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Programming Language Theory

ack: from BCP’s slides



Subtyping



Motivation

With our usual typing rule for applications

Et1: T11—T1o 1ty : Ty1

FFtl to : T2

the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

(T-App)



Motivation

With our usual typing rule for applications

Et1: T11—T1o 1ty : Ty1
[ty to: T2

(T-App)

the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we're doing is passing the function a better
argument than it needs.



Polymorphism

A polymorphic function may be applied to many different types of
data.
Varieties of polymorphism:

» Parametric polymorphism (ML-style)

» Subtype polymorphism (OO-style)

» Ad-hoc polymorphism (overloading)

Our topic for the next few lectures is subtype polymorphism, which
is based on the idea of subsumption.



Subsumption

More generally: some types are better than others, in the sense
that a value of one can always safely be used where a value of the
other is expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

Nt :8 S<: T
M=t :T

(T-Sus)



Example
We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,
F {x=0,y=1} : {x:Nat}

and hence
(Ar:{x:Nat}. r.x) {x=0,y=1}

is well typed.



The Subtype Relation: Records
“Width subtyping” (forgetting fields on the right):

{1;:T; &0 mfy < {1;:T; <"} (S-ReDWIDTH)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.



The Subtype Relation: Records

Permutation of fields:

{k;j:S; /<""} is a permutation of {1;:T; '¢*""}
{kj:Sj jEl..n} <: {1/':Ti /'el..n}

(S-RCcDPERM)

By using S-RCDPERM together with S-RCDWIDTH and
S-TRANS allows us to drop arbitrary fields within records.



The Subtype Relation: Records
“Depth subtyping” within fields:

foreach i 8; < T;
{1I:S/ iElA.n} <: {l/.TI I'El.‘n}

(S-RcpDEPTH)

The types of individual fields may change.



Example

S-RepWiIDTH —— S-RcpWinTH

{a:Nat,b:Nat} <: {a:Nat} {m:Nat} <: {}

S-RepDEpTH

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}



Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

» A subclass may not change the argument or result types of a
method of its superclass (i.e., no depth subtyping)

» Each class has just one superclass (“single inheritance” of
classes)

—— each class member (field or method) can be
assigned a single index, adding new indices “on the
right” as more members are added in subclasses
(i.e., no permutation for classes)

» A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
l.e., permutation is allowed for interfaces.



The Subtype Relation: Arrow types

Ty <0 81 Sy < Th
S1—Sy <t T1—T»

(S-ARROW)

Note the order of T; and S; in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S;1—S5, then we know
that f accepts elements of type Si; clearly, £ will also accept
elements of any subtype T; of S;. The type of £ also tells us that
it returns elements of type S»; we can also view these results
belonging to any supertype T, of S,. That is, any function £ of
type S;1—5S> can also be viewed as having type T;—T».



The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Top)

Cf. Object in Java.



The Subtype Relation: General rules

S<:8 (S-REFL)

S<:U Uu<: T
S<T

(S-TrANS)



Subtype relation
S<:'s (S-REFL)

S<U U< T

(S-TRrANS)
S<: T

{1;:T; =0k < {1;:T; <"} (S-RCcDWIDTH)

foreach/ §; < T;
{1,’:8,‘ i€14.n} <: {li:Ti i€1.4n}

(S-RcpDEPTH)

{k;j:S; /<*"} is a permutation of {1;:T; '¢*""}
{k_]:S_] jelun} <: {1,:T, iElun}

(S-RCcDPERM)

Ty <: 81 Sy <: Ty

(S-ARROW)
S1—S <t T1—T»

S <: Top (S-Top)



Properties of Subtyping



Safety
Statements of progress and preservation theorems are unchanged
from A_..

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don't always know what rule was used in
the last step. The rule T-SUB could appear anywhere.

Nt :8 S< T
[t :T

(T-Sus)



Preservation

Theorem: If Tt : Tandt — t/, then T -t/ : T.
Proof: By induction on typing derivations.

(Which cases are likely to be hard?)



Subsumption case

Case T-SUB: t

S <



Subsumption case

Case T-SuB: t:8 S< T
By the induction hypothesis, [ -t/ : S. By T-SuB, [ -t : T.



Subsumption case

Case T-SuB: t:8 S< T
By the induction hypothesis, [ -t/ : S. By T-SuB, [ -t : T.

Not hard!



Application case

Case T-App:

t=1t1 to M=t1 : T11—Tio [ty : Tq1 T=Ti>
By the inversion lemma for evaluation, there are three rules by
which t — t’ can be derived: E-APpP1, E-APP2, and
E-APPABS. Proceed by cases.



Application case

Case T-APp:
t=1t1 to M=t1 : T11—Tio [ty : Tq1 T=Ti>

By the inversion lemma for evaluation, there are three rules by
which t — t’ can be derived: E-APpP1, E-APP2, and
E-APPABS. Proceed by cases.

Subcase E-Aprpr1: t] — t] t'=1t] to
The result follows from the induction hypothesis and T-APP.

M=t : T11—T12 Mty : Ty

(T-App)
M=ty to @ Tio




Application case

Case T-APp:
t=1t1 to M=t1 : T11—Tio [ty : Tq1 T=Ti>

By the inversion lemma for evaluation, there are three rules by
which t — t’ can be derived: E-APpP1, E-APP2, and
E-APPABS. Proceed by cases.

Subcase E-Aprpr1: t] — t] t'=1t] to
The result follows from the induction hypothesis and T-APP.

M=t : T11—T12 Mty : Ty
M=ty to @ Tio
t] — t)

(T-App)

; (E-App1)
t1 to — t] to



Case T-APP (CONTINUED):
t=1t1 to M=1t1: T11—Ti2 [t : T11 T="To

Subcase E-APP2:  t;=vi  to—th t/=vi t)

Similar.

M=t : T11—Ti2 Mty : Ty
M=t1 to @ T2

(T-App)

ty — th

— . (E-APP2)
1 to—v1 %)



Case T-APP (CONTINUED):
t=1t1 t M=1t1: T11—Ti2 [t : T11 T="To

Subcase E-APPABS:
t1 = Ax:S11. ti1o to = Vo t/ = [X — V2]t12

By the inversion lemma for the typing relation...



Case T-APP (CONTINUED):
t=1t1 t M=1t1: T11—Ti2 [t : T11 T="To

Subcase E-APPABS:
t1 = Ax:S11. ti1o to = Vo t/ = [X — Vg]tlg

By the inversion lemma for the typing relation... T1; <: S;; and
[, x:811 F t1p : Tio.



Case T-APP (CONTINUED):

t=1t1 t M=1t1: T11—Ti2 [t : T11 T="To
Subcase E-APPABS:

t1 = Ax:S11. ti1o to = Vo t/ = [X — Vg]tlg
By the inversion lemma for the typing relation... T1; <: S;; and
[, x:811 F t1p : Tio.
By T-SuB, I' - t5 : Sq1.



Case T-APP (CONTINUED):
t=1t1 t M=1t1: T11—Ti2 [t : T11 T="To

Subcase E-APPABS:
t1 = Ax:S11. ti1o to = Vo t/ = [X — Vg]tlg

By the inversion lemma for the typing relation... T1; <: S;; and
[, x:811 F t1p : Tio.

By T-SuB, I' - t5 : Sq1.

By the substitution lemma, [ =t/ : T15, and we are done.

M=t : T11—Ti2 Mty : T13
M-ty to @ T2

(T-App)

(Ax:Ty1.t12) vp — [X — V2]t12 (E-APPABS)



Inversion Lemma for Typing

Lemma: If [ = Ax:S1.85 : T1—T>,, then T; < S; and
[ x:S1F sy : To.
Proof: Induction on typing derivations.



Inversion Lemma for Typing

Lemma: If [ = A\x:S1.s5 : T{—T», then T; < S; and
[ x:S1F sy : To.

Proof: Induction on typing derivations.

Case T-SuB: Ax:S1.80 : U U< T1—Ts



Inversion Lemma for Typing

Lemma: If [ = A\x:S1.s5 : T{—T», then T; < S; and

[ x:S1F sy : To.

Proof: Induction on typing derivations.

Case T-SUB: Ax:S81.82 : U U< T1—To

We want to say "By the induction hypothesis...", but the IH does
not apply (we do not know that U is an arrow type).



Inversion Lemma for Typing

Lemma: If [ = A\x:S1.s5 : T{—T», then T; < S; and
[ x:S1F sy : To.
Proof: Induction on typing derivations.
Case T-SUB: Ax:S81.82 : U U< T1—To
We want to say "By the induction hypothesis...", but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...
Lemma: If U <: Ty—T», then U has the form U;— U,
with Ty <: Uy and U, <: T». (Proof: by induction on
subtyping derivations.)



Inversion Lemma for Typing

Lemma: If [ = A\x:S1.s5 : T{—T», then T; < S; and
[ x:S1F sy : To.
Proof: Induction on typing derivations.
Case T-SUB: Ax:S81.82 : U U< T1—To
We want to say "By the induction hypothesis...", but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...
Lemma: If U<: Ty—T», then U has the form U;— U,
with Ty <: Uy and U, <: T». (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U;—Us,, with T; <: U; and U, <: To.



Inversion Lemma for Typing

Lemma: If [ = A\x:S1.s5 : T{—T», then T; < S; and
[ x:S1F sy : To.
Proof: Induction on typing derivations.
Case T-SUB: Ax:S81.82 : U U< T1—To
We want to say "By the induction hypothesis...", but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...
Lemma: If U<: Ty—T», then U has the form U;— U,
with Ty <: Uy and U, <: T». (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U;—Us,, with T; <: U; and U, <: To.
The IH now applies, yielding U; <: Sy and ', x:S; F so @ Us.



Inversion Lemma for Typing

Lemma: If [ = A\x:S1.s5 : T{—T», then T; < S; and
[ x:S1F sy : To.
Proof: Induction on typing derivations.
Case T-SUB: Ax:S81.82 : U U< T1—To
We want to say "By the induction hypothesis...", but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...
Lemma: If U<: Ty—T», then U has the form U;— U,
with Ty <: Uy and U, <: T». (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U;—Us,, with T; <: U; and U, <: To.
The IH now applies, yielding U; <: Sy and ', x:S; F so @ Us.
From U; <: Sy and T; <: Uy, rule S-TRANS gives T; <: Si.



Inversion Lemma for Typing

Lemma: If [ = A\x:S1.s5 : T{—T», then T; < S; and
[ x:S1F sy : To.
Proof: Induction on typing derivations.
Case T-SUB: Ax:S81.82 : U U< T1—To
We want to say "By the induction hypothesis...", but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...
Lemma: If U<: Ty—T», then U has the form U;— U,
with Ty <: Uy and U, <: T». (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U;—Us,, with T; <: U; and U, <: To.
The IH now applies, yielding U; <: Sy and ', x:S; F so @ Us.
From U; <: Sy and T; <: Uy, rule S-TRANS gives T; <: Si.

From ', x:S1 F so @ Uy and Uy <: Ty, rule T-SUB gives

[, x:S1 F sp : Tp, and we are done.



Subtyping with Other Features



Ascription and Casting
Ordinary ascription:

Mt 0T
[ty as T: T

(T-ASCRIBE)

vias T— 1 (E-ASCRIBE)



Ascription and Casting

Ordinary ascription:

Casting (cf. Java):

Mt 0T

T-ASCRIBE
[ty as T: T ( )

vias T— 1 (E-ASCRIBE)

M=t1:8

T-CAST
[ty as T: T ( )

|—V12T

(E-CasrT)

vias T— vy



Subtyping and Variants

<1;:T; €1> <& <1 Ty etk (S-VARIANTWIDTH)

foreach /i S; < T;
<1f:si i€1..n> <: <lf:Ti i€1..n>

(S-VARIANTDEPTH)

<k;:8;/<"""> is a permutation of <1;:T; <>

<kj:Sj Jel.ny & <1;:T; >

(S-VARIANTPERM)

M=t : Ty
NE<1i=t1> : <11:T1>

(T-VARIANT)



Subtyping and Lists

S1<tTq
List S; <: List Tq

(S-LisT)

l.e., List is a covariant type constructor.



Subtyping and References

S1<i Ty T1 <: S
Ref S1 <: Ref T;

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?



Subtyping and References

S1<i Ty T1 <: S
Ref S1 <: Ref T;

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
» When a reference is read, the context expects a T1, so if S1 <
T then an S; is ok.



Subtyping and References

S1<i Ty T1 <: S
Ref S1 <: Ref T;

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
» When a reference is read, the context expects a T1, so if S1 <
T then an S; is ok.
» When a reference is written, the context provides a T; and if

the actual type of the reference is Ref S;, someone else may
use the T1 as an S;. So we need T; <: Sq.



Subtyping and Arrays
Similarly...

S1<iTq Ti <: S

(S-ARRAY)
Array S; <: Array Ty



Subtyping and Arrays
Similarly...

S1<iTq T1 <0 51

(S-ARRAY)
Array Sp <: Array T;

S1<tTq
Array S; <: Array T

(S-ARRAYJAVA)

This is regarded (even by the Java designers) as a mistake in the
design.



References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.



References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of

type T.
Idea: Split Ref T into three parts:

» Source T: reference cell with “read cabability”
» Sink T: reference cell with “write cabability”

» Ref T: cell with both capabilities



Modified Typing Rules

| £ Fty: Source Tyg
F\Zk!tllel

F|Z|—t1:SinkT11 F‘ZFTQZ

(T-DEREF)

T
H (T-AsSIGN)

N XFty:=ty : Unit



Subtyping rules

S1<tTq

Source S; <: Source T;

Ty <: 81
Sink S; <: Sink Tj

Ref T; <: Source T;

Ref T; < Sink Ty

(S-SOURCE)

(S-SINK)

(S-REFSOURCE)

(S-REFSINK)



