Analyzing Million Lines of C: A General Sparse Analysis Framework

Kwangkeun Yi

Programming Research Laboratory Seoul National University

04/23/2012 @ CSAIL MIT

Co-work with Hakjoo Oh, Kihong Heo, Wonchan Lee, Wooseok Lee [PLDI'12, VMCAI'11, APLAS'11,...]

Kwangkeun Yi Sparse Global Analysis for Million Lines of C

(口) (問) (注) (注)

-

Sac

Static Analysis: Sound, Unsound, Useful

Automatic sound estimation of sw behaviors before execution

under many names

Dichotomy: "bug-finders" vs. "verifiers"

Dichotomy: "bug-finders" vs. "verifiers"

Dichotomy: "bug-finders" vs. "verifiers"

- In 2007, we commercialized
 - sound in design, unsound yet scalable in reality
 - memory-bug-finding tool for full C, non domain-specific

Sparrow The Early Bird

- Realistic workbench available
 - "let's try to scale-up its sound & global version"

ヨト イヨト

DQQ

Our Scalability Improvement

Kwangkeun Yi Sparse Global Analysis for Million Lines of C

<

> < 至 > < 至 >

1

DAG

This Talk

How we achieved

- sound design of Sparrow
- spatial & temporal localizations
- Sparse analysis framework
 - general for Al-based analyzers for C-like languages
 - precision-preserving

"An important strength is that the theoretical result is very general. It could be applied to many other analyses. PLDI papers have been accepted that were simply instances of this framework." (from PLDI reviews)

E > < E >

E

DQQ

Static Analysis Example: Abstract Equations

```
x = readInt;

1:

while (x ≤ 99)

2:

x++;

3:

end

4:
```

Capture the dynamics by abstract equations; solve; reason.

$$egin{array}{rll} x_1 &=& [-\infty,+\infty] \ or \ x_3 \ x_2 &=& x_1 \ and \ [-\infty,99] \ x_3 &=& x_2 \ \dot{+} \ 1 \ x_4 &=& x_1 \ and \ [100,+\infty] \end{array}$$

Kwangkeun Yi Sparse Global Analysis for Million Lines of C

<日×</th><</th>

DQC

How to Design Sound Static Analyses?

Abstract Interpretation [CousotCousot]: a powerful design theory

- How to derive correct yet arbitrarily precise equations?
 - Non-obvious: ptrs, heap, exns, high-order ftns, etc.

• Define an abstract semantics function \hat{F} s.t. \cdots

How to solve the equations in a finite time?

how? $[-\infty, +\infty]$ or x_3 $[-\infty, +\infty]$ x_1 x_1 $x_2 =$ $x_1 \text{ and } [-\infty, 99]$ x_2 $[-\infty, 99]$ = $x_2 \neq 1$ = $[-\infty, 100]$ x3 x3 = x_1 and $[100,\infty]$ $[100, +\infty]$ x4 = x4 = • Fixpoint iterations for an upperbound of fixF

(1) マイド (1)

DDC

Design of Sparrow The Early Bird

- Designed in the *abstract interpretation* framework
- To find memory safety violations in C
 - buffer-overrun, memory leak, null deref., etc.
 - flow-sensitive values analysis for int & ptrs (static + dynamic)
 - for the full set of C

Program

$\langle \mathbb{C}, \hookrightarrow \rangle$

- \mathbb{C} : set of program points
- $\hookrightarrow \subseteq \mathbb{C} \times \mathbb{C}$: control flow relation

 $c' \hookrightarrow c$ (c is the next command to c')

Commands

 $lv := e \mid lv := \operatorname{alloc}(a) \mid \operatorname{assume}(x < e) \mid \operatorname{call}(f_x, e) \mid \operatorname{return}_f$ expression $e \rightarrow n \mid e + e \mid lv \mid \& lv$ l-value $lv \rightarrow x \mid *e \mid e [e] \mid e . x$ allocation $a \rightarrow [e]_l \mid \{x\}_l$

Abstract Semantics

• One abstract state $\in \hat{S}$ that subsumes all reachable states at each program point

$$\begin{bmatrix} \hat{P} \end{bmatrix} \in \mathbb{C} \to \hat{\mathbb{S}} = fix\hat{F} \\ \hat{\mathbb{S}} = \hat{\mathbb{L}} \to \hat{\mathbb{V}}$$

$$\hat{\mathbb{L}} = Var + AllocSite + AllocSite \times FieldName \\ \hat{\mathbb{V}} = \hat{\mathbb{Z}} \times 2^{\hat{\mathbb{L}}} \times 2^{AllocSite \times \hat{\mathbb{Z}} \times \hat{\mathbb{Z}}} \times 2^{AllocSite \times 2^{FieldName}} \\ \hat{\mathbb{Z}} = \{[l, u] \mid l, u \in \mathbb{Z} \cup \{-\infty, +\infty\} \land l \le u\} \cup \{\bot\}$$

• Abstract semantic function $\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$ $\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \to c} \hat{X}(c'))$

 $\hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}}$: abstract semantics at point c

Computing
$$fix\hat{F} = \bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\bot})$$

$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$$

$$\begin{split} \hat{X}, \hat{X}' \in \mathbb{C} \to \hat{\mathbb{S}} \\ \hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}} \\ \hat{X} := \hat{X}' := \lambda c. \bot \\ \textbf{repeat} \\ \hat{X}' := \hat{X} \\ \textbf{for all } c \in \mathbb{C} \textbf{ do} \\ \hat{X}(c) := \hat{f}_c(\bigsqcup_{c' \hookrightarrow c} X(c')) \\ \textbf{until } \hat{X} \sqsubseteq \hat{X}' \end{split}$$

$$W \in Worklist = 2^{\mathbb{C}}$$

$$\hat{X} \in \mathbb{C} \to \hat{\mathbb{S}}$$

$$\hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}}$$

$$W := \mathbb{C}$$

$$\hat{X} := \lambda c. \bot$$
repeat
$$c := choose(W)$$

$$\hat{s} := \hat{f}_c(\bigsqcup_{c' \hookrightarrow c} X(c'))$$
if $\hat{s} \not\sqsubseteq \hat{X}(c)$

$$W := W \cup \{c' \in \mathbb{C} \mid c \hookrightarrow c'\}$$

$$\hat{X}(c) := \hat{X}(c) \sqcup \hat{s}$$
until $W = \emptyset$

Worklist algorithm

The Algorithms Too Weak To Scale

less-382 (23,822 LoC)

Improving Scalability

Key Idea: Localization

"Right Part at Right Moment"

Spatial & Temporal Localizations

x = x + I

Spatial & Temporal Localizations

x = x + I

X V

> Z V

a b

Spatial Localization

Vital in Analysis Practice

On average, 755 re-analysis per procedure

But Existing Approach is Too Conservative

huge room for localizations than reachabilitybased technique

Program	LOC	accessed memory
		/ reachable memory
spell-1.0	2,213	5 / 453 (1.1%)
barcode-0.96	4,460	$19 \ / \ 1175 \ (1.6\%)$
httptunnel-3.3	6,174	$10 \ / \ 673 \ \ (1.5\%)$
gzip-1.2.4a	7,327	22 / 1002 (2.2%)
jwhois-3.0.1	9,344	28 / 830 (3.4%)
parser	10,900	$75 \ / \ 1787 \ (4.2\%)$
bc-1.06	13,093	24 / 824 (2.9%)
less-290	18,449	$86 \ / \ 1546 \ (5.6\%)$

average : only 4%

Hurdle: Accessed Locations Before Analysis?

- Yes, by yet another analysis
- The pre-analysis must be quick
- The pre-analysis must be safe
 - over-estimating the accessed abstract locs

Our Pre-analysis

For Safely Estimating the Accessed Abstract Locations

- one further abstraction
- correct design

$$\mathbb{C} \to \hat{\mathbb{S}} \xrightarrow[\alpha]{\gamma} \hat{\mathbb{S}}$$

• abstract semantic function: flow-insensitive

$$\hat{F}_p = \lambda \hat{s}.(\bigsqcup_{c \in \mathbb{C}} \hat{f}_c(\hat{s}))$$

Implement in the Abstract
Semantics for Call Cmd
$$\hat{f}_c \in \hat{\mathbb{S}} \rightarrow \hat{\mathbb{S}}$$

 $\hat{f}_{c}(\hat{s}) = \begin{cases} \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \hat{\mathcal{V}}(e)(\hat{s})] & \operatorname{cmd}(c) = lv := e \\ \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \langle \bot, \bot, \{\langle l, [0, 0], \hat{\mathcal{V}}(e)(\hat{s}).1 \rangle\}, \bot \rangle] & \operatorname{cmd}(c) = lv := \operatorname{alloc}([e]_{l}) \\ \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \langle \bot, \bot, \bot, \{\langle l, \{x\} \rangle\}\rangle] & \operatorname{cmd}(c) = lv := \operatorname{alloc}(\{x\}_{l}) \\ \hat{s}[x \mapsto \langle \hat{s}(x).1 \sqcap [-\infty, \mathsf{u}(\hat{\mathcal{V}}(e)(\hat{s}).1)], \hat{s}(x).2, \hat{s}(x).3, \hat{s}(x).4 \rangle] & \operatorname{cmd}(c) = \operatorname{assume}(x < e) \\ \hat{s}[x \mapsto \hat{\mathcal{V}}(e)(\hat{s})]|_{\operatorname{access}(f)} & \operatorname{cmd}(c) = \operatorname{call}(f_{x}, e) \\ \frac{\hat{s}[x \mapsto \hat{\mathcal{V}}(e)(\hat{s})]|_{\operatorname{access}(f)}}{\operatorname{cmd}(c) = \operatorname{return}_{f}} \end{cases}$

$$\operatorname{access}(f) = \bigcup_{g \in \operatorname{callees}(f)} (\bigcup_{c \in \operatorname{control}(g)} \mathcal{A}(c)(\hat{s}_{pre}))$$

Performance of sound & global Sparrow

a in the second seco										San in Activity inc. March	6				
Programs	LOC	Interva	I _{vanilla}	Interval _{base}		$\mathbf{Spd}\uparrow_1$	Mem ↓ ₁			Interval _{sparse}				$\mathbf{Spd}\uparrow_2$	$Mem \downarrow_2$
		Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$		
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %
tar-1.13	20K	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %
lsh-2.0.4	111K	\sim	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A
nethack-3.3.0	211K	∞	N/A	∞	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A
python-2.5.1	435K	∞	N/A	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A
				1				•							

none spatial localization

Temporal Localization (and spatial localization automatically follows)

Temporal Localization

- Don't blindly follow the control flow of pgm text
- Follow the dependency of statement semantics
 - from definition points directly to their use points

Temporal Localization

- Don't blindly follow the control flow of pgm text
- Follow the dependency of statement semantics
 - from definition points directly to their use points

$$\begin{split} \hat{X}, \hat{X}' \in \mathbb{C} \to \hat{\mathbb{S}} \\ \hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}} \\ \hat{X} &:= \hat{X}' := \lambda c. \bot \\ \textbf{repeat} \\ \hat{X}' &:= \hat{X} \\ \textbf{for all } c \in \mathbb{C} \textbf{ do} \\ \hat{X}(c) &:= \hat{f}_c(\bigsqcup_{c' \hookrightarrow c} X(c')) \\ \textbf{until } \hat{X} \sqsubseteq \hat{X}' \end{split}$$

Precision Preserving Sparse Analysis Framework

Towards Sparse Version

Analyzer computes the fixpoint of $\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$

• baseline non-sparse one

$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$$

unrealizable sparse version

$$\hat{F}_s(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim c}} \hat{X}(c')|_l).$$

• realizable sparse version

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}. \hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ \sim a \\ c' \sim a \\ c$$

Unrealizable Sparse One

$$\hat{F}_s(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{i \in C' \\ \sim i \in C}} \hat{X}(c')|_l).$$

Data Dependency

 $\begin{array}{rcl} c_0 \stackrel{l}{\rightsquigarrow} c_n & \triangleq & \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}. \\ & l \in \mathsf{D}(c_0) \cap \mathsf{U}(c_n) \land \forall i \in (0,n). l \not\in \mathsf{D}(c_i) \end{array}$

Unrealizable Sparse One

$$\hat{F}_s(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \sim c} \hat{X}(c')|_l).$$

Data Dependency

$$c_0 \stackrel{l}{\rightsquigarrow} c_n \triangleq \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}.$$
$$l \in \mathsf{D}(c_0) \cap \mathsf{U}(c_n) \land \forall i \in (0, n). l \notin \mathsf{D}(c_i)$$

Def-Use Sets

$$\mathsf{D}(c) \triangleq \{l \in \hat{\mathbb{L}} \mid \exists \hat{s} \sqsubseteq \bigsqcup_{c' \hookrightarrow c} \mathcal{S}(c').\hat{f}_c(\hat{s})(l) \neq \hat{s}(l)\}$$
$$\mathsf{U}(c) \triangleq \{l \in \hat{\mathbb{L}} \mid \exists \hat{s} \sqsubseteq \bigsqcup_{c' \hookrightarrow c} \mathcal{S}(c').\hat{f}_c(\hat{s})|_{\mathsf{D}(c)} \neq \hat{f}_c(\hat{s} \setminus l)|_{\mathsf{D}(c)}\}$$

Unrealizable Sparse One

$$\hat{F}_s(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{i \\ c' \sim c}} \hat{X}(c')|_l).$$

Data Dependency

$$\begin{array}{rcl} c_0 \stackrel{l}{\rightsquigarrow} c_n & \triangleq & \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}. \\ & l \in \mathsf{D}(c_0) \cap \mathsf{U}(c_n) \land \forall i \in (0,n). l \notin \mathsf{D}(c_i) \end{array}$$

Def-Use Sets

$$\mathsf{D}(c) \triangleq \{l \in \hat{\mathbb{L}} \mid \exists \hat{s} \sqsubseteq \bigsqcup_{c' \hookrightarrow c} \mathcal{S}(c').\hat{f}_{c}(\hat{s})(l) \neq \hat{s}(l)\}$$
$$\mathsf{U}(c) \triangleq \{l \in \hat{\mathbb{L}} \mid \exists \hat{s} \sqsubseteq \bigsqcup_{c' \hookrightarrow c} \mathcal{S}(c').\hat{f}_{c}(\hat{s})|_{\mathsf{D}(c)} \neq \hat{f}_{c}(\hat{s} \setminus l)|_{\mathsf{D}(c)}\}$$

Precision Preserving

$$fix\hat{F} = fix\hat{F}_s \mod D$$

Data Dependency Example

Realizable Sparse One

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ \sim a \\ c' \sim a \\ c'$$

Realizable Data Dependency

$$c_{0} \stackrel{l}{\leadsto}_{a} c_{n} \triangleq \exists c_{0} \dots c_{n} \in \mathsf{Paths}, l \in \hat{\mathbb{L}}.$$
$$l \in \hat{\mathsf{D}}(c_{0}) \cap \hat{\mathsf{U}}(c_{n}) \land \forall i \in (0, n). l \notin \hat{\mathsf{D}}(c_{i})$$

Realizable Sparse One

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ \sim a \\ c' \sim a \\ c'$$

Realizable Data Dependency

$$\begin{array}{rcl} c_0 \stackrel{l}{\rightsquigarrow}_a c_n & \triangleq & \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}. \\ & l \in \hat{\mathsf{D}}(c_0) \cap \hat{\mathsf{U}}(c_n) \land \forall i \in (0,n). l \not\in \hat{\mathsf{D}}(c_i) \end{array}$$

Precision Preserving

$$fix\hat{F} = fix\hat{F}_a \mod \hat{D}$$

If the following conditions hold

Conditions on $\hat{D} \& \hat{U}$

• over-approximation

$$\hat{\mathsf{D}}(c) \supseteq \mathsf{D}(c) \land \hat{\mathsf{U}}(c) \supseteq \mathsf{U}(c)$$

• spurious definitions should be also included in uses

 $\hat{\mathsf{D}}(c) - \mathsf{D}(c) \subseteq \hat{\mathsf{U}}(c)$

Hurdle: D& Û Before Analysis?

- Yes, by yet another analysis with further abstraction
- correct design

$$\mathbb{C} \to \hat{\mathbb{S}} \xrightarrow[\alpha]{\gamma} \hat{\mathbb{S}}$$

abstract semantic function: flow-insensitive

$$\hat{F}_p = \lambda \hat{s}.(\bigsqcup_{c \in \mathbb{C}} \hat{f}_c(\hat{s}))$$

Performance of sound & global Sparrow

a in the second seco										San in Activity inc. March	6				
Programs	LOC	Interva	I _{vanilla}	Interval _{base}		$\mathbf{Spd}\uparrow_1$	Mem ↓ ₁			Interval _{sparse}				$\mathbf{Spd}\uparrow_2$	$Mem \downarrow_2$
		Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$		
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %
tar-1.13	20K	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %
lsh-2.0.4	111K	\sim	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A
nethack-3.3.0	211K	∞	N/A	∞	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A
python-2.5.1	435K	∞	N/A	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A
				1				•							

none spatial localization

Existing Sparse Techniques (developed mostly in dfa community)

Different notion of data dependency

 $\begin{array}{rcl} c_0 \stackrel{l}{\rightsquigarrow}_{\mathsf{du}} c_n & \triangleq & \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}. \\ & & l \in \mathsf{D}(c_0) \cap \mathsf{U}(c_n) \land \forall i \in (0,n). l \not\in \mathsf{D}_{\mathsf{always}}(c_i) \end{array}$

• fail to preserve the original accuracy

- Not general for arbitrary analysis for full C
 - tightly coupled with particular analysis (e.g. pointer analysis for "simple" subsets of C)

Summing Up Our Sparse Framework

• Define a global safe abstract interpreter

 $\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$ $\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$

- Make it sparse (s&t) with our data dependencies
 - by using a safe pre-analysis for safe def/use sets

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\ \ \hat{X}(c')|_l).$$

• Resulting sparse one scales with the same result

for technical details ropas.snu.ac.kr/~kwang/paper/12-pldi-ohheleleyi.pdf