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int *c = (int *)malloc(sizeof(int)*10);

cfi] = 1 c[i+f()] = 1; c[*k + (*g)O] = L,
x=¢x[1] =1,

y = c+f(); yli] = 1;

z->a =g (z>a)[i] = 1;

foo(c+2); int foo(int *d) { ... d[i] = 1; ...}
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Pointer = BaseAddr x Size x Offset
Machine = Stack x Env x Mem x Cmd x Dump

For program ‘“dec™ e", its semantics is IfpF

I 2(Machine“’) _ 2(Machine“’)

F(X) = {(0,0,0,dect e,0)}

U{s0S1 .- Sn+1]5051 ... 8n € X, Spn — Snt1}

The transition relation — is defined for each C construct.
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Pointer = AllocCite x 7 x 7
Z = {L}yu{[a,b)]abeZU{-o0,00},a<b}
aP = {dp|peP}
a{a,s,0) = (L]s,8],[0,0]) a € allocated-at(¢)
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Machine = Stack x Mem x Cmd x Dz[mp

For program dec™ e, its abstract semantics is lpr:

F . 2(Ma£hinew) N 2(Ma£hinew)

P(X) = {(L, L, L dect e, 1)}
U{5051 ... 8n41|5081-..8n € X, 5, =7 5,11}

The abstract transition relation —# is defined for each C
construct.
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@ The equations that we solve are about the abstract program
states T'(I — I') at each flow edge | — .

o A flow edge | — I’ is between two program points [ and I
that are linked by the evaluation:

(I, X) =7 (', X").

@ Suppose there are two edges [; — [ and I3 — [ flowing into [.
The equation for edge | — ' is

Tl —1)=X where (I,T(l; — )UT(ly — 1)) =7 (', X).
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@ The fixpoint algorithm is a working set algorithm.
e The working set consists of equations whose right-hand-side
we have to re-evaluate.
e On behalf of the equation for T'(I — I’), we only use the
program point [ for the working set element.
o When a computed machine state for T'(I — ') is moved, we
add the next program point I’ to the working set.

@ The fixpoint algorithm consists of two parts: widening
iterations followed by narrowing iterations.
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@ Unique renaming: variable names are used for abstract
locations

@ Narrowing after widening

e Context pruning (backward analysis): precise information is
extracted from conditional expressions of branch expression.

@ Polyvariant analysis: function-inlining effect by labeling
function-body expressions uniquely to each call-site.

@ Static loop unrolling: loop-unrolling effect by labeling
loop-body expressions uniquely to each iteration.
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@ Selective join: the abstract machine join (or the partial order
operation) consider only those parts that have been moved.

@ Stack obviation: the abstract machine's stack component is
not used when joining abstract machines.

e Wait-at-join: a way of controlling the order of selecting things
to do from the worklist.
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