
Monday, April 23, 2012

program states

error states

program states

error states

program states

error states

program states

error states

sound analysis

sound & precise analysis

unsound analysis

Monday, April 23, 2012

sound

scalable bug-finders

verifiers

unsound

unscalable

Monday, April 23, 2012

sound

scalable bug-finders

verifiers

unsound

unscalable

?

Monday, April 23, 2012

sound

scalable bug-finders

verifiers

unsound

unscalable

our contribution

?

Monday, April 23, 2012

Monday, April 23, 2012

Monday, April 23, 2012

Monday, April 23, 2012

Monday, April 23, 2012

Monday, April 23, 2012

Design of

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Monday, April 23, 2012

• Designed in the abstract interpretation framework

• To find memory safety violations in C

• buffer-overrun, memory leak, null deref., etc.

• flow-sensitive values analysis for int & ptrs
(static + dynamic)

• for the full set of C

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Monday, April 23, 2012

Program

• : set of program points

• : control flow relation

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

(c is the next command to c’)

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

lv := e | lv := alloc(a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command lv := e assigns the value
of e into the location of lv . Command lv := alloc(a) allocates an array [e]l or a
structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

Commands

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

lv := e | lv := alloc(a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command lv := e assigns the value
of e into the location of lv . Command lv := alloc(a) allocates an array [e]l or a
structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

Monday, April 23, 2012

Abstract Semantics

• Abstract semantic function

• One abstract state that subsumes all reachable
states at each program point

: abstract semantics at point c

c

c�c�

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

Monday, April 23, 2012

Computing

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

Naive fixpoint algorithm Worklist algorithm

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

Monday, April 23, 2012

The Algorithms Too Weak
To Scale

less-382 (23,822 LoC)

Monday, April 23, 2012

Improving Scalability

“Right Part at Right Moment”

Key Idea: Localization

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

y

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

y

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

z

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

z

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

y

z

v

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

x

x

y

y

z

v

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

x

x

y

y

z

z

v

v

a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Spatial & Temporal
Localizations

Monday, April 23, 2012

Spatial Localization

Monday, April 23, 2012

Spatial Localization
(“framing”, “abstract gc”)

f

call f

accessible store

return

non-accessible store

Monday, April 23, 2012

On average, 755 re-analysis per procedure

Vital in Analysis Practice

int g;
int f() { ... }
int main() {
 g = 0; f();
 g = 1; f();
}

f does not access g

Monday, April 23, 2012

But Existing Approach is
Too Conservative

2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory

/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only differences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is inefficient both in time and memory cost. This finding originates from
the difficulty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

average : only 4%

huge room for localizations than reachability-
based technique

Monday, April 23, 2012

Hurdle: Accessed Locations
Before Analysis?

• Yes, by yet another analysis

• The pre-analysis must be quick

• The pre-analysis must be safe

• over-estimating the accessed abstract locs

Monday, April 23, 2012

Our Pre-analysis

• one further abstraction

• correct design

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) � γ(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) � γ(lfp(F̂p))

27

• abstract semantic function: flow-insensitive

For Safely Estimating the Accessed Abstract Locations

Monday, April 23, 2012

Implement in the Abstract
Semantics for Call Cmd

where f̂c ∈ Ŝ → Ŝ is a semantic function at control point c.

f̂c(ŝ) =

ŝ[L̂(lv)(ŝ) w�→ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥, {�l, [0, 0], V̂(e)(ŝ).1�},⊥�] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥,⊥, {�l, {x}�}�] cmd(c) = lv := alloc({x}l)

ŝ[x �→ �ŝ(x).1 � [−∞, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4�] cmd(c) = assume(x < e)

ŝ[x �→ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-
stract locations for lv , respectively, under ŝ. The effect of node lv := e is to
(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-
ray allocation command lv := alloc([e]l) creates a new array block with offset 0

and size e. The structure block command lv := alloc({x}l) creates a new structure
block. In both cases, we use the allocation site l as the base address, by which
many (possibly infinite) concrete locations are summarized by finite abstract loca-
tions. Assume assume(x < e) confines the value of x so that the resulting memory
state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the
formal parameter x to the value of actual parameter e. Note that the output of
the call node is the memory state that flows into the body of the called procedure,
not the memory state returned from the call. The abstract semantics for procedure
calls show that our analysis is context-insensitive: it ignores the calling context in
which procedures are invoked.3

Lemma 1 (Soundness) If α ◦ F � F̂ ◦ α, then, α(lfpF) � lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

where f̂c ∈ Ŝ → Ŝ is a semantic function at control point c.

f̂c(ŝ) =

ŝ[L̂(lv)(ŝ) w�→ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥, {�l, [0, 0], V̂(e)(ŝ).1�},⊥�] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥,⊥, {�l, {x}�}�] cmd(c) = lv := alloc({x}l)

ŝ[x �→ �ŝ(x).1 � [−∞, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4�] cmd(c) = assume(x < e)

ŝ[x �→ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-
stract locations for lv , respectively, under ŝ. The effect of node lv := e is to
(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-
ray allocation command lv := alloc([e]l) creates a new array block with offset 0

and size e. The structure block command lv := alloc({x}l) creates a new structure
block. In both cases, we use the allocation site l as the base address, by which
many (possibly infinite) concrete locations are summarized by finite abstract loca-
tions. Assume assume(x < e) confines the value of x so that the resulting memory
state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the
formal parameter x to the value of actual parameter e. Note that the output of
the call node is the memory state that flows into the body of the called procedure,
not the memory state returned from the call. The abstract semantics for procedure
calls show that our analysis is context-insensitive: it ignores the calling context in
which procedures are invoked.3

Lemma 1 (Soundness) If α ◦ F � F̂ ◦ α, then, α(lfpF) � lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

call-point c (such that cmd(c) = call(fx, e)), the semantic function f̂c for the call
statement is changed as follows:

f̂c(ŝ) = ŝ�|access(f) where ŝ� = ŝ[x �→ V̂(e)(ŝ)]

After parameter bound (ŝ�), the memory state is restricted to the set of accessed
locations access(f) that represents the set of abstract locations that are accessed
by procedure f :

access(f) =
�

g∈callees(f)(
�

c∈control(g)A(c)(ŝpre))

where callees(f) denotes the set of procedures, including f , that are reachable from
f via the call-graph and control(f) the set of control points in procedure f , and
ŝpre is the analysis result from the pre-analysis. The following theorem ensures the
safety of the localization.

Theorem 1 (Safety of Access-based Localization) For all procedure f , access(f)

conservatively estimates abstract locations that are accessed during the original anal-

ysis of f .

Proof Abstract location a is accessed inside procedure f if and only if it is ac-
cessed either in the body of f or in the bodies of procedures that are called by
(reachable via call-graph from) f , which is the definition of access. Moreover, be-
cause ŝpre conservatively approximates the abstract memories of all program points
(lemma 6) and A is monotone (lemma 4), A(n)(ŝpre) contains all the abstract lo-
cations that would be accessed in actual analysis. Thus, access is a safe estimation
of accessed locations.

�

Access-based localization can be used in combination with the reachability-based
approach to localize memory states more aggressively. Given an input memory
state ŝ to a call point c such that cmd(c) = call(fx, e), reachable locations R(fx, ŝ),

30

Monday, April 23, 2012

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis

Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion

Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

spatia
l

locali
zat

ion
none

spatia
l+tem

poral

locali
zat

ion

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Monday, April 23, 2012

Temporal Localization
(and spatial localization automatically follows)

Monday, April 23, 2012

Temporal Localization

• Don’t blindly follow the control flow of pgm text

• Follow the dependency of statement semantics

• from definition points directly to their use points less-382 (23,822 LOC)

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

Monday, April 23, 2012

Temporal Localization

• Don’t blindly follow the control flow of pgm text

• Follow the dependency of statement semantics

• from definition points directly to their use points

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

Monday, April 23, 2012

Temporal Localization

x

y

vs.

x = x+1

y = y-1

z = x

x = x+1

y = y-1

z = x

Monday, April 23, 2012

Precision Preserving
Sparse Analysis Framework

Monday, April 23, 2012

Towards Sparse Version

 Analyzer computes the fixpoint of

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

• baseline non-sparse one

• unrealizable sparse version

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

• realizable sparse version

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂a(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

-

Monday, April 23, 2012

Unrealizable Sparse One

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

Data Dependency

Monday, April 23, 2012

Unrealizable Sparse One

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

Data Dependency

Def-Use Sets

Monday, April 23, 2012

Unrealizable Sparse One

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

Data Dependency

Def-Use Sets

Precision Preserving

Monday, April 23, 2012

Data Dependency Example

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}{v, w}

{p, v, w} {x}

x

Monday, April 23, 2012

Realizable Sparse One

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂a(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

Realizable Data Dependency

Monday, April 23, 2012

Realizable Sparse One

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂a(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

Realizable Data Dependency

Precision Preserving

If the following conditions hold

Monday, April 23, 2012

 Conditions on &

• over-approximation

• spurious definitions should be also included in uses

Monday, April 23, 2012

Why the Conditions of &

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}{v, w}

{p, v, w} {x}

x

Monday, April 23, 2012

Why the Conditions of &

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}

{p, v, w} {x}

x

{v, w, x}

Monday, April 23, 2012

Why the Conditions of &

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}

{p, v, w} {x}

{v, w, x}

Monday, April 23, 2012

Why the Conditions of &

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}

{p, v, w} {x}

{v, w, x}

x

Monday, April 23, 2012

Why the Conditions of &

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}

{x}

{v, w, x}

x

{p, v, w, x}

Monday, April 23, 2012

Why the Conditions of &

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}

{x}

{v, w, x}

x

{p, v, w, x}

x

Monday, April 23, 2012

Hurdle: & Before
Analysis?

• Yes, by yet another analysis with further abstraction

• correct design

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) � γ(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) � γ(lfp(F̂p))

27

• abstract semantic function: flow-insensitive

Monday, April 23, 2012

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis

Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion

Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

spatia
l

locali
zat

ion
none

spatia
l+tem

poral

locali
zat

ion

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Monday, April 23, 2012

Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

• fail to preserve the original accuracy

• Not general for arbitrary analysis for full C

• tightly coupled with particular analysis (e.g.
pointer analysis for “simple” subsets of C)

vs.

Monday, April 23, 2012

Summing Up
Our Sparse Framework

• Define a global safe abstract interpreter

• Make it sparse (s&t) with our data dependencies

• by using a safe pre-analysis for safe def/use sets

• Resulting sparse one scales with the same result

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂a(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

Monday, April 23, 2012

for technical details
ropas.snu.ac.kr/~kwang/paper/12-pldi-ohheleleyi.pdf

Thank you.

Monday, April 23, 2012

http://ropas.snu.ac.kr/~kwang/paper/12-pldi-ohheleleyi.pdf
http://ropas.snu.ac.kr/~kwang/paper/12-pldi-ohheleleyi.pdf

