SNU 4541.574 Programming Language Theory

Ack: BCP's slides

Equivalence of Lambda Terms

Representing Numbers

We have seen how certain terms in the lambda-calculus can be used to represent natural numbers.

```
c_0 = \lambda s. \quad \lambda z. \quad z
c_1 = \lambda s. \quad \lambda z. \quad s \quad z
c_2 = \lambda s. \quad \lambda z. \quad s \quad (s \quad z)
c_3 = \lambda s. \quad \lambda z. \quad s \quad (s \quad (s \quad z))
```

Other lambda-terms represent common operations on numbers:

$$scc = \lambda n. \lambda s. \lambda z. s (n s z)$$

Representing Numbers

We have seen how certain terms in the lambda-calculus can be used to represent natural numbers.

```
c_0 = \lambda s. \lambda z. z

c_1 = \lambda s. \lambda z. s z

c_2 = \lambda s. \lambda z. s (s z)

c_3 = \lambda s. \lambda z. s (s (s z))
```

Other lambda-terms represent common operations on numbers:

$$scc = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z)$$

In what sense can we say this representation is "correct"? In particular, on what basis can we argue that scc on church numerals corresponds to ordinary successor on numbers?

The naive approach

One possibility:

For each n, the term $scc c_n$ evaluates to c_{n+1} .

The naive approach... doesn't work

One possibility:

For each n, the term $scc c_n$ evaluates to c_{n+1} .

Unfortunately, this is false.

E.g.:

```
\begin{array}{rclcrcl} & \text{scc } c_2 & = & (\lambda \text{n. } \lambda \text{s. } \lambda \text{z. s (n s z))} & (\lambda \text{s. } \lambda \text{z. s (s z))} \\ & \longrightarrow & \lambda \text{s. } \lambda \text{z. s ((} \lambda \text{s. } \lambda \text{z. s (s z))} & \text{s z)} \\ & \neq & \lambda \text{s. } \lambda \text{z. s (s (s z))} \\ & = & c_3 \end{array}
```

A better approach

Recall the intuition behind the church numeral representation:

- ▶ a number n is represented as a term that "does something n times to something else"
- ightharpoonup scc takes a term that "does something n times to something else" and returns a term that "does something n+1 times to something else"

I.e., what we really care about is that $scc\ c_2$ behaves the same as c_3 when applied to two arguments.

```
scc c<sub>2</sub> v w = (\lambda n. \lambda s. \lambda z. s (n s z)) (\lambda s. \lambda z. s (s z)) v w
 \longrightarrow (\lambda s. \lambda z. s ((\lambda s. \lambda z. s (s z)) s z)) v w
 \longrightarrow (\lambda z. v ((\lambda s. \lambda z. s (s z)) v z)) w
 \longrightarrow v ((\lambda s. \lambda z. s (s z)) v w)
 \longrightarrow v ((\lambda z. v (v z)) w)
```

$$c_3 \vee w = (\lambda s. \lambda z. s (s (s z))) \vee w$$

 $\longrightarrow V (V (V W))$

A general question

We have argued that, although $scc\ c_2$ and c_3 do not evaluate to the same thing, they are nevertheless "behaviorally equivalent."

What, precisely, does behavioral equivalence mean?

Intuition

Roughly,

"terms s and t are behaviorally equivalent"

should mean:

"there is no 'test' that distinguishes s and t — i.e., no way to put them in the same context and observe different results."

Intuition

Roughly,

"terms s and t are behaviorally equivalent"

should mean:

"there is no 'test' that distinguishes s and t — i.e., no way to put them in the same context and observe different results."

To make this precise, we need to be clear what we mean by a *testing context* and how we are going to *observe* the results of a test.

Examples

```
 \begin{array}{l} \operatorname{tru} = \lambda \mathsf{t}. \ \lambda \mathsf{f}. \ \mathsf{t} \\ \operatorname{tru}' = \lambda \mathsf{t}. \ \lambda \mathsf{f}. \ (\lambda \mathsf{x}.\mathsf{x}) \ \mathsf{t} \\ \operatorname{fls} = \lambda \mathsf{t}. \ \lambda \mathsf{f}. \ \mathsf{f} \\ \operatorname{omega} = (\lambda \mathsf{x}. \ \mathsf{x} \ \mathsf{x}) \ (\lambda \mathsf{x}. \ \mathsf{x} \ \mathsf{x}) \\ \operatorname{poisonpill} = \lambda \mathsf{x}. \ \operatorname{omega} \\ \operatorname{placebo} = \lambda \mathsf{x}. \ \operatorname{tru} \\ Y_f = (\lambda \mathsf{x}. \ \mathsf{f} \ (\mathsf{x} \ \mathsf{x})) \ (\lambda \mathsf{x}. \ \mathsf{f} \ (\mathsf{x} \ \mathsf{x})) \\ \end{array}
```

Which of these are behaviorally equivalent?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be observationally equivalent if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be observationally equivalent if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Aside:

Is observational equivalence a decidable property?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be observationally equivalent if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Aside:

- Is observational equivalence a decidable property?
- Does this mean the definition is ill-formed?

Examples

omega and tru are not observationally equivalent

Examples

- omega and tru are not observationally equivalent
- tru and fls are observationally equivalent

Behavioral Equivalence

and

This primitive notion of observation now gives us a way of "testing" terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for every finite sequence of values v_1, v_2, \ldots, v_n , the applications

$$v_1 v_2 \dots v_n$$
 $v_1 v_2 \dots v_n$

are observationally equivalent.

Examples

These terms are behaviorally equivalent:

```
tru = \lambdat. \lambdaf. t
tru' = \lambdat. \lambdaf. (\lambdax.x) t
```

So are these:

```
omega = (\lambda x. x x) (\lambda x. x x)

Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))
```

These are not behaviorally equivalent (to each other, or to any of the terms above):

```
fls = \lambdat. \lambdaf. f
poisonpill = \lambdax. omega
placebo = \lambdax. tru
```

Given terms s and t, how do we *prove* that they are (or are not) behaviorally equivalent?

To prove that s and t are *not* behaviorally equivalent, it suffices to find a sequence of values $v_1 ldots v_n$ such that one of

$$s v_1 v_2 \dots v_n$$

and

$$t v_1 v_2 \dots v_n$$

diverges, while the other reaches a normal form.

Example:

▶ the single argument unit demonstrates that fls is not behaviorally equivalent to poisonpill:

```
fls unit
= (\lambda t. \lambda f. f) \text{ unit}
\longrightarrow^* \lambda f. f
poisonpill unit
diverges
```

Example:

the argument sequence (λx. x) poisonpill (λx. x) demonstrate that tru is not behaviorally equivalent to fls:

```
tru (\lambda x. x) poisonpill (\lambda x. x)
\longrightarrow^* (\lambda x. x)(\lambda x. x)
\longrightarrow^* \lambda x. x
fls (\lambda x. x) poisonpill (\lambda x. x)
\longrightarrow^* \text{poisonpill } (\lambda x. x), \text{ which diverges}
```

To prove that s and t are behaviorally equivalent, we have to work harder: we must show that, for every sequence of values $v_1 \dots v_n$, either both

$$s v_1 v_2 \dots v_n$$

and

$$t v_1 v_2 \dots v_n$$

diverge, or else both reach a normal form.

How can we do this?

A general proof technique (so-called *bisimulation*) is beyond the scope of this course. But, in some cases, we can find simple proofs. *Theorem:* These terms are behaviorally equivalent:

```
tru = \lambdat. \lambdaf. t
tru' = \lambdat. \lambdaf. (\lambdax.x) t
```

Proof: Consider an arbitrary sequence of values $v_1 \dots v_n$.

- For the case where the sequence has just one element (i.e., n = 1), note that both tru v₁ and tru' v₁ reach normal forms after one reduction step.
- For the case where the sequence has more than one element (i.e., n > 1), note that both tru v₁ v₂ v₃ ... vn and tru' v₁ v₂ v₃ ... vn reduce (in two steps) to v₁ v₃ ... vn. So either both normalize or both diverge.

Theorem: These terms are behaviorally equivalent:

omega =
$$(\lambda x. x x) (\lambda x. x x)$$

 $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

Proof: Both

omega
$$v_1 \dots v_n$$

and

$$Y_f v_1 \dots v_n$$

diverge, for every sequence of arguments $v_1 \dots v_n$.

Inductive Proofs about the

Lambda Calculus

Two induction principles

Like before, we have two ways to prove that properties are true of the untyped lambda calculus.

- Structural induction on terms
- ▶ Induction on a derivation of $t \longrightarrow t'$.

Let's look at an example of each.

Structural induction on terms

To show that a property \mathcal{P} holds for all lambda-terms \mathbf{t} , it suffices to show that

- P holds when t is a variable;
- ▶ \mathcal{P} holds when \mathbf{t} is a lambda-abstraction $\lambda \mathbf{x}$. \mathbf{t}_1 , assuming that \mathcal{P} holds for the immediate subterm \mathbf{t}_1 ; and
- ▶ P holds when t is an application t₁ t₂, assuming that P holds for the immediate subterms t₁ and t₂.

Structural induction on terms

To show that a property \mathcal{P} holds for all lambda-terms \mathbf{t} , it suffices to show that

- P holds when t is a variable;
- ▶ \mathcal{P} holds when \mathbf{t} is a lambda-abstraction $\lambda \mathbf{x}$. \mathbf{t}_1 , assuming that \mathcal{P} holds for the immediate subterm \mathbf{t}_1 ; and
- ▶ P holds when t is an application t₁ t₂, assuming that P holds for the immediate subterms t₁ and t₂.

N.b.: The variant of this principle where "immediate subterm" is replaced by "arbitrary subterm" is also valid. (Cf. *ordinary induction* vs. *complete induction* on the natural numbers.)

An example of structural induction on terms

Define the set of free variables in a lambda-term as follows:

$$FV(x) = \{x\}$$

$$FV(\lambda x. t_1) = FV(t_1) \setminus \{x\}$$

$$FV(t_1 t_2) = FV(t_1) \cup FV(t_2)$$

Define the size of a lambda-term as follows:

$$\begin{aligned} & \textit{size}(\textbf{x}) = 1 \\ & \textit{size}(\lambda \textbf{x}. \textbf{t}_1) = \textit{size}(\textbf{t}_1) + 1 \\ & \textit{size}(\textbf{t}_1 \ \textbf{t}_2) = \textit{size}(\textbf{t}_1) + \textit{size}(\textbf{t}_2) + 1 \end{aligned}$$

Theorem: $|FV(t)| \leq size(t)$.

An example of structural induction on terms

```
Theorem: |FV(t)| \leq size(t).
```

Proof: By induction on the structure of t.

- ▶ If t is a variable, then |FV(t)| = 1 = size(t).
- ▶ If t is an abstraction λx . t_1 , then

```
|FV(t)|
= |FV(t_1) \setminus \{x\}| by defn
\leq |FV(t_1)| by arithmetic
\leq size(t_1) by induction hypothesis
\leq size(t_1) + 1 by arithmetic
= size(t) by defn.
```

An example of structural induction on terms

Theorem: $|FV(t)| \leq size(t)$.

Proof: By induction on the structure of t.

```
If t is an application t_1 t_2, then |FV(t)|
= |FV(t_1) \cup FV(t_2)| \qquad \text{by defn}
\leq \max(|FV(t_1)|, |FV(t_2)|) \qquad \text{by arithmetic}
\leq \max(size(t_1), size(t_2)) \qquad \text{by IH and arithmetic}
\leq |size(t_1)| + |size(t_2)| \qquad \text{by arithmetic}
\leq |size(t_1)| + |size(t_2)| + 1 \qquad \text{by arithmetic}
= size(t) \qquad \text{by defn.}
```

Induction on derivations

Recall that the reduction relation is defined as the smallest binary relation on terms satisfying the following rules:

$$\begin{array}{cccc} (\lambda \mathtt{x.t_{12}}) & \mathtt{v_2} \longrightarrow [\mathtt{x} \mapsto \mathtt{v_2}]\mathtt{t_{12}} & & (\text{E-AppAbs}) \\ \\ & \frac{\mathtt{t_1} \longrightarrow \mathtt{t_1'}}{\mathtt{t_1} & \mathtt{t_2} \longrightarrow \mathtt{t_1'} & \mathtt{t_2}} & & \\ \\ & \frac{\mathtt{t_2} \longrightarrow \mathtt{t_2'}}{\mathtt{v_1} & \mathtt{t_2} \longrightarrow \mathtt{v_1} & \mathtt{t_2'}} & & (\text{E-App2}) \end{array}$$

Induction on derivations

Induction principle for the small-step evaluation relation.

To show that a property $\mathcal P$ holds for all derivations of $t \longrightarrow t'$, it suffices to show that

- P holds for all derivations that use the rule E-AppAbs;
- P holds for all derivations that end with a use of E-App1 assuming that P holds for all subderivations; and
- ▶ P holds for all derivations that end with a use of E-App2 assuming that P holds for all subderivations.

Example

Theorem: if $t \longrightarrow t'$ then $FV(t) \supseteq FV(t')$.

Induction on derivations

We must prove, for all derivations of $t \longrightarrow t'$, that $FV(t) \supseteq FV(t')$.

There are three cases.

Induction on derivations

We must prove, for all derivations of $t \longrightarrow t'$, that $FV(t) \supseteq FV(t')$.

There are three cases.

▶ If the derivation of $t \longrightarrow t'$ is just a use of E-AppAbs, then t is $(\lambda x.t_1)v$ and t' is $[x] \longrightarrow v]t_1$. Reason as follows:

$$FV(t) = FV((\lambda x.t_1)v)$$

$$= FV(t_1)/\{x\} \cup FV(v)$$

$$\supseteq FV([x|\rightarrow v]t_1)$$

$$= FV(t')$$

▶ If the derivation ends with a use of E-App1, then t has the form t_1 t_2 and t' has the form t_1' t_2 , and we have a subderivation of $t_1 \longrightarrow t_1'$

By the induction hypothesis, $FV(t_1) \supseteq FV(t_1')$. Now calculate:

FV(t) = FV(t₁ t₂)
= FV(t₁)
$$\cup$$
 FV(t₂)
 \supseteq FV(t'₁) \cup FV(t₂)
= FV(t'₁ t₂)
= FV(t')

▶ If the derivation ends with a use of E-App1, then t has the form t_1 t_2 and t' has the form t_1' t_2 , and we have a subderivation of $t_1 \longrightarrow t_1'$

By the induction hypothesis, $FV(t_1) \supseteq FV(t'_1)$. Now calculate:

$$FV(t) = FV(t_1 t_2) = FV(t_1) \cup FV(t_2) \supseteq FV(t'_1) \cup FV(t_2) = FV(t'_1 t_2) = FV(t')$$

▶ If the derivation ends with a use of E-App2, the argument is similar to the previous case.