Collage of Static Analysis

- 0.5hr: Static Analysis Overview
- 1.5hr: Static Analysis Design Framework
- 1.0hr: Static Analysis Engineering Framework
- 1.0hr: Static Analysis of Multi-Staged Programs
Static Analysis of Multi-Staged Programs

Kwangkeun Yi

Seoul National University, Korea
http://ropas.snu.ac.kr/~kwang

2/26/2012 – 3/2/2012
17th Estonian Winter School in Computer Science, Palmse, Estonia

(co-work with I. Kim, C. Calcagno, W. Choi, B. Aktemur, M. Tatsuda)
Outline

- Multi-Staged Programming (MSP)
- Special Static Analysis of MSP (POPL’06)
- General Static Analysis of MSP (POPL’11)
program texts (code) as first class objects
“meta programming”

A general concept that subsumes
- web program’s runtime code generation
- macros & templates
- Lisp’s quasi-quotation
- partial evaluation

Common in JavaScript, Perl, PHP, Python, Lisp/Scheme, C’s macros, C++ & Haskell’s templates, C#, etc.
- divides a computation into stages
- program at stage 0: conventional program
- program at stage $n + 1$: code as data at stage n

<table>
<thead>
<tr>
<th>Stage</th>
<th>Computation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>usual + code + run</td>
<td>usual + code</td>
</tr>
<tr>
<td>> 0</td>
<td>code substitution</td>
<td>code</td>
</tr>
</tbody>
</table>
In examples, we will use Lisp-style staging constructs + only 2 stages

\[
e ::= \ldots
\]

\[
| \ ' e \quad \text{code as data}
\]

\[
| , e \quad \text{code substitution}
\]

\[
| \ \text{run } e \quad \text{execute code}
\]

- code as a value: ‘(1+1)
- code composition: let y = ‘(x+1) in ‘(\(\lambda x.\), y)
- code execution: run ‘(1+1)
Specializer/Partial evaluator

$$\text{power}(x,n) = \text{if } n=0 \text{ then } 1 \text{ else } x \times \text{power}(x,n-1)$$

v.s. $$\text{power}(x,3) = x \times x \times x$$

prepared as

let $$\text{spower}(n) = \text{if } n=0 \text{ then } '1 \text{ else } '(x*,(\text{spower} (n-1))))$$
let $$\text{fastpower} = '(\lambda x.,(\text{spower} \text{ input}))$$
in (run fastpower) 2
open code

\((x+1)\)

intentional variable-capturing substitution

\[
\text{let } y = (x+1) \text{ in } (\lambda x . , y)
\]

capture-avoiding substitution

\[
\text{let } y = (x+1) \text{ in } (\lambda x . , y + x)
\]

imperative operations with open code

\[
cell := (x+1); \ldots \text{cell := } (y 1);
\]
A static type system that supports the practice.

- type safety and
- the expressiveness of fully-fledged multi-staging operators

Previous type systems support only part of the practice.
A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze
- are dynamic entities, which
- are only estimated by static analysis

Conventional analysis may fail to handle “run e”

No general static analysis method before.
variable-capture allowed at stages > 0 (the practice of 30 yrs)

\[
\text{let } y = '(x+1) \text{ in } '(\lambda x.,y)
\]

variable-capture disallowed + “cross-stage persistence”
(language-theory orthodox)

\[
(\lambda x. 'x) 1
\]
A type system for (ML + Lisp’s quasi-quote system) supports all in multi-staged programming practice
- open code: ‘(x+1)
- unrestricted imperative operations with open code
- intentional var-capturing substitution at stages > 0
- capture-avoiding substitution at stages > 0

- conservative extension of ML’s let-polymorphism
- principal type inference algorithm

[Kim, Yi, Calcagno 2006] A Let-Polymorphic Modal Type System for Lisp-style Multi-Staged Programming
code’s type: parameterized by its expected context

\[\Box (\Gamma \triangleright int) \]

view the type environment \(\Gamma \) as a record type

\[\Gamma = \{ x : \text{int}, \ y : \text{int} \rightarrow \text{int}, \cdots \} \]

stages by the stack of type environments (modal logic S4)

\[\Gamma_0 \cdots \Gamma_n \vdash e : A \]

with “due” restrictions

- let-polymorphism for syntactic values
- monomorphic \(\Gamma \) in code type \(\Box (\Gamma \triangleright int) \)
- monomorphic store types

Natural ideas worked.
Simple Type System

Type \(A, B \) ::= \(\iota \mid A \rightarrow B \mid \square (\Gamma \triangleright A) \)

code type

\('(x+1): \triangleleft (\{x : \text{int}, \cdots \} \triangleright \text{int}) \)

typing judgment

\[
\Gamma_0 \cdots \Gamma_n \vdash e : A
\]

(TSBOX)

\[
\begin{align*}
\Gamma_0 \cdots \Gamma_n \Gamma & \vdash e : A \\
\Gamma_0 \cdots \Gamma_n \Gamma & \vdash \text{box } e : \square (\Gamma \triangleright A)
\end{align*}
\]

(TSUNBOX)

\[
\begin{align*}
\Gamma_0 \cdots \Gamma_n & \vdash e : \square (\Gamma_{n+k} \triangleright A) \\
\Gamma_0 \cdots \Gamma_n \cdots \Gamma_{n+k} & \vdash \text{unbox}_k e : A
\end{align*}
\]

(TSEVAL)

\[
\begin{align*}
\Gamma_0 \cdots \Gamma_n & \vdash e : \square (\emptyset \triangleright A) \\
\Gamma_0 \cdots \Gamma_n & \vdash \text{run } e : A
\end{align*}
\] (for alpha-equiv. at stage 0)
A combination of
- ML’s let-polymorphism
 - syntactic value restriction + multi-staged “expansiven(e)”
 - expansiven(e) = False
 \[\implies e \text{ never expands the store during its eval. at } \forall \text{stages} \leq n\]
 - e.g.) ‘(\(\lambda x.\), e) : can be expansive
 ‘(\(\lambda x.\text{run } y\)) : unexpansive

- Rémy’s record types [Rémy 1993]
 - type environments as record types with field addition
 - record subtyping + record polymorphism
Polymorphic Type System (2/2)

- if \(e \) then ‘(x+1) else ‘1: \(\Box(\{x: \text{int}\} \rho \triangleright \text{int}) \)
 - then-branch: \(\Box(\{x: \text{int}\} \rho' \triangleright \text{int}) \)
 - else-branch: \(\Box(\rho'' \triangleright \text{int}) \)

- let \(x = 'y \) in ‘((,x + w); ‘((,x 1) + z)
 \[x: \forall \alpha \forall \rho. \Box(\{y: \alpha\} \rho \triangleright \alpha) \]
 - first \(x \): \(\Box(\{y: \text{int}, w: \text{int}\} \rho' \triangleright \text{int}) \)
 - second \(x \): \(\Box(\{y: \text{int} \rightarrow \text{int}, z: \text{int}\} \rho'' \triangleright \text{int} \rightarrow \text{int}) \)
Type Inference Algorithm

- **Unification:**
 - Rémy’s unification for record type Γ
 - usual unification for new type terms such as $\square(\Gamma \rhd A)$ and $A \text{ ref}$

- **Sound and complete principal type inference:**
 - the same structure as top-down version \mathcal{M} [Lee and Yi 1998] of the \mathcal{W}
 - usual on-the-fly instantiation and unification
A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze
- are dynamic entities, which
- are only estimated by static analysis

Conventional analysis may fail to handle “run e”
- how to analyze the run of estimated program texts?

[Choi, Aktemur, Yi, Tatsuda 2011] Static Analysis of Multi-Staged Programs via Unstaging Translation
Problem in Static Analysis of Staged Programs

The set of possible code for x:

\[\{ '0, (0+2), (0+2+2), \ldots \} \]

must first be finitely approximated, e.g., by a grammar:

\[S \rightarrow 0 \mid S+2. \]

analyzing “run x” needs code, not the grammar.
Our Solution

a detour: translate, analyze, and project.

1. unstaging translation
 - proof of semantic-preserving

2. conventional static analysis
 - can apply all existing static analysis techniques

3. cast the result back in terms of original staged programs
 - a sound condition for the projection
 - i.e., to be aligned with the correspondence induced by the translation.
Translation Languages

Staged source

\[e ::= \lambda x.e \]
\[\quad e \quad e \]
\[\quad x \]
\[\quad \text{run } e \]

Unstaged target

\[e ::= \lambda x.e \]
\[\quad e \quad e \]
\[\quad x \]
\[\quad \{ \} \]
\[\quad e\{x=e\} \]
\[\quad e \cdot x \]
Translation Ideas (1/2)

- code into env-taking function:

\[(1+1) \mapsto \lambda \rho. 1+1 \]

- free variable in a code into record lookup:

\[(x+1) \mapsto \lambda \rho. (\rho \cdot x) + 1 \]

- run expression into an application:

\[\text{run } (1+1) \mapsto (\lambda \rho. 1+1)\{\} \]
code composition into an app. whose actual param. is for the code-to-be-plugged expr.:

\[\langle , y + 2 \rangle \mapsto (\lambda h. (\lambda \rho. (h \rho) + 2)) \ y \]

variable capturing into record passing+lookup:

\[(\lambda x. , (\langle x + 1 \rangle)) \mapsto \lambda \rho_1 \lambda x. ((\lambda \rho_2. (\rho_2 \cdot x) + 1) (\rho_1 \{x = x\})) \]
Translation Example

\[x := '0; \]
\[\text{repeat} \]
\[x := '(',x + 2) \]
\[\text{until } \text{cond}; \]
\[\text{run } x \]

\[x := \lambda \rho.0; \]
\[\text{repeat} \]
\[x := (\lambda h.(\lambda \rho.(h \ \rho)+2)) \ x \]
\[\text{until } \text{cond}; \]
\[x \ \{} \]
Theorem

(Simulation) Let e be a stage-n λ_S expression with no free variables such that $e \xrightarrow{n} e'$. Let $R \vdash e \mapsto (e, K)$ and $R \vdash e' \mapsto (e', K')$. Then $K(e) \xrightarrow{R;A^*} K'(e')$.

\[e \xrightarrow{n} e' \]
\[\downarrow \downarrow \quad \downarrow \downarrow \]
\[e \xrightarrow{R;A^*} e' \]
Theorem

(Inversion) Let e be a λ_S expression and R be an environment stack. If $R \vdash e \leftrightarrow (e, K)$, then $H \vdash e \leftrightarrow e$ for any H such that $K \subseteq H$.

\[e \rightarrow^n e' \quad \implies \quad e \rightarrow \mathcal{R}; A^* e' \rightarrow^n e' \]
Theorem

(Projection) Let e and e' be, respectively, a staged program and its translated unstaged version. If $\llbracket e \rrbracket \sqsubseteq \pi \llbracket e \rrbracket$ and $\alpha \circ \pi \circ \gamma \sqsubseteq \hat{\pi}$ then $\alpha \llbracket e \rrbracket \sqsubseteq \hat{\pi} \llbracket e' \rrbracket$.
Example (1/5): \([e]\) staged collecting semantics

\[
x := '0; \\
\text{repeat} \\
\quad x := '(x + 2) \\
\text{until } \text{cond}; \\
\text{run } x
\]

Collecting semantics \([e] = \]

\[
x \text{ has } \{ '0, '(0+2), '(0+2+2), \cdots \}
\]
\[
\text{run } x \text{ has } \{ 0, 2, 4, 6, \cdots \}
\]
Example (2/5): \([e]\) unstaged collecting semantics

\[
x := \lambda \rho_1.0;
\]

repeat

\[
x := (\lambda h. (\lambda \rho_2. (h \ \rho_2) + 2)) \ x
\]

until cond;

\[
x \ {}\{}
\]

Collecting semantics \([e]\) =

\[
x, h \quad \text{has} \quad \{\langle \lambda \rho_1.0, \emptyset \rangle, \langle \lambda \rho_2. (h \ \rho_2) + 2, \{h \mapsto \langle \lambda \rho_1.0 \rangle \} \rangle, \cdots \}
\]

\[
\rho_1, \rho_2 \quad \text{has} \quad \{\}
\]

\[
x \ {}\{} \quad \text{has} \quad \{0, 2, 4, 6, \cdots \}
\]
Collecting semantics are aligned:

\[[e] \subseteq \pi [e] \]

\[
x, h \quad \text{has} \quad \{ \langle \lambda \rho_1.0, \emptyset \rangle, \langle \lambda \rho_2.(h \rho_2)+2, \{ h \mapsto \langle \lambda \rho_1.0 \rangle \} \rangle, \ldots \} \]

\[
\rho_1, \rho_2 \quad \text{has} \quad \{ \}
\]

- \(\pi = \) inverse translation + removing admin stuff
- intuition

“\(\lambda \rho \)” \(\xrightarrow{\pi} \) “code indexed as \(\rho \)”

“\(h \rho \)” \(\xrightarrow{\pi} \) “code-filling by \(h \)”
Example (4/5): unstaged conventional analysis

\[
x := \lambda \rho_1.0;
\]

repeat
\[
x := (\lambda h.(\lambda \rho_2.(h \ \rho_2)+2)) \ \ x
\]
until \(\text{cond} \);
\[
x \ \{\}
\]

0-CFA analysis \(\hat{e} \) in set-constraint style

\[
x \ \text{has} \ \lambda \rho_1.0
\]
\[
x \ \text{has} \ \lambda \rho_2.(h \ \rho_2)+2 \quad (h \ \rho_2) \ \text{has} \ \ V_1 \rightarrow 0 \mid V_1+2
\]
\[
h \ \text{has} \ \lambda \rho_1.0 \quad x \ \{\} \ \text{has} \ \ V_2 \rightarrow 0 \mid V_1+2
\]
\[
h \ \text{has} \ \lambda \rho_2.(h \ \rho_2)+2
\]
Example (5/5): \(\hat{\pi} \) projection of analysis

\[
\begin{align*}
 x & \text{ has } \lambda \rho_1.0 \\
 x & \text{ has } \lambda \rho_2.(h \rho_2)+2 \\
 h & \text{ has } \lambda \rho_1.0 \\
 h & \text{ has } \lambda \rho_2.(h \rho_2)+2 \\
 x \{\} & \text{ has } V \rightarrow 0 \mid V+2
\end{align*}
\]

\[
\begin{align*}
 \hat{\pi} & \mapsto x \text{ has } S_1 \rightarrow \rho_1 \\
 \hat{\pi} & \mapsto \text{ run } x \text{ has } V \rightarrow 0 \mid V+2
\end{align*}
\]

- intuition

 "\(\lambda \rho \)" \(\hat{\pi} \mapsto "\text{code indexed as } \rho" \)

 "\(h \rho \)" \(\hat{\pi} \mapsto "\text{code-filling by } h" \)

- \(\hat{\pi} \) satisfies the safety condition: \(\alpha \circ \pi \circ \gamma \sqsubseteq \hat{\pi} \)

- and was \([e] \sqsubseteq \pi[e] \)

Hence, by the projection theorem, correct:

\[
\alpha[e] \sqsubseteq \hat{\pi}[e]
\]
• semantic-preserving unstaging translation
• sound static analysis framework using the translation

\[\begin{align*}
\left[e \right] & \in D_S \xleftrightarrow{\hat{\alpha}} \hat{D}_S \ni \left[\hat{e} \right] \\
\left[\hat{e} \right] & \in D_R \xleftrightarrow{\hat{\gamma}} \hat{D}_R \ni \left[\hat{e} \right]
\end{align*} \]

unstaging + usual static analysis + projection are sufficient.
Things to Do

- Extend the design (theory) to “string-based” (unstructured) multi-staged programming
- Realistic static analyses
 - e.g. static Javascript malware detection
- Language design for multi-staged Dalvik (for “evolving” apps)
Messages from My Lectures
Static Analysis Overview

Static Analysis Design Framework
- abstract interpretation
- static analysis design = designing a semantics
- so powerful a mindset, a great armor

Static Analysis Engineering Framework
- localizations in space and time are must
- “sparse analysis” framework without accuracy compromise
- can analyze 1MLoC C “in detail”, soundly and globally
- the a.i. mindset helps us a lot throughout our hacking

Static Analysis of Multi-Staged Programs
- MSP is common in mobile/web scripting
- a static typing that respects the practice(Lisp)
- a general static analysis framework via unstaging
- waiting for tests in practice
Static Analysis Overview

Static Analysis Design Framework
- abstract interpretation
- static analysis design = designing a semantics
- so powerful a mindset, a great armor

Static Analysis Engineering Framework
- localizations in space and time are must
- “sparse analysis” framework without accuracy compromise
- can analyze 1MLoC C “in detail”, soundly and globally
- the a.i. mindset helps us a lot throughout our hacking

Static Analysis of Multi-Staged Programs
- MSP is common in mobile/web scripting
- a static typing that respects the practice(Lisp)
- a general static analysis framework via unstaging
- waiting for tests in practice

Thank you