
Scalable Global Static Analysis,
Automation, and Secrecy

Kwangkeun Yi
Seoul National University, Korea

10/16/2018@MEMOCODE, Beijing

co-work with
Hakjoo Oh, Kihong Heo,

Wonchan Lee, Woosuk Lee,
Sungkeun Cho, Jeehoon Kang

PLDI(2014, 2012), TOPLAS(2015,
2014), SAS(2015), ICSE(2017),

VMCAI(2012),...

Message

2

• Practical: Scalable, Sound, Precise, Global Static Analyses

• General Sparse Analysis Framework for C-like Languages

• Matured: Automation (scalable anlyzr + verified validtr)

• ZooBerry System

• Possible: Analysis in Secrecy

Static Analysis: Sound, Unsound, Useful

3

program states

error states

program states

error states

program states

error states

program states

error states

sound analysis

sound & precise analysis

unsound analysis

Static Analysis Example: Abstract Equations

How to Design Sound Static Analyses?

Challenge in Static Analysis

6

Soundness

Scalability Precision
bug-finders

verifiers?

Our Story

• In 2007-9, we commercialized
• memory-bug-finding tool for full C

• designed in abstract interpretation framework

• sound in design, unsound yet scalable in reality (non-
global)

• Realistic workbench available
• “let’s try to achieve sound, precise, yet scalable global

version”

7

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Our Story: scalability

8

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

1 Million LoC

General Sparse
Analysis Framework

[TOPLAS’14, PLDI’12]

Soundness

Scalability Precision

sound-&-global version

Our Story: precision

9

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Selective X-Sensitivity
Approach

[TOPLAS’15, PLDI’14]

General Sparse
Analysis Framework

[TOPLAS’14, PLDI’12]

Soundness

Scalability Precision

sound-&-global version

Our Story: verified validator

10

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Selective X-Sensitivity
Approach

[TOPLAS’15, PLDI’14]

General Sparse
Analysis Framework

[TOPLAS’14, PLDI’12]

Soundness

Scalability Precision

Verified Validator
ZooBerry

sound-&-global version

Scalability

• Designed in the abstract interpretation framework

• To find memory safety violations in C

• buffer-overrun, memory leak, null deref., etc.

• flow-sensitive values analysis for int & ptrs
(static + dynamic)

• for the full set of C

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Abstract Semantics

• Abstract semantic function

• One abstract state that subsumes all reachable
states at each program point

: abstract semantics at point c

c

c0c0

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

Computing

Naive fixpoint algorithm Worklist algorithm

W ⇥ Worklist = 2C

X̂ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

W := C
X̂ := �c.⇧
repeat

c := choose(W)

ŝ := f̂c(
�

c���cX(c⇥))

if ŝ ⇤� X̂(c)

W := W ⌃ {c⇥ ⇥ C | c ⇥� c⇥}
X̂(c) := X̂(c) ⌥ ŝ

until W = ⌅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ ⇥ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

X̂ := X̂ ⇥ := �c.⇧
repeat

X̂ ⇥ := X̂

for all c ⇥ C do
X̂(c) := f̂c(

�
c���cX(c⇥))

until X̂ � X̂ ⇥

Figure 2.2: A naive fixpoint algorithm.

14

W ⇥ Worklist = 2C

X̂ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

W := C
X̂ := �c.⇧
repeat

c := choose(W)

ŝ := f̂c(
�

c���cX(c⇥))

if ŝ ⇤� X̂(c)

W := W ⌃ {c⇥ ⇥ C | c ⇥� c⇥}
X̂(c) := X̂(c) ⌥ ŝ

until W = ⌅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ ⇥ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

X̂ := X̂ ⇥ := �c.⇧
repeat

X̂ ⇥ := X̂

for all c ⇥ C do
X̂(c) := f̂c(

�
c���cX(c⇥))

until X̂ � X̂ ⇥

Figure 2.2: A naive fixpoint algorithm.

14

c

c0c0

The Algorithms Too Weak
To Scale

less-382 (23,822 LoC)

Precision Preserving
Sparse Analysis Framework

W ⇥ Worklist = 2C

X̂ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

W := C
X̂ := �c.⇧
repeat

c := choose(W)

ŝ := f̂c(
�

c���cX(c⇥))

if ŝ ⇤� X̂(c)

W := W ⌃ {c⇥ ⇥ C | c ⇥� c⇥}
X̂(c) := X̂(c) ⌥ ŝ

until W = ⌅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ ⇥ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

X̂ := X̂ ⇥ := �c.⇧
repeat

X̂ ⇥ := X̂

for all c ⇥ C do
X̂(c) := f̂c(

�
c���cX(c⇥))

until X̂ � X̂ ⇥

Figure 2.2: A naive fixpoint algorithm.

14

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

y

z

z

v

v

a
b

Spatial & Temporal
Localizations

Towards Sparse Version

 Analyzer computes the fixpoint of

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

• baseline non-sparse one

• realizable sparse version

î }

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;c

X̂(c0)|l).

F̂a(X̂) = �c � C.f̂c(
G

c0
l
;ac

X̂(c0)|l).

1

-

c

c0c0

Realizable Sparse One

î }

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;c

X̂(c0)|l).

F̂a(X̂) = �c � C.f̂c(
G

c0
l
;ac

X̂(c0)|l).

1

Realizable Data Dependency

Precision Preserving

If the following conditions hold

 Conditions on &

• over-approximation

• spurious definitions should be also included in uses

x:=&y *p:=&z y:=x

Def x mayDef x

x
xx

Use x
mayUse x

Realizable Sparse One

î }

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;c

X̂(c0)|l).

F̂a(X̂) = �c � C.f̂c(
G

c0
l
;ac

X̂(c0)|l).

1

Realizable Data Dependency

Precision Preserving

If the previous condition holds.

Hurdle: & Before
Analysis?

• Yes, by yet another analysis with further abstraction

• correct design

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

• abstract semantic function: flow-insensitive

Programs LOC Intervalvanilla Intervalbase Spd"1 Mem#1 Intervalsparse Spd"2 Mem#2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K 1 N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K 1 N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K 1 N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K 1 N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K 1 N/A 1 N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K 1 N/A 1 N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K 1 N/A 1 N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K 1 N/A 1 N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K 1 N/A 1 N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K 1 N/A 1 N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K 1 N/A 1 N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K 1 N/A 1 N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. 1 means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd"1 is
the speed-up of Intervalbase over Intervalvanilla. Mem#1 shows the memory savings of Intervalbase over Intervalvanilla. Spd"2 is the speed-up of Intervalsparse over Intervalbase.
Mem#2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis
Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion
Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

spatia
l

locali
zat

ion
none

spatia
l+tem

poral

locali
zat

ion

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Previous Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

• fail to preserve the original accuracy

• Not general for arbitrary analysis for full C

• tightly coupled with particular analysis (e.g.
pointer analysis for “simple” subsets of C)

vs.

•general�sparse�technique�

•selective�X-sensitive�technique�

•verified�validator

25

Q:�demand�grows�yet�a�few�hands�
A:�automation

ZooBerry System:
Automation

Motivation

•Let�everyone�jump-start�with�

•high-performance�static�analyzer�A�

•their�verified�validator�V�

•Then�with�A,�V��

•manually�add�more�eng.�to�A�if�needed�

•yet�keep�safe�by�reusing�V�for�validation

26

Overview

27

Zoo 
Berry

abs.semantics�
�&�its�proof

program

realistic�A

verified�V

analysis�result

trust/no

=�sparsity,�selectivity,�Zoo,�SparrowBerry

Analyzer�Generation

28

Zoo 
Berry

abs.�semantics�
in�Rabbit

parser

����worklist�
algm

sparse

localization

selective

machine�learning�based

alarm�clustering

abs.semantic�fn

densifier

Verified�Validator�
Generation

29

Zoo 
Berry

verification�proof�in�Coq�of�
the�generated�validator

����worklist�
���algm

abs.semantics�
proof�
in�Coq

abs.semantic�fn

30

Zoo 
Berry

program

realistic�A

verified�V

analysis�result

trust/no

V

Manual�vs�ZooBerry�

31

Pgm LOC

manual� ZooBerry ∆

analyzer validator analyzer validator analyzr+valdtor

time mem time mem time mem time mem time mem

time 2K 0 3 0 4 0 4 0 3 NaN x1.0

spell 2K 0 5 0 6 0 5 0 5 NaN x0.9

bc 14K 4 45 10 67 3 50 14 63 x1.2 x1.0

tar 28K 6 53 21 103 6 86 28 102 x1.3 x1.2

less 24K 21 144 71 218 23 220 79 323 x1.1 x1.5

wget 35K 20 118 162 254 31 278 214 306 x1.3 x1.6

bison 56K 14 120 73 222 19 162 105 208 x1.4 x1.1

screen 45K 413 780 657 1362 772 2376 705 2224 x1.4 x2.1

total 478 1268 994 2236 854 3181 1145 3234 x1.4 x1.8

*�unit:�sec,�MB

Static Analysis in Secrecy
how to analyze programs in

cipher-world

Motivation
static-analysis-as-a-service

• help more to enjoy the technology

• ecology: only two extremes, free vs expensive

• why not static analysis cloud?

Yet, they are reluctant to upload their source

Fully Homomorphic Encryption
(FHE)

• Encryption exists

• For all computable funciton , exists such that

• For static analyzer , exists such that

Our Solution: analysis of
encrypted program

1. user encrypts programs & send them to cloud

2. cloud analyzes encrypted programs

3. cloud sends encrypted results to the user

4. user decrypts the results

Bug finder

?

?
User

Program

Bug report

Fully Homomorphic Encryption
(FHE)

• A simple example (plaintext):

• Homorphic

E(m) = m+ pq + 2✏

D(c) = (c mod p) mod 2

random noise
for security, much less

than p

decryption key

m 2 Z2 = {0, 1}

Secret Static Analysis

Woosuk Lee

Abstract
This article proposes a protocol to provide a static analysis as
a web-service maintaining client’s and server’s privacy. A client
who requests a static analysis service does not want to reveal
his code to a service provider, whileas the server wants to hide
information about its static analysis from the client. The protocol is
based on the homomorphic encryption technique, which is capable
of performing encrypted computation for given encrypted inputs.
Based on the semantic security of a base encryption scheme, the
protocol prevents privacy leakages of each side.

1. Introduction
Consider a plausible situation: a client wants to use a static analysis
service without having to reveal its program code to a service
provider. On the other hand, the service provider wants to provide
its static analyzer without revealing its technical know-how or
releasing a reusable binary executable to the client.

As a solution to this ironic situation, we devised an interactive
protocol fulfilling the requirements of both sides. We provides a
way to perform secret static analysis for a given program on the
client side. Our secret static analysis protocol guarantees that 1)
secret static analysis is totally secure, in the sense that attackers
can never grasp any piece of abstract domain on which the analysis
is based, and 2) encrypted analysis results are correct, in the sense
that the decryption yields the very results of ordinary static analysis
of input programs.

In this article, we present our protocol which is generally ap-
plicable to static analysis based on finite abstract domain, and as
an example, we show how a simple sign analysis is designed and
performed secretly on the protocol.

2. Preliminaries
2.1 Basic concepts
Public-key cryptosystem In public-key cryptosystem, anyone can
encrypt messages using the public key, but only the holder of the
paired private key can decrypt. Security depends on the secrecy of
the private key.

Probabilistic encryption Probabilistic encryption is the use of
randomness in an encryption algorithm, so that when encrypting
the same message several times it will, in general, yield different
ciphertexts. To hide even partial information about the plaintext, an
encryption scheme must be probabilistic.

Homomorphic encryption Homomorphic encryption refers to
encryption schemes that enable to perform operations on encrypted
data. A homomorphic encryption E is said to preserve an operation
op if it provides op, an encrypted version of op, such that for a plain
text m,

op(E(m)) ⌘ E(op(m))

Fully Homomorphic Encryption Scheme If a homomorphic en-
cryption scheme preserves any operations, it is said to be fully ho-

momorphic. A fully homomorphic encryption scheme[1] we con-
sider preserves a series of addition(modulo 2) and multiplication
operations, i.e., for plaintexts m1, m2 2 {0, 1},

E(m1) + E(m2) ⌘ E(m1 + m2)

E(m1) ⇥ E(m2) ⌘ E(m1 ⇥ m2)

Note that addition(modulo 2) and multiplication operators function
as boolean AND, XOR gates respectively. As an arbitrary circuit
can be encoded with AND, XOR gates, the above scheme preserves
any operations.

Static Analysis We consider a static analysis designed by abstract
interpretation. In abstract interpretation, a static analysis is speci-
fied with an abstract domain D and semantic function F : D ! D,
where D is a cpo (complete partial order) and F is monotone. The
analysis’ job is to compute the following sequence until stabilized:

G

i2N
F

i(?) = F

0(?) t F

1(?) t F

2(?) t · · · (1)

where F

0(?) = ? and F

i+1(?) = F (F i(?)).

2.2 Notations
•

mp : a ciphertext encrypted under p’s public key. Decryption
using p’s private key yields the plaintext m. p may be either
c(client) or s(server).

•
mp1,p2

: a ciphertext multiply encrypted under p1’s and p2’s
public key. Decryption using both private keys results in the
plaintext.

• op
p

: a homomorphic version of operation op that permits
computation on data encrypted under p’s public key.

• Dp : encrypted abstract domain under p’s public key. As an
abstract domain consists of elements and abstract operators,
encrypted abstract domain provides encryption algorithm for
elements, and homomorphic abstract operators applicable to
among encrypted domain elements.

3. Protocol
3.1 Assumptions
1. A server and a client are “honest but curious” in the sense that

they run the protocol exactly as specified, but may try to learn as
much as possible about the input of the other from their views
of the protocol. Hence, we want the view of each side not to
leak more knowledge than necessary.

2. A crucial part of information about static analysis is abstract
domain.

3. A base encryption scheme used in the protocol is public-key
based, probabilistic, semantically secure, and fully homomor-
phic.

1 2013/12/19

Simple Points-to Analysis

• computes a minimal satisfying
derived constraints.

pt : V ar ! 2V ar

Encryption of Programs

• Encrypt by boolean flags

• 4 kinds of statement constructs

• each statement involves two vars

• for every two vars, an encrypted boolean flag

Analysis Ops in Encryption

Blinded Fixpoint in Encryption

//

//

//

Experimental Result

• HW : 2.3 GHz Intel i7, 8GB Mem SW : HElib (RLWE-based FHE library)

• Security : 72, Multiplicative depth : 20

• Maximum pointer level 2 in all pgms.

• Not count time for bootstrapping (noise decreasing operation)

• Prototypical, rarely optimized, much room for parallelization.

»<ò, AGCD0⇠ Ÿ�T8– �\ ı©– ¨⌧ ⇠ àî ÙH (Ï¯0�

�4 ‰⌧ ‰⌧ ¨©X0 ¥5‰‡ ⇣Ë, RLWE0⇠ Ÿ�T8| ¨©Xî)

•<\ ∏»‰.

p¨∞¸ AGCD0⇠@ RLWE0⇠– Dt � T88X l0î T ë@ Ω

•t à<ò, Ÿ�ÒHD ⌅t l⌅⇠0 ¥$¥ ⇠�X p�\ ı⌧§ 0Ùt
DîX‡, ¯ l– Dî\ Ÿ� °0∞(e.g. Replication ∞ Ò)D ¿–X

¿ ªt RLWE| ›X�‰.

¯Ïò D] ‰›\ t© �•1@ ®¥¿¿Ã ƒ| 8‡` êÃ\ ¨©
�•1D ‡$, AGCD0⇠ §¥X l⌅<ƒ ®ÄX�‰.

\ 1î RLWE0⇠ Ÿ�T8| t©XÏ l⌅\ D�Ïx0Ñ�X ⇠â‹
⌅t‰.ÙH(Ï¯0î 72\$�X�<p…8ı⌅@ Z1021,T8Jtî 20

<\ $�X�‰. Ÿ� ÒHD ⇠ (@ ⇠âXÏ T8 Jt� åƒ⇠t ¨Ä⇧

D⇠âX�‰.⌅¨ RLWE0⇠Ÿ�T8X¨Ä⇧@l⌅tt¨X4X¿Ã
D¡¨©`⇠àî⇠�@D»0L8–,¯‰ÿ–⌧îı8TƒT8T|

Xî É<\ t| �‡ X�‰. � åî‹⌅@ ‰⌧ ¨Ä⇧D ⇠â` Ω∞ D

î\ ⇠â‹⌅@ ⌧xX‡ ƒ∞\ Ét‰. ¯Ï¿\ ‰⌧\î ¨Ä⇧‹⌅L¿
‡$Xt T ê$» ⇠ à‰. ¯Ïò ⌅ l⌅<@ ⌅\†¿Ö l⌅<\ \�T
� pX tË¥¿¿ JX‡, L‡¨ò ê¥– Œ@ —,T Ï¿� à0 L8–

1•D •¡‹¨ Ï¿î Œ‰.

Program LOC # Var Enc Propagation Edge addition Total # Bootstrapping

toy 10 9 14s 1h 40m 16m 1h 56m 27

buthead-1.0 46 17 25s 9h 50m 57m 10h 48m 45

cd-discid-1.1 259 41 43s 88h 24m 4h 6m 92h 31m 95

\ 1: ‰ÿ∞¸ (¨Ä⇧ ‹⌅@ ‡$⇠¿ JL)

6 ∞`

¯ l¸⌧–⌧î D⌅Ÿ�T8| t©XÏ —i ⌧} Ñ�D ®(�<\

D� ⇠âXî)ïD ‡HX�‰. ⌧‹⌧)ï@ Ïx0 Ñ�¸ ⇡t 0��

t¿Ã ⌘î\ Ì`D Xî �� Ñ�D D� ⇠âXîp ¨© ⇠ à‰. ¯

l¸⌧X ∞¸<@ ¿�<\⌧î Ñ� �¡ ⌅\¯®¸ Ñ�0 ‰‰»òt
®P xú⇠¿ JD| Xî ¡i(e.g. q §†¥ ¨‹)–⌧ ‡$ ⇠ àî

 |\ �Ht‰.

19

Summing Up

42

• Practical: Scalable, Sound, Precise, Global Static Analyses

• General Sparse Analysis Framework for C-like Languages

• Matured: Automation (scalable anlyzr + verified validtr)

• ZooBerry System

• Possible: Analysis in Secrecy

• Papers: http://kwangkeunyi.snu.ac.kr/publist.html

http://kwangkeunyi.snu.ac.kr/publist.html

