
Specialized Frameworks

Outline

1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Kwangkeun Yi (Seoul National U) Program Analysis 115 / 132

Specialized Frameworks

Specialized Frameworks

Practical altenatives to the aforementioned general, abstract interpretation
framework

for simple languages and properties,
∃frameworks that are simple yet powerful enough
review of their limitations

Three specialized frameworks:
static analysis by equations
static analysis by monotonic closure
static analysis by proof construction

Kwangkeun Yi (Seoul National U) Program Analysis 116 / 132

Specialized Frameworks

Static Analysis by Equations

Static analysis = equation setup and resolution
� equations capture all the executions of the program

� a solution of the equations is the analysis result

Represent programs by control-flow graphs
� nodes for semantic functions (statements)

� edges for control flow

Straightforward to set up sound equations

For each node

f

x1 x2

y1 y2

we set up equations

y1 = f(x1 � x2)

y2 = f(x1 � x2)

Kwangkeun Yi (Seoul National U) Program Analysis 117 / 132

Specialized Frameworks

Example: Data-Flow Analysis for Integer Intervals
Example (Data-flow analysis)

input (x);
while (x <= 99)

x := x+1

input x

x <= 99

x++

x > 99

2

1

3 0 1

4

Figure: Control-flow graph

x0 = [−∞,+∞]

x1 = x0 � x3

x2 = x1 � [−∞, 99]

x3 = x2 ⊕ 1

x4 = x1 � [100,+∞]

Figure: A set of equations for the program

Kwangkeun Yi (Seoul National U) Program Analysis 118 / 132

Specialized Frameworks

Limitations

Not powerful enough for arbitrary languages
control-flow before analysis?

� control is also computed in modern languages

� no: the dichotomy of control being fixed and data being dynamic

sound transformation function?
� error prone for complicated features of modern languages

� e.g. function call/return, function as a data, dynamic method dispatch,

exception, pointer manipulation, dynamic memory allocation, ...

lacks a systematic approach
� to prove the correctness of the analysis

� to vary the accuracy of the analysis

Kwangkeun Yi (Seoul National U) Program Analysis 119 / 132

Specialized Frameworks

Static Analysis by Monotonic Closure (1/2)

Static analysis = setting up initial facts then collecting new facts by a
kind of chain reaction

� has rules for collecting initial facts

� has rules for generating new facts from existing facts

the initial facts immediate from the program text
the chain reaction steps simulate the program semantics
the universe of facts are finite for each program
analysis accumulates facts until no more possible

Kwangkeun Yi (Seoul National U) Program Analysis 120 / 132

Specialized Frameworks

Static Analysis by Monotonic Closure (2/2)

let R be the set of the chain-reaction rules
let X0 be the initial fact set
let Facts be the set of all possible facts

Then, the analysis result is �

i≥0

Yi,

where
Y0 = X0,

Yi+1 = Y such that Yi �R Y.

Or, equivalently, the analysis result is the least fixpoint
�

i≥0

φi(∅)

of monotonic function φ : ℘(Facts) → ℘(Facts) :

φ(X) = X0 ∪ (Y such that X �R Y).

Kwangkeun Yi (Seoul National U) Program Analysis 121 / 132

Specialized Frameworks

Example: Pointer Analysis (1/3)

P ::= C program
C ::= statement

| L := R assignment
| C ; C sequence
| while B C while-loop

L ::= x | *x target to assign to
R ::= n | x | *x | &x value to assign
B Boolean expression

Goal: estimate all “points-to” relations between variables that can
occur during executions
a → b: variable a can point to (can have the address of) variable b

Kwangkeun Yi (Seoul National U) Program Analysis 122 / 132

Specialized Frameworks

Example: Pointer Analysis (2/3)

The initial facts that are obvious from the program text are collected by
this rule:

x := &y
x → y

The chain-reaction rules are as follows for other cases of assignments:

x := y y → z
x → z

x := *y y → z z → w
x → w

*x := y x → w y → z
w → z

*x := *y x → w y → z z → v
w → v

*x := &y x → w
w → y

Kwangkeun Yi (Seoul National U) Program Analysis 123 / 132

Specialized Frameworks

Example: Pointer Analysis (3/3)

Example (Pointer analysis steps)

x := &a ; y := &x ;
while B

*y := &b ;
*x := *y

Initial facts are from the first two assignments:

x → a, y → x

From y → x and the while-loop body, add

x → b

From the last assignment:
� from x → a and y → x, add a → a
� from x → b and y → x, add b → b
� from x → a, y → x, and x → b, add a → b
� froom x → b, y → x, and x → a, add b → a

Kwangkeun Yi (Seoul National U) Program Analysis 124 / 132

Specialized Frameworks

Limitations

Not powerful enough for arbitrary language
sound rules?

� error prone for complicated features of modern languages

� e.g. function call/return, function as a data, dynamic method dispatch,

exception, pointer manipulation, dynamic memory allocation, ...

accuracy problem
� consider program a set of statements, with no order between them

� rules do not consider the control flow

� the analysis blindly collects every possible facts when rules hold

� accuracy improvement by more elaborate rules, but no systematic way

for soundness proof

Kwangkeun Yi (Seoul National U) Program Analysis 125 / 132

Specialized Frameworks

Static Analysis by Proof Construction

Static analysis = proof construction in a finite proof system
finite proof system = a finite set of inference rules for a predefined set
of judgments
The soundness corresponds to the soundness of the proof system.

� the input program is provable ⇒ the program satisfies the proven

judgment.

Kwangkeun Yi (Seoul National U) Program Analysis 126 / 132

Specialized Frameworks

Example: Type Inference (1/4)

P ::= E program
E ::= expression

| n integer
| x variable
| λx.E function
| E E function application

judgment that says expression E has type τ is written as

Γ � E : τ

Γ is a set of type assumptions for the free variables in E.

Kwangkeun Yi (Seoul National U) Program Analysis 127 / 132

Specialized Frameworks

Example: Type Inference (2/4)
Consider simple types

τ ::= int | τ → τ

Γ � n : int
x : τ ∈ Γ
Γ � x : τ

Γ + x : τ1 � E : τ2
Γ � λx.E : τ1 → τ2

Γ � E1 : τ1 → τ2 Γ � E2 : τ1
Γ � E1 E2 : τ2

Figure: Proof rules of simple types

Theorem (Soundness of the proof rules)
Let E be a program, an expression without free variables. If ∅ � E : τ ,

then the program runs without a type error and returns a value of type τ if

it terminates.

Kwangkeun Yi (Seoul National U) Program Analysis 128 / 132

Specialized Frameworks

Example: Type Inference (3/4)

Program
(λx.x 1)(λy.y)

is typed int because we can prove

∅ � (λx.x 1)(λy.y) : int

as follows:
x : int → int ∈ {x : int → int}
{x : int → int} � x : int → int {x : int → int} � 1 : int

{x : int → int} � x 1 : int

∅ � λx.x 1 : (int → int) → int

y : int ∈ {y : int}
{y : int} � y : int

∅ � λy.y : int → int

∅ � (λx.x 1)(λy.y) : int

Kwangkeun Yi (Seoul National U) Program Analysis 129 / 132

Specialized Frameworks

Example: Type Inference (4/4)

Algorithm
given a program E, V (∅, E, α) returns type equations.

V (Γ, n, τ) = {τ .
= int}

V (Γ, x, τ) = {τ .
= Γ(x)}

V (Γ, λx.E, τ) = {τ .
= α1 → α2} ∪ V (Γ + x : α1, E, α2) (new αi)

V (Γ, E1 E2, τ) = V (Γ, E1, α → τ) ∪ V (Γ, E2, α) (new α)

solving the equations is done by the unification procedure

Theorem (Correctness of the algorithm)
Solving the equations ≡ proving in the simple type system

More precise analysis?
need new sound proof rules (e.g.,polymorphic type systems)

Kwangkeun Yi (Seoul National U) Program Analysis 130 / 132

Specialized Frameworks

Limitations

For target languages that lack a sound static type system, we have to
invent it.

� design a finite proof system

� prove the soundness of the proof system

� design its algorithm that automates proving

� prove the correctness of the algorithm

What if the unification procedure is not enough?
� for some properties, the algorithm can generate constraints that are

unsolvable by the unification procedure

For some conventional imperative languages, sound and
precise-enough static type systems are elusive.

Kwangkeun Yi (Seoul National U) Program Analysis 131 / 132

