
SNU 4541.574
Programming Language Theory

ack: from BCP’s slides

Subtyping

Motivation

With our usual typing rule for applications

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

the term
(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.

Motivation

With our usual typing rule for applications

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

the term
(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.

Polymorphism

A polymorphic function may be applied to many different types of
data.

Varieties of polymorphism:

I Parametric polymorphism (ML-style)

I Subtype polymorphism (OO-style)

I Ad-hoc polymorphism (overloading)

Our topic for the next few lectures is subtype polymorphism, which
is based on the idea of subsumption.

Subsumption

More generally: some types are better than others, in the sense
that a value of one can always safely be used where a value of the
other is expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

` {x=0,y=1} : {x:Nat}

and hence
(λr:{x:Nat}. r.x) {x=0,y=1}

is well typed.

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.

The Subtype Relation: Records

Permutation of fields:

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

By using S-RcdPerm together with S-RcdWidth and
S-Trans allows us to drop arbitrary fields within records.

The Subtype Relation: Records

“Depth subtyping” within fields:

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

The types of individual fields may change.

Example

S-RcdWidth

{a:Nat,b:Nat} <: {a:Nat}
S-RcdWidth

{m:Nat} <: {}
S-RcdDepth

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

I A subclass may not change the argument or result types of a
method of its superclass (i.e., no depth subtyping)

I Each class has just one superclass (“single inheritance” of
classes)

−→ each class member (field or method) can be
assigned a single index, adding new indices “on the
right” as more members are added in subclasses
(i.e., no permutation for classes)

I A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
I.e., permutation is allowed for interfaces.

The Subtype Relation: Arrow types

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

Note the order of T1 and S1 in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S1→S2, then we know
that f accepts elements of type S1; clearly, f will also accept
elements of any subtype T1 of S1. The type of f also tells us that
it returns elements of type S2; we can also view these results
belonging to any supertype T2 of S2. That is, any function f of
type S1→S2 can also be viewed as having type T1→T2.

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Top)

Cf. Object in Java.

The Subtype Relation: General rules

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Properties of Subtyping

Safety

Statements of progress and preservation theorems are unchanged
from λ→.

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don’t always know what rule was used in
the last step. The rule T-Sub could appear anywhere.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

(Which cases are likely to be hard?)

Subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t′ : S. By T-Sub, Γ ` t : T.

Not hard!

Subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t′ : S. By T-Sub, Γ ` t : T.

Not hard!

Subsumption case

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t′ : S. By T-Sub, Γ ` t : T.

Not hard!

Application case

Case T-App:
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

Application case

Case T-App:
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

Application case

Case T-App:
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-App2: t1 = v1 t2 −→ t′2 t′ = v1 t′2
Similar.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)

Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the inversion lemma for the typing relation...

T11 <: S11 and
Γ, x:S11 ` t12 : T12.
By T-Sub, Γ ` t2 : S11.
By the substitution lemma, Γ ` t′ : T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and
Γ, x:S11 ` t12 : T12.

By T-Sub, Γ ` t2 : S11.
By the substitution lemma, Γ ` t′ : T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and
Γ, x:S11 ` t12 : T12.
By T-Sub, Γ ` t2 : S11.

By the substitution lemma, Γ ` t′ : T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Case T-App (continued):
t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and
Γ, x:S11 ` t12 : T12.
By T-Sub, Γ ` t2 : S11.
By the substitution lemma, Γ ` t′ : T12, and we are done.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type).

Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations.

Case T-Sub: λx:S1.s2 : U U <: T1→T2

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U <: T1→T2, then U has the form U1→U2,
with T1 <: U1 and U2 <: T2. (Proof: by induction on
subtyping derivations.)

By this lemma, we know U = U1→U2, with T1 <: U1 and U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ` s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ` s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ` s2 : T2, and we are done.

Subtyping with Other Features

Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1
(E-Cast)

Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1
(E-Cast)

Subtyping and Variants

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>
(S-VariantPerm)

Γ ` t1 : T1

Γ ` <l1=t1> : <l1:T1>
(T-Variant)

Subtyping and Lists

S1 <: T1

List S1 <: List T1
(S-List)

I.e., List is a covariant type constructor.

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

I When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

I When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

I When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

I When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

I When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

I When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1
(S-Array)

S1 <: T1

Array S1 <: Array T1
(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the
design.

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1
(S-Array)

S1 <: T1

Array S1 <: Array T1
(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the
design.

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

Idea: Split Ref T into three parts:

I Source T: reference cell with “read cabability”

I Sink T: reference cell with “write cabability”

I Ref T: cell with both capabilities

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.
Idea: Split Ref T into three parts:

I Source T: reference cell with “read cabability”

I Sink T: reference cell with “write cabability”

I Ref T: cell with both capabilities

Modified Typing Rules

Γ | Σ ` t1 : Source T11

Γ | Σ ` !t1 : T11
(T-Deref)

Γ | Σ ` t1 : Sink T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-Assign)

Subtyping rules

S1 <: T1

Source S1 <: Source T1
(S-Source)

T1 <: S1

Sink S1 <: Sink T1
(S-Sink)

Ref T1 <: Source T1 (S-RefSource)

Ref T1 <: Sink T1 (S-RefSink)

