SNU 4541.574 Programming Language Theory

ack: from BCP's slides

Subtyping

Motivation

With our usual typing rule for applications

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \qquad (T-APP)$$

the term

```
(\lambda r: \{x: Nat\}, r.x) \{x=0, y=1\}
```

is not well typed.

Motivation

With our usual typing rule for applications

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \qquad (T-APP)$$

the term

```
(\lambda r: \{x: Nat\}, r.x) \{x=0, y=1\}
```

is not well typed.

But this is silly: all we're doing is passing the function a *better* argument than it needs.

Polymorphism

A *polymorphic* function may be applied to many different types of data.

Varieties of polymorphism:

- Parametric polymorphism (ML-style)
- Subtype polymorphism (OO-style)
- Ad-hoc polymorphism (overloading)

Our topic for the next few lectures is *subtype* polymorphism, which is based on the idea of *subsumption*.

Subsumption

More generally: some *types* are better than others, in the sense that a value of one can always safely be used where a value of the other is expected.

We can formalize this intuition by introducing

- 1. a subtyping relation between types, written S <: T
- 2. a rule of *subsumption* stating that, if S <: T, then any value of type S can also be regarded as having type T

$$\frac{\Gamma \vdash t : S \quad S \leq T}{\Gamma \vdash t : T}$$
(T-SUB)

Example

We will define subtyping between record types so that, for example,

```
{x:Nat, y:Nat} <: {x:Nat}</pre>
```

So, by subsumption,

```
\vdash {x=0,y=1} : {x:Nat}
```

and hence

```
(\lambda r: \{x: Nat\}, r.x) \{x=0, y=1\}
```

is well typed.

The Subtype Relation: Records

"Width subtyping" (forgetting fields on the right):

```
\{l_{i}:T_{i} \in 1...n+k\} <: \{l_{i}:T_{i} \in 1...n\} (S-RCDWIDTH)
```

Intuition: $\{x: Nat\}$ is the type of all records with *at least* a numeric x field.

Note that the record type with *more* fields is a *sub*type of the record type with fewer fields.

Reason: the type with more fields places a *stronger constraint* on values, so it describes *fewer values*.

The Subtype Relation: Records

Permutation of fields:

$$\frac{\{k_j: S_j^{j \in 1..n}\} \text{ is a permutation of } \{l_i: T_i^{i \in 1..n}\}}{\{k_j: S_j^{j \in 1..n}\} <: \{l_i: T_i^{i \in 1..n}\}} \text{ (S-RcdPerm)}$$

By using S-RCDPERM together with S-RCDWIDTH and S-TRANS allows us to drop arbitrary fields within records.

The Subtype Relation: Records

"Depth subtyping" within fields:

 $\frac{\text{for each } i \quad \mathbf{S}_i \leq \mathbf{T}_i}{\{\mathbf{l}_i : \mathbf{S}_i \stackrel{i \in 1..n}{\leq} \leq \{\mathbf{l}_i : \mathbf{T}_i \stackrel{i \in 1..n}{\leq}\}}$

(S-RCDDEPTH)

The types of individual fields may change.

Example

Variations

Real languages often choose not to adopt all of these record subtyping rules. For example, in Java,

- A subclass may not change the argument or result types of a method of its superclass (i.e., no depth subtyping)
- Each class has just one superclass ("single inheritance" of classes)

 \rightarrow each class member (field or method) can be assigned a single index, adding new indices "on the right" as more members are added in subclasses (i.e., no permutation for classes)

 A class may implement multiple *interfaces* ("multiple inheritance" of interfaces)
 I.e., permutation is allowed for interfaces.

The Subtype Relation: Arrow types

$$\frac{T_1 <: S_1 \quad S_2 <: T_2}{S_1 \rightarrow S_2 <: T_1 \rightarrow T_2}$$
(S-Arrow)

Note the order of T_1 and S_1 in the first premise. The subtype relation is *contravariant* in the left-hand sides of arrows and *covariant* in the right-hand sides.

Intuition: if we have a function f of type $S_1 \rightarrow S_2$, then we know that f accepts elements of type S_1 ; clearly, f will also accept elements of any subtype T_1 of S_1 . The type of f also tells us that it returns elements of type S_2 ; we can also view these results belonging to any supertype T_2 of S_2 . That is, any function f of type $S_1 \rightarrow S_2$ can also be viewed as having type $T_1 \rightarrow T_2$.

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type. We introduce a new type constant Top, plus a rule that makes Top a maximum element of the subtype relation.

Cf. Object in Java.

The Subtype Relation: General rules

Subtype relation

$$S <: S \qquad (S-REFL)$$

$$\frac{S <: U \qquad U <: T}{S <: T} \qquad (S-TRANS)$$

$$\{1_{i}:T_{i} \stackrel{i \in 1..n+k}{} <: \{1_{i}:T_{i} \stackrel{i \in 1..n}{} \} (S-RCDWIDTH)$$

$$\frac{for each i \qquad S_{i} <: T_{i}}{\{1_{i}:S_{i} \stackrel{i \in 1..n}{} \} <: \{1_{i}:T_{i} \stackrel{i \in 1..n}{} \}} (S-RCDDEPTH)$$

$$\frac{\{k_{j}:S_{j} \stackrel{j \in 1..n}{} \} is a permutation of \{1_{i}:T_{i} \stackrel{i \in 1..n}{} \}}{\{k_{j}:S_{j} \stackrel{j \in 1..n}{} \} <: \{1_{i}:T_{i} \stackrel{i \in 1..n}{} \}} (S-RCDPERM)$$

$$\frac{T_{1} <: S_{1} \qquad S_{2} <: T_{2}}{S_{1} \rightarrow S_{2} <: T_{1} \rightarrow T_{2}} \qquad (S-ARROW)$$

$$S <: Top \qquad (S-TOP)$$

Properties of Subtyping

Safety

Statements of progress and preservation theorems are unchanged from λ_{\rightarrow} .

Proofs become a bit more involved, because the typing relation is no longer *syntax directed*.

Given a derivation, we don't always know what rule was used in the last step. The rule $\rm T\text{-}SuB$ could appear anywhere.

$$\frac{\Gamma \vdash t : S \quad S \lt: T}{\Gamma \vdash t : T}$$
(T-SUB)

Preservation

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proof: By induction on typing derivations.

(Which cases are likely to be hard?)

Subsumption case

Case T-SUB: t : S S <: T

Subsumption case

Case T-SUB: t : S S <: T

By the induction hypothesis, $\Gamma \vdash t' : S$. By T-SUB, $\Gamma \vdash t : T$.

Subsumption case

Case T-SUB: t : S S <: T

By the induction hypothesis, $\Gamma \vdash t' : S$. By T-SUB, $\Gamma \vdash t : T$.

Not hard!

Application case

Case T-APP:

$\mathtt{t}=\mathtt{t}_1\ \mathtt{t}_2 \qquad \Gamma\vdash\mathtt{t}_1\,:\,\mathtt{T}_{11}{\rightarrow}\mathtt{T}_{12} \qquad \Gamma\vdash\mathtt{t}_2\,:\,\mathtt{T}_{11} \qquad \mathtt{T}=\mathtt{T}_{12}$

By the inversion lemma for evaluation, there are three rules by which $t \longrightarrow t'$ can be derived: E-APP1, E-APP2, and E-APPABS. Proceed by cases.

Application case

Case T-APP:

$\mathtt{t}=\mathtt{t}_1\ \mathtt{t}_2 \qquad \Gamma\vdash\mathtt{t}_1\,:\,\mathtt{T}_{11}{\rightarrow}\mathtt{T}_{12} \qquad \Gamma\vdash\mathtt{t}_2\,:\,\mathtt{T}_{11} \qquad \mathtt{T}=\mathtt{T}_{12}$

By the inversion lemma for evaluation, there are three rules by which t \longrightarrow t' can be derived: E-APP1, E-APP2, and E-APPABS. Proceed by cases.

Subcase E-APP1: $t_1 \longrightarrow t'_1$ $t' = t'_1 t_2$

The result follows from the induction hypothesis and $T\mathchar`-APP.$

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \qquad (T-APP)$$

Application case

Case T-APP:

$\mathtt{t}=\mathtt{t}_1\ \mathtt{t}_2 \qquad \Gamma\vdash\mathtt{t}_1\,:\,\mathtt{T}_{11}{\rightarrow}\mathtt{T}_{12} \qquad \Gamma\vdash\mathtt{t}_2\,:\,\mathtt{T}_{11} \qquad \mathtt{T}=\mathtt{T}_{12}$

By the inversion lemma for evaluation, there are three rules by which t \longrightarrow t' can be derived: E-APP1, E-APP2, and E-APPABS. Proceed by cases.

Subcase E-APP1: $t_1 \longrightarrow t'_1$ $t' = t'_1 t_2$

The result follows from the induction hypothesis and $T\mathchar`-APP.$

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \qquad (T-APP)$$

$$\frac{t_1 \longrightarrow t'_1}{t_1 \ t_2 \longrightarrow t'_1 \ t_2} \qquad (E-APP1)$$

 $\begin{array}{lll} \textit{Case T-APP (CONTINUED):} \\ \textbf{t} = \textbf{t}_1 \ \textbf{t}_2 & \Gamma \vdash \textbf{t}_1 : \textbf{T}_{11} {\rightarrow} \textbf{T}_{12} & \Gamma \vdash \textbf{t}_2 : \textbf{T}_{11} & \textbf{T} = \textbf{T}_{12} \\ \hline \textit{Subcase E-APP2:} & \textbf{t}_1 = \textbf{v}_1 & \textbf{t}_2 \longrightarrow \textbf{t}_2' & \textbf{t}' = \textbf{v}_1 \ \textbf{t}_2' \\ \hline \textit{Similar.} \end{array}$

Г

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \qquad (T-APP)$$
$$\frac{t_2 \longrightarrow t'_2}{v_1 \ t_2 \longrightarrow v_1 \ t'_2} \qquad (E-APP2)$$

 $\mathtt{t} = \mathtt{t}_1 \ \mathtt{t}_2 \qquad \Gamma \vdash \mathtt{t}_1 : \mathtt{T}_{11} {\rightarrow} \mathtt{T}_{12} \qquad \Gamma \vdash \mathtt{t}_2 : \mathtt{T}_{11} \qquad \mathtt{T} = \mathtt{T}_{12}$

Subcase E-APPABS:

 $\mathtt{t}_1 = \lambda \mathtt{x} : \mathtt{S}_{11}, \ \mathtt{t}_{12} \qquad \mathtt{t}_2 = \mathtt{v}_2 \qquad \mathtt{t}' = [\mathtt{x} \mapsto \mathtt{v}_2] \mathtt{t}_{12}$

By the inversion lemma for the typing relation...

 $\mathtt{t} = \mathtt{t}_1 \ \mathtt{t}_2 \qquad \Gamma \vdash \mathtt{t}_1 : \mathtt{T}_{11} {\rightarrow} \mathtt{T}_{12} \qquad \Gamma \vdash \mathtt{t}_2 : \mathtt{T}_{11} \qquad \mathtt{T} = \mathtt{T}_{12}$

Subcase E-APPABS:

 $\mathtt{t}_1 = \lambda \mathtt{x} : \mathtt{S}_{11}, \ \mathtt{t}_{12} \qquad \mathtt{t}_2 = \mathtt{v}_2 \qquad \mathtt{t}' = [\mathtt{x} \mapsto \mathtt{v}_2] \mathtt{t}_{12}$

By the inversion lemma for the typing relation... $T_{11} \leq S_{11}$ and Γ , $x:S_{11} \vdash t_{12} : T_{12}$.

 $\mathtt{t} = \mathtt{t}_1 \ \mathtt{t}_2 \qquad \Gamma \vdash \mathtt{t}_1 \, : \, \mathtt{T}_{11} {\rightarrow} \mathtt{T}_{12} \qquad \Gamma \vdash \mathtt{t}_2 \, : \, \mathtt{T}_{11} \qquad \mathtt{T} = \mathtt{T}_{12}$

Subcase E-APPABS:

 $\mathtt{t}_1 = \lambda \mathtt{x} : \mathtt{S}_{11}, \ \mathtt{t}_{12} \qquad \mathtt{t}_2 = \mathtt{v}_2 \qquad \mathtt{t}' = [\mathtt{x} \mapsto \mathtt{v}_2] \mathtt{t}_{12}$

By the inversion lemma for the typing relation... $T_{11} \leq S_{11}$ and Γ , $x:S_{11} \vdash t_{12} : T_{12}$. By T-SUB, $\Gamma \vdash t_2 : S_{11}$.

 $\mathbf{t} = \mathbf{t}_1 \ \mathbf{t}_2 \qquad \Gamma \vdash \mathbf{t}_1 : \mathbf{T}_{11} \rightarrow \mathbf{T}_{12} \qquad \Gamma \vdash \mathbf{t}_2 : \mathbf{T}_{11} \qquad \mathbf{T} = \mathbf{T}_{12}$

Subcase E-APPABS:

 $\mathtt{t}_1 = \lambda \mathtt{x} : \mathtt{S}_{11}, \ \mathtt{t}_{12} \qquad \mathtt{t}_2 = \mathtt{v}_2 \qquad \mathtt{t}' = [\mathtt{x} \mapsto \mathtt{v}_2] \mathtt{t}_{12}$

By the inversion lemma for the typing relation... $T_{11} \leq S_{11}$ and Γ , $x:S_{11} \vdash t_{12} : T_{12}$. By T-SUB, $\Gamma \vdash t_2 : S_{11}$. By the substitution lemma, $\Gamma \vdash t' : T_{12}$, and we are done.

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \qquad (T-APP)$$

 $(\lambda x:T_{11}.t_{12}) v_2 \longrightarrow [x \mapsto v_2]t_{12}$ (E-AppAbs)

Lemma: If $\Gamma \vdash \lambda x: S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \leq S_1$ and $\Gamma, x: S_1 \vdash s_2 : T_2$.

Proof: Induction on typing derivations.

 $\begin{array}{l} \label{eq:Lemma: If $\Gamma \vdash \lambda_x: S_1.s_2: T_1 \rightarrow T_2$, then $T_1 <: S_1$ and Γ, $x:S_1 \vdash s_2: T_2$. \\ $Proof:$ Induction on typing derivations.$ \end{array}$

Case T-SUB: $\lambda x: S_1. s_2 : U \qquad U \leq T_1 \rightarrow T_2$

Lemma: If $\Gamma \vdash \lambda x : S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \leq S_1$ and Γ , $x : S_1 \vdash s_2 : T_2$.

Proof: Induction on typing derivations.

Case T-SUB: $\lambda x: S_1. s_2 : U \qquad U \leq T_1 \rightarrow T_2$

We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that U is an arrow type).

Lemma: If $\Gamma \vdash \lambda x : S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \leq S_1$ and $\Gamma, x : S_1 \vdash s_2 : T_2$.

Proof: Induction on typing derivations.

Case T-SUB: $\lambda x: S_1. s_2 : U \qquad U \leq T_1 \rightarrow T_2$

We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that U is an arrow type). Need another lemma...

Lemma: If $U \leq T_1 \rightarrow T_2$, then U has the form $U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. (Proof: by induction on subtyping derivations.)

Lemma: If $\Gamma \vdash \lambda x : S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \leq S_1$ and $\Gamma, x : S_1 \vdash s_2 : T_2$.

Proof: Induction on typing derivations.

Case T-SUB: $\lambda x: S_1. s_2 : U \qquad U \leq T_1 \rightarrow T_2$

We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that ${\tt U}$ is an arrow type). Need another lemma...

Lemma: If $U \leq T_1 \rightarrow T_2$, then U has the form $U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U = U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$.

Lemma: If $\Gamma \vdash \lambda x : S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \leq S_1$ and $\Gamma, x : S_1 \vdash s_2 : T_2$.

Proof: Induction on typing derivations.

Case T-SUB: $\lambda x: S_1. s_2 : U \qquad U \leq T_1 \rightarrow T_2$

We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that ${\tt U}$ is an arrow type). Need another lemma...

Lemma: If $U \leq T_1 \rightarrow T_2$, then U has the form $U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U = U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. The IH now applies, yielding $U_1 \leq S_1$ and Γ , $x:S_1 \vdash S_2 : U_2$.

Lemma: If $\Gamma \vdash \lambda x : S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \leq S_1$ and $\Gamma, x : S_1 \vdash s_2 : T_2$.

Proof: Induction on typing derivations.

Case T-SUB: $\lambda x: S_1. s_2 : U \qquad U \leq T_1 \rightarrow T_2$

We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that ${\tt U}$ is an arrow type). Need another lemma...

Lemma: If $U \leq T_1 \rightarrow T_2$, then U has the form $U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U = U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. The IH now applies, yielding $U_1 \leq S_1$ and Γ , $x \colon S_1 \vdash s_2 \colon U_2$. From $U_1 \leq S_1$ and $T_1 \leq U_1$, rule S-TRANS gives $T_1 \leq S_1$.

Lemma: If $\Gamma \vdash \lambda x : S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \leq S_1$ and $\Gamma, x : S_1 \vdash s_2 : T_2$.

Proof: Induction on typing derivations.

Case T-SUB: $\lambda x: S_1. s_2 : U \qquad U \leq T_1 \rightarrow T_2$

We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that ${\tt U}$ is an arrow type). Need another lemma...

Lemma: If $U \leq T_1 \rightarrow T_2$, then U has the form $U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U = U_1 \rightarrow U_2$, with $T_1 \leq U_1$ and $U_2 \leq T_2$. The IH now applies, yielding $U_1 \leq S_1$ and Γ , $x:S_1 \vdash s_2 : U_2$. From $U_1 \leq S_1$ and $T_1 \leq U_1$, rule S-TRANS gives $T_1 \leq S_1$. From Γ , $x:S_1 \vdash s_2 : U_2$ and $U_2 \leq T_2$, rule T-SUB gives Γ , $x:S_1 \vdash s_2 : T_2$, and we are done.

Subtyping with Other Features

Ascription and Casting

Ordinary ascription:

Ascription and Casting

Ordinary ascription:

	$\frac{\Gamma \vdash t_1 : T}{\Gamma \vdash t_1 \text{ as } T : T}$	(T-Ascribe)
	$\mathtt{v}_1 \text{ as } \mathtt{T} \longrightarrow \mathtt{v}_1$	(E-Ascribe)
Casting (cf. Java):		
	$\frac{\Gamma \vdash t_1 : S}{\Gamma \vdash t_1 \text{ as } T : T}$	(T-Cast)
	$\frac{\vdash v_1 : T}{v_1 \text{ as } T \longrightarrow v_1}$	(E-CAST)

Subtyping and Variants

Subtyping and Lists

$\frac{S_1 <: T_1}{\text{List } S_1 <: \text{List } T_1}$

(S-LIST)

I.e., List is a covariant type constructor.

Subtyping and References

$$\frac{S_1 <: T_1 \qquad T_1 <: S_1}{\text{Ref } S_1 <: \text{Ref } T_1}$$
(S-Ref)

I.e., Ref is *not* a covariant (nor a contravariant) type constructor. Why?

Subtyping and References

$$\frac{S_1 <: T_1 \qquad T_1 <: S_1}{\text{Ref } S_1 <: \text{Ref } T_1}$$
(S-Ref)

I.e., Ref is *not* a covariant (nor a contravariant) type constructor. Why?

- When a reference is *read*, the context expects a T_1 , so if $S_1 \leq T_2$, then an G_2 is also be
 - T_1 then an S_1 is ok.

Subtyping and References

$$\frac{S_1 <: T_1 \qquad T_1 <: S_1}{\text{Ref } S_1 <: \text{Ref } T_1}$$
(S-Ref)

I.e., Ref is *not* a covariant (nor a contravariant) type constructor. Why?

- ▶ When a reference is *read*, the context expects a T₁, so if S₁ <: T₁ then an S₁ is ok.
- ▶ When a reference is *written*, the context provides a T_1 and if the actual type of the reference is Ref S_1 , someone else may use the T_1 as an S_1 . So we need $T_1 \leq S_1$.

Subtyping and Arrays

Similarly...

 $S_1 <: T_1 \qquad T_1 <: S_1$

Array $S_1 \leq Array T_1$

Subtyping and Arrays

Similarly...

This is regarded (even by the Java designers) as a mistake in the design.

References again

Observation: a value of type Ref T can be used in two different ways: as a *source* for values of type T and as a *sink* for values of type T.

References again

Observation: a value of type Ref T can be used in two different ways: as a *source* for values of type T and as a *sink* for values of type T.

Idea: Split Ref T into three parts:

- Source T: reference cell with "read cabability"
- Sink T: reference cell with "write cabability"
- Ref T: cell with both capabilities

Modified Typing Rules

$$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Source } T_{11}}{\Gamma \mid \Sigma \vdash !t_1 : T_{11}} \qquad (\text{T-Deref})$$

$$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Sink } T_{11} \qquad \Gamma \mid \Sigma \vdash t_2 : T_{11}}{\Gamma \mid \Sigma \vdash t_1 : = t_2 : \text{Unit}} (\text{T-Assign})$$

Subtyping rules

(S SOURCE)	$S_1 <: T_1$	
(S-SOURCE)	Source $S_1 <:$ Source T_1	
(S-Sink)	T ₁ <: S ₁	
()	Sink $S_1 \leq Sink T_1$	
(S-RefSource)	Ref $T_1 \leq \text{Source } T_1$	
(S-RefSink)	Ref $T_1 \leq Sink T_1$	