e1 is not larger than some given constant. Another optimisation,
which is implemented, is specialisation of curried functions, as in the string2
example above; however, the Kit does not attempt to turn functions into region
endomorphisms (which was the last thing we did in string2). As a matter
of principle, the Kit avoids optimisations which can lead to increased memory
usage.

Also useful is the ability of the region inference to suggest where space leaks may
be expected. If a function has compound type scheme

\\� :� =� .+1 w�= .. +2

and . contains an atomic effect of the form put(\), where \ is not amongst the
bound region variables \� , then one quite possibly has a space leak: every call of the
function might put a value into some region which is external to the function. If in
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addition \ does not occur free in +2 , that is all the more reason for concern, for the
value will not even be part of the result of the function. In other words, the function
has a side-effect at the implementation level. This can easily happen even when
there are no side-effects in the source program.

In such cases, the implementation simply issues a short warning. This turns out
to be very useful in practice.

Another usage of the inferred information is the ability to detect dead code.
Consider the rule for letregion (Rule 27). If put(\) # . and get(\) � . then what-
ever value that was put into \ was never used. For example, this can detect that
the functions f and g below are never used:

let
fun f(x)=x+1
fun g(x)=f(f(x))

in
(fn x O 3)(fn() O g 5)

end

12.4. Conclusion

As has been shown with the previous examples, it is not the case that every
ML program automatically runs well on a stack of regions. Often, one has to
program in a region-friendly style, aided by profiling tools to find space leaks.
Thus, programming with regions is different from usual ML programming, where
one relies on a garbage collector for memory management. On the other hand,
the region discipline offers what we feel is an attractive combination of the
convenience of an expressive programming language and the ability to reason
about the time and space performance of programs. The relationship between
the abstract model of the regions presented in this paper and the concrete
implementation is close enough that one can use the abstract model��combined
with the profiling tools mentioned earlier��to tune programs, often resulting in very
space efficient programs that are executed as written, with no added costs of
unbounded size.

APPENDIX A: EXAMPLE THREE�ADDRESS CODE

The three-address code which the ML Kit produces on the way to HP PA-RISC
code for the example given in Section 1 is shown below. Temporary variables start
with V. Fixed registers are used for the stack pointer (SP) and for function call and
return (stdArg, stdClos, stdRes). In this example, the compiler discovers
that all regions can be represented on the stack; in other cases, letregion and
end translate into calls of runtime system procedures that resemble lightweight
malloc and free operations.
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LABEL 1: (V main V)

}}}

AllocRegion(V43); (Vallocate global region rho1 V)
}}}

(V begin LETREGION [rho4, rho5] V)
Move(SP, V46); (V V46 :=SP, i.e. rho4 V)
Offset(SP, 12, SP);

Move(SP, V47); (V rho5 V)
Offset(SP, 12, SP);

(V begin APP --- non tail call V)

(V begin operator V)

(V begin LETREGION (rho6 eliminated) V)

(V begin LET V)

(V begin RECORD V)
Move(V47, V54); (V allocate storage for record V)
Move(5, V55); (V 5 represents 2 V)
StoreIndexL(V55, V54, 1); (V store component of record V)
Move(7, V55); (V 7 represents 3 V)
StoreIndexL(V55, V54, 2); (V store component of record V)
StoreIndexL(20, V54, 0); (V tag V)
Move(V54, V51); (V save address of record as result V)

(V end of RECORD V)

(* LET scope: V)
Move(V46, V52); (V allocate storage for closure for FN y O }}}V)
StoreIndexL(Lab5, V52, 0); (V store code pointer in closure V)
Move(V51, V53);

StoreIndexL(V53, V52, 2); (V save free variable x in closure V)
FetchVars(V43);

Move(V43, V53);

StoreIndexL(V53, V52, 2); (V save free variable rho1 in closureV)
Move(V52, V48); (V save address of closure as result V)

(V end LET V)

(V end LETREGION (rho6 eliminated) V)

(V end operator, begin operand V)
Move(11, V49); (V 11 represents 5 V)

(V end operand V)
Push(Lab4); (V push return address V)
Move(V48, stdClos);

Move(V49, stdArg);

FetchIndexL(stdClos, 0, V50); (V fetch code address from closure V)
Jmp(V50)

LABEL 4: (V return address V)
Move(stdRes, V45);

(V end APP V);
Offset(SP, t12, SP); (V end LETREGION rho5 V)
Offset(SP, t12, SP); (V end LETREGION rho4 V)
HALT

LABEL 5: (V code for function FN y O }}}V)

(V begin RECORD V)
FetchVars(V43)

Move(V43, V57);
AllocMeml(V57, 3, V57); (V allocate storage for record at rho1 V)
FetchIndexL(stdClos, 1, V59); (V access variable: x V)
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FetchIndexL(V59, 1, V58); (V extract component 0 from record. V)
StoreIndexL(V58, V57, 1); (V store component of record V)
Move(stdArg, V58); (V access variable: y V)
StoreIndexL(V58, V57, 2); (V store component of record V)
StoreIndexL(20, V57, 0); (V tag V)
More(V57, stdRes); (V save address of record as result V)

(V end of RECORD V)
(V return: V)

Pop(V56);
Jmp(V56)

APPENDIX B: NOMENCLATURE

The index refers to sections where
the concepts are introduced. For
example, the entry ``region name (r #
RegName) 2, Fig. 1, 4.1'' means that
the notion of region name is intro-
duced in Sections 2 and 4.1, appears in
Fig. 1 and that meta-variable r ranges
over region names throughout the
paper.

[ ] (region arguments) 2, 4
\ (in type schemes) 3.2, 5.1
+ (modification of finite maps) 3.1,

4.1
a (restriction of finite map) 3.1
"" (restriction of store) 4.1
A w�fin B (finite maps) 3.1
_ML�{ML (see instance)
* (function abstraction) 3
: (see type variable)
:� (sequence of type variables) 5.1
# (see claim of consistency)
1 (set of claims) 7
1* (maximal fixed point of F) 7
= (see effect variable)
=� (sequence of effect variables) 5.1
= .. (see arrow effect)
\ (see region variable)
\� (sequence of region variables) 5.1
{ (type) 5.1
_ (type scheme) 5.1
{ML (ML type) 3.2

_ML (ML type scheme) 3.2
(x, e, E ) , (x, e, E, f ) , (x, e$, VE, R)

or ( \1 } } } \k , x, e, VE, R) (see
closure)

TEML |&e : {ML (type rules for source)
3.2

E |&e � v (evaluation of source expres-
sions) 3.3

s, VE, R |&e � v, s$ (evaluation of
target expression) 4.1

TE |&e O e$ : +, . (region inference
rules) 5.2

Addr (see address)
address (a or (r, o) # Addr=RegName_

OffSet) 4.1
agreement between region environ-

ments 6
arrow effect (= ..) 5.1
at (allocation directive) 1, 4
bv (bound variables of type scheme)

5.1
c (see integer constant)
C (domain for consistency) 7
C 6, 7
co-induction 7
claim of consistency(#) 7
closure (in dynamic semantics)

source language ((x, e, E ) or
(x, e, E, f ) ) 3.3

target language ((x, e$, VE, R) or
( \1 } } } \k , x, e, VE, R) ) 4.1

connecting an effect to a store 6
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consistency 6
Dom (domain of finite map) 3.1
E (see environment)
Effect Figure 3
EffectVar (see effect variable)
effect (.) 5.1

variable (=) 5.1
atomic (') 5.1

effect substitution (Se) 5.1
Env (see environment)
environment (see also type environ-

ment and region environment)
in dynamic semantics for source

(E # Env=Var w�fin Val) 3.3
in dynamic semantics of target (VE #

TargetEnv=Var w�fin Addr) 4.1
equivalence of type schemes 5.1
f (see program variable)
F (monotonic operator on sets of

claims) 7
fev (free effect variables) 5.1
fpv (free program variables) 4.6
frv (free region variables) 4.6, 5.1
ftv (free type variables) 5.1
fv (free type, region and effect

variables) 5.1
get (get effect) 5.1
instance

in source language (_ML�{) 3.2
in target language (_�{) 5.1

integer constant (c) 3
letregion 1, 4
o (see offset)
of (projection) 3.1
offset (o) 4.1
p (see region variable)
P (powerset constructor) 7
planar domain of a store (Pdom) 4.1
polymorphism

in types 3.2, 5.1
in regions 2, 4.3, 5.1, 5.2, 10
in effects 5.1, 5.2, 10
value restriction 2, 3.2, 5.2

program variable (x or f ) 3
put (put effect) 5.1
r (see region name)

R (see region environment)
RegEnv (see region environment)
RegName (see region name)
Region=OffSet w�fin StoreVal (see also

region) 4.1
region (see also Region) 1, 4.1
region allocation 8.4
region environment (R # RegEnv=

RegVar w�fin RegName) 4.1
region function closure (( \1 } } } \k , x,

e, VE, R) ) (see closure)
region name (r # RegName) 2, Fig. 1,

4.1
region renaming 8.3
region substitution (Sr) 5.1
region variable ( \ or p) 1, 4
Rng (range of finite map) 3.1
SExp (source language) 3
TE (type environment) 5.1
TEML (ML type environment) 3.2
TExp (target language) 4
s (see store)
s(a) 4.1
S (see substitution)
Se (see effect substitution)
Sr (see region substitution)
St (see type substitution)
Store (see store)
store (s # Store=RegName w�fin Region)

4.1
StoreVal (see value, storable)
substitution (S ) 5.1
support (Supp) 5.1
sv (see value, storable)
TargetEnv (see environment)
TargetVal (see value)
TyVar (see type variable)
type ({) 5.1
type with place (+ # TypeWithPlace =

Type_RegVar) 5.1, Fig. 3
TypeWithPlace (see type with place)
type environment (TE # Var w�fin Type

Scheme_RegVar) 5.1
TypeScheme Fig. 3
type scheme (_) 5.1
type substitution (St) 5.1
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type variable (:) 3.2, 5.1
type with place (+) 5.1
Val (see value)
value

source language (v # Val) 3.3
storable (sv # StoreVal) 4.1

target language (v or a # TargetVal=
Addr) 4.1

VE (see environment)
target language (v$)

x (see program variable)
yield (Yield) 8.3
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