Scalable Global Static Analysis, Automation, and Secrecy

Kwangkeun Yi Seoul National University, Korea

10/16/2018@MEMOCODE, Beijing

co-work with Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, Sungkeun Cho, Jeehoon Kang

PLDI(2014, 2012), TOPLAS(2015, 2014), SAS(2015), ICSE(2017), VMCAI(2012),...

Message

- Practical: Scalable, Sound, Precise, Global Static Analyses
 - General Sparse Analysis Framework for C-like Languages
- Matured: Automation (scalable anlyzr + verified validtr)
 - ZooBerry System
- Possible: Analysis in Secrecy

Static Analysis: Sound, Unsound, Useful

Automatic sound estimation of sw behaviors before execution

under many names

Static Analysis Example: Abstract Equations

x = readInt;1: while (x \leq 99) 2: x++; 3: end 4:

Capture the dynamics by abstract equations; solve; reason.

$$egin{array}{rll} x_1 &=& [-\infty,+\infty] \; or \; x_3 \ x_2 &=& x_1 \; and \; [-\infty,99] \ x_3 &=& x_2 \; \dot{+} \; 1 \ x_4 &=& x_1 \; and \; [100,+\infty] \end{array}$$

How to Design Sound Static Analyses?

Abstract Interpretation [CousotCousot]: a powerful design theory

- How to derive correct yet arbitrarily precise equations?
 - Non-obvious: ptrs, heap, exns, high-order ftns, etc.

• Define an abstract semantics function \hat{F} s.t. \cdots

• How to solve the equations in a finite time?

• Fixpoint iterations for an upperbound of $f\!i\!x\hat{F}$

Challenge in Static Analysis

Our Story

- In 2007-9, we commercialized Sparrow
 - memory-bug-finding tool for full C
 - designed in abstract interpretation framework
 - sound in design, unsound yet scalable in reality (nonglobal)
- Realistic workbench available
 - "let's try to achieve sound, precise, yet scalable global version"

Precision

Scalability

Our Story: scalability

Our Story: precision

Our Story: verified validator

Scalability

How we achieved

- sound design of Sparrow
- spatial & temporal localizations

Sparse analysis framework

- general for Al-based analyzers for C-like languages
- precision-preserving

"An important strength is that the theoretical result is very general. It could be applied to many other analyses. PLDI papers have been accepted that were simply instances of this framework." (from PLDI reviews)

- Designed in the *abstract interpretation* framework
- To find memory safety violations in C
 - buffer-overrun, memory leak, null deref., etc.
 - flow-sensitive values analysis for int & ptrs (static + dynamic)
 - for the full set of C

Abstract Semantics

• One abstract state $\in \hat{\mathbb{S}}$ that subsumes all reachable states at each program point

$$\begin{bmatrix} \hat{P} \end{bmatrix} \in \mathbb{C} \to \hat{\mathbb{S}} = fix\hat{F} \\ \hat{\mathbb{S}} = \hat{\mathbb{L}} \to \hat{\mathbb{V}}$$

 $\hat{\mathbb{L}} = Var + AllocSite + AllocSite \times FieldName$

 $\hat{\mathbb{V}} = \hat{\mathbb{Z}} \times 2^{\hat{\mathbb{L}}} \times 2^{AllocSite \times \hat{\mathbb{Z}} \times \hat{\mathbb{Z}}} \times 2^{AllocSite \times 2^{FieldName}}$

$$\hat{\mathbb{Z}} = \{ [l, u] \mid l, u \in \mathbb{Z} \cup \{-\infty, +\infty\} \land l \le u \} \cup \{\bot\}$$

Abstract semantic function

$$\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})
\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}. \hat{f}_c(\bigsqcup_{c' \mapsto c} \hat{X}(c'))$$

 $\hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}}$: abstract semantics at point c

$$\begin{array}{l} \textbf{Computing} \quad fix \hat{F} = \bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\bot}) \\ i \in \mathbb{N} \\ \hat{F}^{i}(\hat{\bot}) \\ i \in \mathbb{N} \\ \hat{F}^{i}(\hat{\bot}) \\ \hat{F}^{i}(\hat{\Box}) \\ \hat{F}^{$$

Worklist algorithm

Naive fixpoint algorithm

The Algorithms Too Weak To Scale

less-382 (23,822 LoC)

Precision Preserving Sparse Analysis Framework

Towards Sparse Version

Analyzer computes the fixpoint of $\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$

• baseline non-sparse one

$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$$

• realizable sparse version

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ \sim a \\ c' \sim a \\ c'$$

Realizable Sparse One

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ \sim a \\ c' \sim a \\ c'$$

Realizable Data Dependency

$$c_0 \stackrel{l}{\leadsto}_a c_n \triangleq \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}.$$

 $l \in \hat{\mathsf{D}}(c_0) \cap \hat{\mathsf{U}}(c_n) \land \forall i \in (0, n). l \notin \hat{\mathsf{D}}(c_i)$

Precision Preserving

$$fix\hat{F} = fix\hat{F}_a \mod \hat{D}$$

If the following conditions hold

Conditions on $\hat{D} \& \hat{U}$

- over-approximation $\hat{\mathsf{D}}(c) \supseteq \mathsf{D}(c) \land \hat{\mathsf{U}}(c) \supseteq \mathsf{U}(c)$
- spurious definitions should be also included in uses $\hat{D}(c) D(c) \subseteq \hat{U}(c) \times \mathbf{X}$

Realizable Sparse One

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a c}} \hat{X}(c')|_l).$$

Realizable Data Dependency

$$c_0 \stackrel{l}{\leadsto}_a c_n \triangleq \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}.$$

 $l \in \hat{\mathsf{D}}(c_0) \cap \hat{\mathsf{U}}(c_n) \land \forall i \in (0, n). l \notin \hat{\mathsf{D}}(c_i)$

Precision Preserving

$$fix\hat{F} = fix\hat{F}_a$$
 modulo \hat{D}

If the previous condition holds.

Hurdle: D& Û Before Analysis?

- Yes, by yet another analysis with further abstraction
- correct design

$$\mathbb{C} \to \hat{\mathbb{S}} \xrightarrow[\alpha]{\gamma} \hat{\mathbb{S}}$$

abstract semantic function: flow-insensitive

$$\hat{F}_p = \lambda \hat{s}.(\bigsqcup_{c \in \mathbb{C}} \hat{f}_c(\hat{s}))$$

Performance of sound & global Sparrow The Early Bird

		a Suntania distan	· ····································									ŧ.			
Programs	LOC	Interval _{vanilla}		Interval _{base}		$\mathbf{Spd}\uparrow_1$	1 Mem \downarrow_1			Interval _{sparse}				$\mathbf{Spd}\uparrow_2$	Mem \downarrow_2
		Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$		
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %
tar-1.13	20K (12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %
lsh-2.0.4	111K	∞	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A
nethack-3.3.0	211K	∞	N/A	$\sum_{i=1}^{n} \infty$	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A
python-2.5.1	435K	∞	N/A	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A
				haven			\frown						\mathbf{M}		
			\sim										(s, /		
			ne)		atian.	\sim					anp			
		(n	0			SP at	0.				- 14t	rio	n >		
					(alita					atian	112al			
\smile									(sp. ocan						

Previous Sparse Techniques (developed mostly in dfa community)

• Different notion of data dependency

$$\begin{array}{rcl} c_0 \stackrel{l}{\leadsto}_{\mathsf{du}} c_n & \triangleq & \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}. \\ & & l \in \mathsf{D}(c_0) \cap \mathsf{U}(c_n) \land \forall i \in (0,n). l \not\in \mathsf{D}_{\mathsf{always}}(c_i) \end{array}$$

- fail to preserve the original accuracy
- VS.
- Not general for arbitrary analysis for full C
 - tightly coupled with particular analysis (e.g. pointer analysis for "simple" subsets of C)

ZooBerry System: Automation

Q: demand grows yet a few hands A: automation

- general sparse technique
- selective X-sensitive technique
- verified validator

Motivation

- Let everyone jump-start with
 - high-performance static analyzer A
 - their verified validator V
- Then with A, V
 - manually add more eng. to A if needed
 - yet keep safe by reusing V for validation

= sparsity, selectivity, Zoo, SparrowBerry

Analyzer Generation

Manual vs ZooBerry

	LOC		mar	nual			Zoo	Δ			
Pgm		anal	yzer	validator		analyzer		validator		analyzr+valdtor	
		time	mem	time	mem	time	mem	time	mem	time	mem
time	2K	0	3	0	4	0	4	0	3	NaN	x1.0
spell	2K	0	5	0	6	0	5	0	5	NaN	x0.9
bc	14K	4	45	10	67	3	50	14	63	x1.2	x1.0
tar	28K	6	53	21	103	6	86	28	102	x1.3	x1.2
less	24K	21	144	71	218	23	220	79	323	x1.1	x1.5
wget	35K	20	118	162	254	31	278	214	306	x1.3	x1.6
bison	56K	14	120	73	222	19	162	105	208	x1.4	x1.1
screen	45K	413	780	657	1362	772	2376	705	2224	x1.4	x2.1
total		478	1268	994	2236	854	3181	1145	3234	x1.4	x1.8

* unit: sec, MB

Static Analysis in Secrecy how to analyze programs in cipher-world

Motivation static-analysis-as-a-service

- help more to enjoy the technology
- ecology: only two extremes, free vs expensive
- why not static analysis cloud?

Yet, they are reluctant to upload their source

Fully Homomorphic Encryption (FHE)

- Encryption ${\mathcal E}$ exists
- For all computable funciton F , exists F' such that

$$F'(\mathcal{E}(m)) = \mathcal{E}(F(m))$$

• For static analyzer A, exists A' such that

 $A'(\mathcal{E}(program)) = \mathcal{E}(A(program))$

Our Solution: analysis of encrypted program

- I. user encrypts programs & send them to cloud
- 2. cloud analyzes encrypted programs
- 3. cloud sends encrypted results to the user
- 4. user decrypts the results

Fully Homomorphic Encryption (FHE)

- A simple example (plaintext $m \in \mathbb{Z}_2 = \{0, 1\}$): $\mathcal{E}(m) = m + pq + 2\epsilon$ for security, much less $\mathcal{D}(c) = (c \mod p) \mod 2$ than p
 - decryption key

• Homorphic

$$\mathcal{E}(m_1) + \mathcal{E}(m_2) \equiv \mathcal{E}(m_1 + m_2)$$
$$\mathcal{E}(m_1) \times \mathcal{E}(m_2) \equiv \mathcal{E}(m_1 \times m_2)$$

Simple Points-to Analysis

• computes a minimal $pt: Var \rightarrow 2^{Var}$ satisfying derived constraints.

$$\frac{x := *y \quad pt(y) \ni z}{pt(x) \supseteq pt(z)} \qquad \frac{*x := y \quad pt(x) \ni z}{pt(z) \supseteq pt(y)}$$

$$\frac{pt(x) \supseteq pt(y) \qquad pt(y) \ni z}{pt(x) \ni z}$$

Encryption of Programs

- Encrypt by boolean flags
 - 4 kinds of statement constructs
 - each statement involves two vars
 - for every two vars, an encrypted boolean flag

Analysis Ops in Encryption

$$\frac{x := y}{pt(x) \supseteq pt(y)} \qquad \frac{x := \& y}{pt(x) \ni y}$$

$$\eta_{yx} = 1 \& \delta_{yx} = 1$$

$$\frac{x := *y \quad pt(y) \ni z}{pt(x) \supseteq pt(z)}$$

$$\eta_{zx} = \eta_{zx} + \delta_{zy} \times u_{yx}$$

$$\begin{aligned} *x := y & pt(x) \ni z \\ pt(z) \supseteq pt(y) \end{aligned}$$

$$\frac{pt(x) \supseteq pt(y) \qquad pt(y) \ni z}{pt(x) \ni z}$$

$$\eta_{yz} = \eta_{yz} + \delta_{zx} \times v_{xy}$$

$$\delta_{zx} = \delta_{zx} + \delta_{zy} \times \eta_{yx}$$

Blinded Fixpoint in Encryption

Repeat $m \times m$ times

For
$$1 \leq j,k \leq m$$

$$\eta_{kj} = \eta_{kj} + \sum_{i \neq k,j} \delta_{ki} \times u_i j \qquad //\frac{x := *y \quad pt(y) \ni z}{pt(x) \supseteq pt(z)}$$

$$\eta_{kj} = \eta_{kj} + \sum_{i \neq k,j} \delta_{ki} \times v_i j \qquad // \frac{*x := y \quad pt(x) \ni z}{pt(z) \supseteq pt(y)}$$

$$\begin{array}{ll} \text{Repeat } m-1 \text{ times} \\ \text{For } 1 \leq j,k \leq m \\ \delta_{kj} = \delta_{kj} + \sum_{i \neq k,j} \delta_{ki} \times \eta_{ij} & \qquad \textit{/\!\!/} \frac{pt(x) \supseteq pt(y) \quad pt(y) \ni z}{pt(x) \ni z} \end{array}$$

Experimental Result

- HW : 2.3 GHz Intel i7, 8GB Mem SW : HElib (RLWE-based FHE library)
- Security : 72, Multiplicative depth : 20
- Maximum pointer level 2 in all pgms.
- Not count time for bootstrapping (noise decreasing operation)
- Prototypical, rarely optimized, much room for parallelization.

Program	LOC	# Var	Enc	Propagation	Edge addition	Total	# Bootstrapping
toy	10	9	14s	1h 40m	16m	1h~56m	27
buthead-1.0	46	17	25s	9h~50m	$57\mathrm{m}$	10h 48m	45
cd-discid-1.1	259	41	43s	88h 24m	4h 6m	$92h \ 31m$	95

Summing Up

- Practical: Scalable, Sound, Precise, Global Static Analyses
 - General Sparse Analysis Framework for C-like Languages
- Matured: Automation (scalable anlyzr + verified validtr)
 - ZooBerry System
- Possible: Analysis in Secrecy
- Papers: <u>http://kwangkeunyi.snu.ac.kr/publist.html</u>