
SNU 4541.574

Programming Language Theory

Ack: BCP’s slides

The Lambda Calculus

The lambda-calculus

I If our previous language of arithmetic expressions was the
simplest nontrivial programming language, then the
lambda-calculus is the simplest interesting programming
language...

I Turing complete
I higher order (functions as data)

I Indeed, in the lambda-calculus, all computation happens by
means of function abstraction and application.

I The e. coli of programming language research

I The foundation of many real-world programming language
designs (including ML, Haskell, Scheme, Lisp, ...)

Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml.

So plus3 (succ 0) is just a convenient shorthand for “the
function that, given x, yields succ (succ (succ x)), applied to
succ 0.”

plus3 (succ 0)

=
(λx. succ (succ (succ x))) (succ 0)

Abstractions over Functions

Consider the λ-abstraction

g = λf. f (f (succ 0))

Note that the parameter variable f is used in the function position
in the body of g. Terms like g are called higher-order functions.
If we apply g to an argument like plus3, the “substitution rule”
yields a nontrivial computation:

g plus3

= (λf. f (f (succ 0))) (λx. succ (succ (succ x)))

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) (succ 0))

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ (succ 0))))

i .e. succ (succ (succ (succ (succ (succ (succ 0))))))

Abstractions Returning Functions

Consider the following variant of g:

double = λf. λy. f (f y)

I.e., double is the function that, when applied to a function f,
yields a function that, when applied to an argument y, yields
f (f y).

Example

double plus3 0

= (λf. λy. f (f y))

(λx. succ (succ (succ x)))

0

i .e. (λy. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) y))

0

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) 0)

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ 0)))

i .e. succ (succ (succ (succ (succ (succ 0)))))

The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and
application, we can throw away all the other language primitives
and still have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a
function.

I Variables always denote functions

I Functions always take other functions as parameters

I The result of a function is always a function

Formalities

Syntax

t ::= terms

x variable

λx.t abstraction

t t application

Terminology:

I terms in the pure λ-calculus are often called λ-terms

I terms of the form λx. t are called λ-abstractions or just
abstractions

Syntactic conventions

Since λ-calculus provides only one-argument functions, all
multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to
read and write:

I Application associates to the left

E.g., t u v means (t u) v, not t (u v)

I Bodies of λ- abstractions extend as far to the right as possible

E.g., λx. λy. x y means λx. (λy. x y), not

λx. (λy. x) y

Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

Test:

λx. λy. x y z

Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

Test:

λx. λy. x y z

λx. (λy. z y) y

Values

v ::= values

λx.t abstraction value

Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Notation: [x 7→ v2]t12 is “the term that results from

substituting free occurrences of x in t12 with v12.”

Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Notation: [x 7→ v2]t12 is “the term that results from

substituting free occurrences of x in t12 with v12.”

Congruence rules:

t1 −→ t′

1

t1 t2 −→ t′

1
t2

(E-App1)

t2 −→ t′

2

v1 t2 −→ v1 t′

2

(E-App2)

Terminology

A term of the form (λx.t) v — that is, a λ-abstraction applied
to a value — is called a redex (short for “reducible expression”).

Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,

call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects
standard conventions found in most mainstream languages.

Some other common ones:

I Call by name (cf. Haskell)

I Normal order (leftmost/outermost)

I Full (non-deterministic) beta-reduction

Programming in the Lambda-Calculus

Multiple arguments

Consider the function double, which returns a function as an
argument.

double = λf. λy. f (f y)

This idiom — a λ-abstraction that does nothing but immediately
yield another abstraction — is very common in the λ-calculus.

In general, λx. λy. t is a function that, given a value v for x,
yields a function that, given a value u for y, yields t with v in
place of x and u in place of y.

That is, λx. λy. t is a two-argument function.

(Recall the discussion of currying in OCaml.)

The “Church Booleans”

tru = λt. λf. t

fls = λt. λf. f

tru v w

= (λt.λf.t) v w by definition
−→ (λf. v) w reducing the underlined redex
−→ v reducing the underlined redex

fls v w

= (λt.λf.f) v w by definition
−→ (λf. f) w reducing the underlined redex
−→ w reducing the underlined redex

Functions on Booleans

not = λb. b fls tru

That is, not is a function that, given a boolean value v, returns
fls if v is tru and tru if v is fls.

Functions on Booleans

and = λb. λc. b c fls

That is, and is a function that, given two boolean values v and w,
returns w if v is tru and fls if v is fls
Thus and v w yields tru if both v and w are tru and fls if either
v or w is fls.

Pairs

pair = λf.λs.λb. b f s

fst = λp. p tru

snd = λp. p fls

That is, pair v w is a function that, when applied to a boolean
value b, applies b to v and w.
By the definition of booleans, this application yields v if b is tru
and w if b is fls, so the first and second projection functions fst
and snd can be implemented simply by supplying the appropriate
boolean.

Example

fst (pair v w)

= fst ((λf. λs. λb. b f s) v w) by definition
−→ fst ((λs. λb. b v s) w) reducing
−→ fst (λb. b v w) reducing
= (λp. p tru) (λb. b v w) by definition

−→ (λb. b v w) tru reducing
−→ tru v w reducing
−→

∗ v as before.

Church numerals

Idea: represent the number n by a function that “repeats some
action n times.”

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

That is, each number n is represented by a term cn that takes two
arguments, s and z (for “successor” and “zero”), and applies s, n

times, to z.

Functions on Church Numerals

Successor:

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Zero test:

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Zero test:

iszro = λm. m (λx. fls) tru

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Zero test:

iszro = λm. m (λx. fls) tru

What about predecessor?

Predecessor

zz = pair c0 c0

ss = λp. pair (snd p) (scc (snd p))

prd = λm. fst (m ss zz)

Normal forms

Recall:

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?

Normal forms

Recall:

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?

Does every term evaluate to a normal form?

Divergence

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Divergence

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very
useful in itself. However, there are variants of omega that are very

useful...

Recursion in the Lambda-Calculus

Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

Yf = (λx. f (x x)) (λx. f (x x))

Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf

=
(λx. f (x x)) (λx. f (x x))

−→

f ((λx. f (x x)) (λx. f (x x)))

−→

f (f ((λx. f (x x)) (λx. f (x x))))

−→

f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→

· · ·

Yf is still not very useful, since (like omega), all it does is diverge.
Is there any way we could “slow it down”?

Delaying divergence

poisonpill = λy. omega

Note that poisonpill is a value — it it will only diverge when we
actually apply it to an argument. This means that we can safely
pass it as an argument to other functions, return it as a result from
functions, etc.

(λp. fst (pair p fls) tru) poisonpill

−→

fst (pair poisonpill fls) tru

−→
∗

poisonpill tru

−→

omega

−→

· · ·

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a
bit more tightly intertwined:

omegav =
λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y

Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:

omegav v

=
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

−→

(λx. (λy. x x y)) (λx. (λy. x x y)) v

−→

(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

=
omegav v

Another delayed variant

Suppose f is a function. Define

Zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

This term combines the “added f” from Yf with the “delayed
divergence” of omegav.

If we now apply Zf to an argument v, something interesting
happens:

Zf v

=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

−→

(λx. f (λy. x x y)) (λx. f (λy. x x y)) v

−→

f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f Zf v

Since Zf and v are both values, the next computation step will be
the reduction of f Zf — that is, before we “diverge,” f gets to do
some computation.
Now we are getting somewhere.

Recursion

Let

f = λfct.

λn.

if n=0 then 1

else n * (fct (pred n))

f looks just the ordinary factorial function, except that, in place of
a recursive call in the last time, it calls the function fct, which is
passed as a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans,
infix syntax, etc. It can easily be translated into the pure
lambda-calculus (using Church numerals, etc.).

We can use Z to “tie the knot” in the definition of f and obtain a
real recursive factorial function:

Zf 3

−→
∗

f Zf 3

=
(λfct. λn. ...) Zf 3

−→ −→

if 3=0 then 1 else 3 * (Zf (pred 3))

−→
∗

3 * (Zf (pred 3)))

−→

3 * (Zf 2)

−→
∗

3 * (f Zf 2)

· · ·

A Generic Z

If we define

Z = λf. Zf

i.e.,

Z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

then we can obtain the behavior of Zf for any f we like, simply by
applying Z to f.

Z f −→ Zf

For example:

fact = Z (λfct.

λn.

if n=0 then 1

else n * (fct (pred n)))

	The Lambda Calculus
	Formalities
	Programming in the Lambda-Calculus
	Recursion in the Lambda-Calculus

