THEORY

THROUGH ACM COLLEGIATE PROGRAMMING CONTESTS

How formal methods can be presented in a popular — but mathematically sound —
manner to undergraduate students of various disciplines.

The role of formal methods in the development
of computer hardware and software increases as sys-
tems become more complex and require more exten-
sive efforts for their specification, design,
implementation, and verification. Simultaneously,
formal methods become increasingly complicated
because they must capture actual properties of real
systems for sound reasoning,.

A comprehensive survey of formal methods and
associated discussion of the industrial demand and
theoretical supply in this domain is beyond the scope
of this article." Instead, we discuss some problems
and experiences concerning how to make the mathe-
matical foundations of formal methods more popular
with undergraduate students of departments influ-
encing the further development and progress of
computer hardware and software. Such departments
include not only computer science but also pure
and/or applied mathematics, electrical and/or elec-
tronic engineering, and information and/or telecom-
munications technology. We consider the need for
such popularization as urgent, since in spite of the

1Perhaps the simplest way to learn more about the scope and range of formal methods
research and its industrial-strength applications is to visit the Web sites administered
by Oxford University (archive.comlab.ox.ac.uk/formal-methods.html) and NASA
(shemesh.larc.nasa.gov/fm/).

importance of formal methods for development of
reliable hardware and software this domain is not
familiar to non-professionals. In particular, under-
graduate students of mathematics, engineering, and
technology departments consider formal methods
outside of their interests, since they are either too
poor for their pure mathematics, or too pure for their
poor mathematics. We are especially concerned by
this disappointing attitude and conclude that a
deficit of popular lectures, tutorials, and papers on
this topic is the main reason for this ignorance.

Here, we intend to inspire readers from academia
and industry to consider the importance of a popu-
lar presentation of theoretical research for better
computer science education. Our experiences popu-
larizing program logics via training undergraduates
for ACM Collegiate Programming Contests moti-
vate and illustrate our discussion here.

Attitudes Toward Popularization

of Theory

A negative attitude concerning computer science
theory seems to be prevalent among university stu-
dents. But the general attitude of computer science
theorists toward popularization of their research
with undergraduates is not much better. It is useful

By NIKOLAY V. SHILOV AND KWANGKEUN YI

98 September 2002/Vol. 45, No. 9 COMMUNICATIONS OF THE ACM

to compare these attitudes with those of mathemati-
cians toward popularization of their research.

There are several well-known national and inter-
national journals on popular mathematics oriented
to a wide community of students and researchers;
two examples include Springer-Verlag's The Mathe-
matical Intelligencer and the Mathematical Associa-
tion of Americas The American Mathematical
Monthly. Both journals are published monthly, and
according to the Science Citation Index from the
Institute for Scientific Information (www.isinet.
com), the average citation frequency of the articles
in those journals is approximately 0.3 times a year.
Moreover, mathematicians have become more con-
cerned about the popularity of mathematics among
students. In particular, SIAM recently launched a
special section on education in the SIAM Review
(SIREV). As is stated in the Guidelines for SIREV
Authors [5], “In the large majority of cases, articles
should be written for students, not to faculty. Arti-
cles should provide descriptions, illustrations, and
insights regarding established or recent knowledge,
as opposed to new research results.”

In contrast, a comprehensive list of periodicals
related to computer science education [1] does not
contain any publication primarily oriented toward
popularization of computer science theory. Theoret-
ical research journals do not support popularization.
It is possible the SIGCSE Bulletin is the unique ser-
ial edition that publishes material related to experi-
ence with popularizing computer science theories.
But it is published quarterly only, is not covered by
the ISI’s Science Citation Index, and its articles’
average citation frequency is not available. Overall,
computer science theorists in comparison with
mathematicians give at least

2 journals x 12 issues each

=06

1 bulletin x 4 issues

times less attention to popularizing their research.

Attitudes concerning student contests and
olympiads are another essential difference between
mathematicians and computer science theorists. For
example, the ACM Collegiate Programming Con-
test Finals are sponsored by IBM, not by any special
interest group or research or education institution,
although this popular contest is an excellent oppor-
tunity to engage gifted students with computer sci-
ence theory. Moreover, it appears the computer
science community considered contests of this kind
outside the realm of educational activities. The
Finals of the 26th ACM contest took place this past
March in Hawaii, while one of major annual events
related to computer science education—the 33d
SIGCSE Technical Symposium in Computer Sci-
ence Education—took place three weeks earlier in
Kentucky. Both events did not provide links to each
other. This situation contrasts an attitude toward
mathematics contests. For example, the Korean
Mathematical Society (KMS) granted equal priority
to two major mathematical events hosted by Korean
mathematicians in 2000: the 41st International
Mathematical Olympiad and the KMS’2000 Inter-
national Conference “Mathematics in New Millen-
nium.” This “regional” example reflects a general
situation: mathematicians are seriously concerned by
the impact of contests.

These arguments can incorrectly lead to a conclu-
sion that an attitude toward popular presentation of
computer science theory is completely negative. To
counter this sentiment, we point out to readers the
existence of, for example, the International Summer
Schools in Marktoberdorf (www4.in.tum.de/div/
summerschool) and the European Summer Schools
in Logic, Language, and (www.cs.bham.ac.uk/~ess-
11i/). But let us also remark that the enrollment of
these schools is comparatively small (several hundred
students per year) and consists of graduate or post-
graduate students, junior scientists, or even profes-
sors. In contrast, ACM programming contests are
aimed at undergraduates and embrace thousands of
students (approximately 10,000 this year).

COMMUNICATIONS OF THE ACM September 2002/Vol. 45, No. 9 99

TRAINING SESSIONS ARE GOOD OPPORTUNITIES TO PRESENT STUDENTS WITH

CHALLENGING PROGRAMMING PROBLEMS THAT CANNOT BE SOLVED WITHOUT

THEORETICAL BACKGROUND IN SPITE OF SIMPLE FORMULATION. THE TRAINERS

SHOULD PROVIDE STUDENTS WITH BACKGROUND THEORY AS SOON AS

STUDENTS REALIZE THE PROGRAMMING COMPLEXITY OF THESE PROBLEMS.

A natural question arises: how to engage under-
graduates with theory through programming con-
tests? The first possibility, of course, is during
training sessions. Training sessions are good oppor-
tunities to present students with challenging pro-
gramming problems that cannot be solved without
theoretical background in spite of simple formula-
tion. The trainers should provide students with
background theory as soon as students realize the
programming complexity of these problems. We
would like to sketch here a brief example of how a
program logic’s tributary creek of a powerful stream
called formal methods can be presented in a popular
(but mathematically sound) form to undergraduate
students of computer science, mathematics, physics,
and technical departments.

Before presenting our experiences we discuss the
second opportunity for increasing the influence of
ACM programming contests on better computer sci-
ence education. We believe organizers of regional-
and international-level contests should provide (after
competition) comprehensive Web-based tutorials on
how to solve selected problems with background
theory and sample programs. The importance of
these tutorials is key.

How to Make Program Logics Easy

Here, we sketch an informal framework in which a
formal theory of program logics is presented for
undergraduate students. The framework is to use log-
ical games, from which we can popularize the notion
of fixed-points, from which in turn we can teach pro-
gram logics, a foundation for formal methods.

The first author of this article was a member of a
program committee for a regional middle school
mathematics contest in Russia, where the following
puzzle was suggested by the contest committee:

A set of coins consists of 14 valid and 1 false coin.
All valid coins have one and the same weight while
a false coin has a different weight. One of the valid
coins is marked while all other coins are unmarked.

100

September 2002/Vol. 45, No. 9 COMMUNICATIONS OF THE ACM

Is it possible to identify a false coin balancing coins
3 times at most?

Since both authors were coaches of undergradu-
ates for ACM International Collegiate Program-
ming Contests, a natural question concerning how
to put the puzzle for programming arose. The cor-
responding programming problem was designed
and offered to undergraduate students during train-
ing sessions—a brief form of the problem is:

Write a program with 3 inputs:

e a number N of coins under question;

e a number M of marked valid coins; and
¢ a limit K of balancings

which outputs either “impossible” or another exe-
cutable interactive program ALPHA (in the same
language) with respect to the existence of a strategy
to identify a unique false coin among N coins with
use of M marked valid coins and balancing K times
at most. ALPHA should implement an identification
strategy in the following settings. Each session with
ALPHA begins from user choice of the false coin’s
number and whether it is lighter or heavier. Then a
session consists of a series of rounds and the num-
ber of rounds in the session cannot exceed K. On
each round the program outputs two disjoint subsets
of numbers of coins to be placed on pans of a bal-
ance. User in his/her turn replies in accordance with
his/her initial choice. The session should finish with
the final output of the program ALPHA—the false
coin’s number.

Since the problem is to write a program that pro-
duces another program, we refer to the problem as
the metaprogram problem.

In this metaprogram problem case the following
game interpretation (which is very popular in math-
ematics and computer science theory) is useful due
to its methodological and pedagogical importance.
Let M and N be non-negative integer parameters

and let (N+M) coins be enumerated by consequent
numbers from 1 to (N+M). Coins with numbers in
[1...M] are valid while there is a unique false coin
among those with numbers in [(M+1)...(M+N)]. A
GAME(N,M) of two players User and Prog consists
of a series of rounds. On each round a move of Prog
is to partition the coins for the balancing: a pair of
disjoint subsets (with equal cardinalities) of
[1...(M+N)]. A possible move of User is either <, =
or >, but his/her reply must be consistent with all
constraints induced in previous rounds. Prog wins
GAME(N,M) as soon as a unique number in
[1...(M+N)] satisties all constraints induced during
the game. In this setting the metaprogram problem
can be reformulated as follows:

Write a program which, for all N = 1, K = 0, and
M = 0, generates (if possible) a winning strategy
in GAME(N,M) for Prog that uses at most K rounds.

What is a proper formalism for solving the
metaprogram problem in this new setting? A hint is
that a formalism should have explicit fixed-points.
The following informal statement is very natural for
every finite game of two players A and B: that a
player A is in a position where he/she wins against
B is equivalent to that A has a move prior to and
after which the game is not lost, but after which
every move of B leads to a position where (again) A
wins against B. In other words: a set of positions
with a winning strategy is a fixed-point of some
transformation of sets of positions.

A functional paradigm is a well-known paradigm
with explicit fixed-points, and the metaprogram
problem can be solved in this framework. But, in
accordance with regulations of ACM Collegiate
Programming Contests, programs should be writ-
ten in an imperative language such as Pascal, C,
C++, or Java. So another paradigm would be better
in this case than the functional one. It should be a
paradigm that captures imperative style and fixed-
points simultaneously. This is a Program Logics
paradigm in general, and the formalism of the
propositional mu-Calculus [3] in particular. But
this formalism is in the most comprehensive form
that relies upon transfinite induction and some
basic modal logics: it is not easy to make the mu-
Calculus easy for undergraduates. In this case
another hint is an incremental approach to the
introduction of the mu-Calculus in finite models
only. The technical details of this approach are not
appropriate for a Communications article, but read-
ers should be aware the technical memo Program
Logics Made Easy, which contains a solution for the

metaprogram problem and background theory, is

available on the Web [4].

Conclusion

The title of this article is an overt paraphrase of the
title of the earlier Communications article “Engaging
Girls With Computers Through Software Games”
[2]. This article does not purport to be a compre-
hensive survey of early education on computer sci-
ence theory or mathematical foundations of formal
methods, nor of the educational role of the ACM
Collegiate Programming Contests. This article is
merely an expression of a strong belief of both
authors that there is a deficiency of popular lectures,
tutorials, and papers on the topics discussed here.
We conclude by offering the following comments:

* Programming contests are a good opportunity for
better education and popularization of computer
science theory and mathematical foundations of
formal methods;

* Computer science journals and magazines should
promote popularization of computer science the-
ory; and

* An attitude of theorists to the popularization and
contests should and can be improved. ©

REFERENCES

1. Gal-Ezer, J. and Harel, D. What (else) should CS educators know? Com-
mun. ACM 41, 9 (Sept. 1998), 77-84.

2. Gorriez, C.M. and Menida, C. Engaging girls with computers through
software games. Commun. ACM 43, 1 (Jan. 2000), 42-49.

3. Kozen, D. and Tiuryn, J. Logics of programs. Handbook of Theoretical
Computer Science. Elsevier and The MIT Press, 1990, 789-840.

4. Shilov, N.V. and Yi, K. Program Logics Made Easy. ROPAS Technical
Memo No. 2000-7, Korea Advanced Institute of Science and Technol-
ogy; ropas.kaist.ac.kr/lib/doc/ShYi00.ps

5. Guidelines for SIAM Review Authors; www.siam.org/journals/sirev/
Revguide.htm

6. SIGCSE Annual Report. July 1997-June 1998; www.acm.org/sigcse/
98annrpt.html

NIKOLAY V. SHILOV (shilov@ropas.kaist.ac.kr) is a senior
researcher in the A.P. Ershov Institute of Informatics Systems,
Novosibirsk, Russia.

KWANGKEUN YT (kwang@ropas.kaist.ac.kr) is an associate
professor in the Computer Science department at the Korea
Advanced Institute of Science and Technology in Daejeon, Korea.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 0002-0782/02/0900 $5.00

101

COMMUNICATIONS OF THE ACM September 2002/Vol. 45, No. 9

