SNU 4541.664A Program Analysis
Spring 2005
Note 13

Prof. Kwangkeun Yi

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

[k o Z t]xtel 3 AA B4 79 A
Airac: C Z2 739 g Qd A 2 &

Mr &
X
N

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

Airac: C Z2I7#9] g ¢ld A o7 HA7)

CZa 3o wjgd Ad» o7

int *c = (int *)malloc(sizeof(int)*10);

cfi] = 1 c[i+f()] = 1; c[*k + (*g)O] = L,
x=¢x[1] =1,

y = c+f(); yli] = 1;

z->a =g (z>a)[i] = 1;

foo(c+2); int foo(int *d) { ... d[i] = 1; ...}

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

2kl ek AR B 7)) AL Airac: C =289 ujg QlelA o7 B A

Fej 73]

Pointer = BaseAddr x Size x Offset
Machine = Stack x Env x Mem x Cmd x Dump

For program ‘“dec™ e", its semantics is IfpF

I 2(Machine“’) _ 2(Machine“’)

F(X) = {(0,0,0,dect e,0)}

U{s0S1 .- Sn+1]5051 ... 8n € X, Spn — Snt1}

The transition relation — is defined for each C construct.

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

2Pointer L 2Poi;1ter

Pointer = AllocCite x 7 x 7
Z = {L}yu{[a,b)]abeZU{-o0,00},a<b}
aP = {dp|peP}
a{a,s,0) = (L]s,8],[0,0]) a € allocated-at(¢)

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

o AHl Airac: C Z2 309 vj g Agx 0 F HA 7|

Machine = Stack x Mem x Cmd x Dz[mp

For program dec™ e, its abstract semantics is lpr:

F . 2(Ma£hinew) N 2(Ma£hinew)

P(X) = {(L, L, L dect e, 1)}
U{5051 ... 8n41|5081-..8n € X, 5, =7 5,11}

The abstract transition relation —# is defined for each C
construct.

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

@ The equations that we solve are about the abstract program
states T'(I — I') at each flow edge | — .

o A flow edge | — I’ is between two program points [and I
that are linked by the evaluation:

(I, X) =7 (', X").

@ Suppose there are two edges [; — [and I3 — [flowing into [.
The equation for edge | — ' is

Tl —1)=X where (I,T(l; —)UT(ly — 1)) =7 (', X).

A1 719] Abe Airac: C Z2 309 vj g Agx 0 F HA 7|

@ The fixpoint algorithm is a working set algorithm.
e The working set consists of equations whose right-hand-side
we have to re-evaluate.
e On behalf of the equation for T'(I — I’), we only use the
program point [for the working set element.
o When a computed machine state for T'(I — ') is moved, we
add the next program point I’ to the working set.

@ The fixpoint algorithm consists of two parts: widening
iterations followed by narrowing iterations.

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

Airac: C Z2I7#9] g ¢ld A o7 HA7)

=&
==

@ Unique renaming: variable names are used for abstract
locations

@ Narrowing after widening

e Context pruning (backward analysis): precise information is
extracted from conditional expressions of branch expression.

@ Polyvariant analysis: function-inlining effect by labeling
function-body expressions uniquely to each call-site.

@ Static loop unrolling: loop-unrolling effect by labeling
loop-body expressions uniquely to each iteration.

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

Airac: C Z2I7#9] g ¢ld A o7 HA7)

=&
==

@ Selective join: the abstract machine join (or the partial order
operation) consider only those parts that have been moved.

@ Stack obviation: the abstract machine's stack component is
not used when joining abstract machines.

e Wait-at-join: a way of controlling the order of selecting things
to do from the worklist.

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Spring 2005 Note 13

	¿ä¾àÇØ¼®À¸·Î µðÀÚÀÎ ÇÑ ½ÇÁ¦ ºÐ¼®±âÀÇ »ç·Ê
	Airac: C ÇÁ·Î±×·¥ÀÇ ¹è¿� ÀÎµ¦½º ¿À·ù ºÐ¼®±â

