[Scogﬂ

DOMAINS AND LOGICS
estended abstract

Dana S. Scott
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This year marks twenty years since domains and
domain-theoretic models for the A-calculus were dis-
covered in the fall of 1969 while I was working with
Christopher Strachey at Oxford on the semantics of
programming languages. As I have tried to explain
many times, I was trying then to convince Strachey
not to use the untyped A-caleulus, since I felt (rightly,
I still believe) that at the timeit was just a formal the-
ory without strong connections to standard logic and
mathematics. What Strachey needed was a method
of flexible function definition—including definition by
recursion. He also wanted to treat procedures as first-
class objects—at least in some languages. Finally,
there had to be a way of proving properties of pro-
grams.

The approach I was trying to sell Strachey was
based on what I felt were well understood ideas from
recursive function theory using higher-type function-
als. These ideas came from work by Kleene, Kreisel,
Myhill, Shepherdson, Davis, Nerode, and Platek—to
name a few. The notion of continuity—Ifor certain
kinds of functionals—had been clearly emphasized by
Kleene and the Fixed-Point Theorem was used by Kleene
and much earlier by Tarski (from whom [learned it) to
express recursive definitions. These were my starting
points.

What I going to give Strachey (which T did in an
unpublished manuscript) was a simple type hierarchy
of functionals starting with the partial functions from
numbers to numbers at the bottom and working up the
types by taking only the continuous functions at each
stage. (“Continuous” implies “monotone”, and this
was also known to many of the above workers in re-

CH2753-2/89/0000/0004$01.00 © 1989 IEEE

Reproduced with permission of copyright owner.

cursive function theory.) Continuity was justified—as
Kleene had himself indicated—because it meant that,
roughly speaking, a finite amount of information about
the value of a function is already determined by a fi-
nite amount of information about the argument. This
is very much to the point when you think about how
these functionals can be computed.

The Kleene school, however, had not done exten-
sive development of the theory of partial functionals
for what I believe are two reasons: they were inter-
ested in total functions and they were interested in the
recursion-theoretic and descriptive-set-theoretic prop-
erties of functionals that are not continuous (such as
quantifiers over infinite sets). Kreisel and Kleene had
discussed the “countable” functionals, but again they
were concerned with the case of the total functionals.
Kreisel’s work was important for me, however, in that
he had spent much time on describing the topology of
his spaces of functionals, and I worked on the other
theory of partial functionals partly by analogy.

One strong motivation for working out this theory
in just this way for Strachey was the success I had had
carlier in the summer of 1969 in joint work with Jaco
de Bakker on the semantics of program schemes. The
use of continuity and fixed points was central here,
and the difference in the new work was the passage to
higher types.

My first original discovery, I believe, was that in
the theory of partial functionals (what turns out to be
continuous functions on algebraic cpo’s), each type has
a countable basis for its topology. (That is to say, the
continuous function space between countably based al-
gebraic cpo’s is again countably based.) I was able to
sce this by connecting up the topology with the ba-
sis of finite elements of the space. (Note that these
elements do not occur in the spaces of total function-
als.) In particular, I gave a combinorial description
(since much refined by many people) of how the bases
at lower types are fitted together to give the basis at
the higher type. When you see how to do this, you

Further reproduction prohibited.

see explicitly why everything stays countable for basis
elements.

My next discovery {(November 1969) was based on
the following reasoning: If ordinary spaces of function-
als have modestly complicated bases, and the compli-
cation multiplies when you pass to the function space,
then could there not be a space D with already such
a complicated basis that when you formed the contin-
uous function space from D into D the resulting basis
was isomorphic to that of D? I did not particularly
want to find such a space at the time, but I had to fol-
low up the idea to see i’this were possible. You cannot
have a clear conscience in Mathematics if you do not
follow up the possibilities. I did not at that time give
the combinatorial proof of the existence of this basis,
but instead I used the idea of inverse limit from topol-
ogy to puf higher-type spaces into a sequence with a
limit space. This was easier to do than giving a com-
plete recipe for the final basis—though a complete de-
scription of the bases of reflexive spaces obtained this
wa is easily possible.

The success of this method then led me to think
about the kind of spaces obtained and about how to
have a general theory. Many discussions with Strachey,
Park, Reynolds, and others, led to my introduction of
domain equations—that is to say, the recursive defi-
nition of types. It was somewhat later in response to
qucstions from Robin Milner, that I formulated the
definitions in terms of a calculus of retracts. And
it was later still in response to a report written by
Plotkin that I suggested how to use universal mod-
els and the language of recursive definitions that goes
along with them both for functions and for domains
through retracts.

At nearly the same time, Ershov in Russia was
working out his theory of f-spaces also motivated by
the theory of functionals in recursive function theaory.
He discovered the connections with topology that I
also had to find out for myself and he related the whoale
theory to effective computations. The Ershov school

Reproduced with permission of copyright owner.

did not discover the reflexive spaces and models of the
A-caleulus, however.

This brief recap of the beginnings does not begin
to do justice to the previous work of many people, and
it does not even hint at the subsequent developments
in domain theory over the last twenty years. The lec-
ture will cover some of the later history and will be
principally aimed at answering several questions:

(1) How successful is the theory of domains in giv-
ing a model theory for the semantics of programming
languages?

(2) What has happened to the program of proving
properties of programs? Has Domain theory made this
possible?

(3) Do domains give us sufficiently many types? Or
do we need more extensive theories?

(4) Does the whole notion of domain make bet-
ter sense by allowing a change in foundations from
classical logic to a constructive logic well adapted to
properties of computable functions?

[personally believe that the answers to these ques-
tions are not yet definite. The reason for giving the
lecture is to discuss the issues critically, particularly
as regards Question (4).

Further reproduction prohibited.

R R R R .

