
MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Introduction to Static Analysis
An Abstract Interpretation Perspective

Xavier Rival and Kwangkeun Yi

The MIT Press
Cambridge, Massachusetts
London, England



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

c� 2020 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

This book was set in Syntax and Times Roman by the authors.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Rival, Xavier, author. | Yi, Kwangkeun, author.
Title: Introduction to static analysis : an abstract interpretation
... perspective / Xavier Rival and Kwangkeun Yi.
Description: Cambridge, MA : The MIT Press, [2020] | Includes
ii bibliographical references and index.
Identifiers: LCCN 2019010151 | ISBN 9780262043410 (hardcover : alk. paper)
Subjects: LCSH: Statics.
Classification: LCC TA351 .R58 2020 | DDC 620.1/03—dc23
ii LC record available at https://lccn.loc.gov/2019010151

Author names are in alphabetical order. Both authors share equal authorship.

10 9 8 7 6 5 4 3 2 1



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

To our parents



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Contents

Preface xi

1 Program Analysis 1

1.1 Understanding Software Behavior 1
1.2 Program Analysis Applications and Challenges 2
1.3 Concepts in Program Analysis 4

1.3.1 What to Analyze 4
1.3.2 Static versus Dynamic 6
1.3.3 A Hard Limit: Uncomputability 7
1.3.4 Automation and Scalability 8
1.3.5 Approximation: Soundness and Completeness 9

1.4 Families of Program Analysis Techniques 12
1.4.1 Testing: Checking a Set of Finite Executions 12
1.4.2 Assisted Proof: Relying on User-Supplied Invariants 13
1.4.3 Model Checking: Exhaustive Exploration of Finite Systems 14
1.4.4 Conservative Static Analysis: Automatic, Sound, and Incomplete

Approach 15
1.4.5 Bug Finding: Error Search, Automatic, Unsound, Incomplete,

Based on Heuristics 16
1.4.6 Summary 17

1.5 Roadmap 17

2 A Gentle Introduction to Static Analysis 19

2.1 Semantics and Analysis Goal: A Reachability Problem 19
2.2 Abstraction 24
2.3 A Computable Abstract Semantics: Compositional Style 31

2.3.1 Abstraction of Initialization 32
2.3.2 Abstraction of Post-Conditions 32
2.3.3 Abstraction of Non-Deterministic Choice 36
2.3.4 Abstraction of Non-Deterministic Iteration 37
2.3.5 Verification of the Property of Interest 43

2.4 A Computable Abstract Semantics: Transitional Style 44



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

viii Contents

2.4.1 Semantics as State Transitions 45
2.4.2 Abstraction of States 48
2.4.3 Abstraction of State Transitions 48
2.4.4 Analysis by Global Iterations 51

2.5 Core Principles of a Static Analysis 56

3 A General Static Analysis Framework Based on a Compositional Semantics 59

3.1 Semantics 60
3.1.1 A Simple Programming Language 60
3.1.2 Concrete Semantics 60

3.2 Abstractions 65
3.2.1 The Concept of Abstraction 65
3.2.2 Non-Relational Abstraction 69
3.2.3 Relational Abstraction 72

3.3 Computable Abstract Semantics 74
3.3.1 Abstract Interpretation of Assignment 76
3.3.2 Abstract Interpretation of Conditional Branching 79
3.3.3 Abstract Interpretation of Loops 82
3.3.4 Putting Everything Together 90

3.4 The Design of an Abstract Interpreter 92

4 A General Static Analysis Framework Based on a Transitional Semantics 95

4.1 Semantics as State Transitions 96
4.1.1 Concrete Semantics 96
4.1.2 Recipe for Defining a Concrete Transitional Semantics 100

4.2 Abstract Semantics as Abstract State Transitions 101
4.2.1 Abstraction of the Semantic Domain 102
4.2.2 Abstraction of Semantic Functions 105
4.2.3 Recipe for Defining an Abstract Transition Semantics 107

4.3 Analysis Algorithms Based on Global Iterations 109
4.3.1 Basic Algorithms 109
4.3.2 Worklist Algorithm 110

4.4 Use Example of the Framework 112
4.4.1 Simple Imperative Language 112
4.4.2 Concrete State Transition Semantics 114
4.4.3 Abstract State 115
4.4.4 Abstract State Transition Semantics 116

5 Advanced Static Analysis Techniques 119

5.1 Construction of Abstract Domains 120
5.1.1 Abstraction of Boolean-Numerical Properties 120
5.1.2 Describing Conjunctive Properties 122
5.1.3 Describing Properties Involving Case Splits 126
5.1.4 Construction of an Abstract Domain 130

5.2 Advanced Iteration Techniques 131



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Contents ix

5.2.1 Loop Unrolling 131
5.2.2 Fixpoint Approximation with More Precise Widening Iteration 133
5.2.3 Refinement of an Abstract Approximation of a Least Fixpoint 135

5.3 Sparse Analysis 137
5.3.1 Exploiting Spatial Sparsity 139
5.3.2 Exploiting Temporal Sparsity 140
5.3.3 Precision-Preserving Def-Use Chain by Pre-Analysis 141

5.4 Modular Analysis 142
5.4.1 Parameterization, Summary, and Scalability 144
5.4.2 Case Study 145

5.5 Backward Analysis 146
5.5.1 Forward Semantics and Backward Semantics 147
5.5.2 Backward Analysis and Applications 148
5.5.3 Precision Refinement by Combined Forward and Backward Analysis 150

6 Practical Use of Static Analysis Tools 153

6.1 Analysis Assumptions and Goals 153
6.2 Setting Up the Static Analysis of a Program 159

6.2.1 Definition of the Source Code and Proof Goals 159
6.2.2 Parameters to Guide the Analysis 162

6.3 Inspecting Analysis Results 166
6.4 Deployment of a Static Analysis Tool 170

7 Static Analysis Tool Implementation 173

7.1 Concrete Semantics and Concrete Interpreter 174
7.2 Abstract Domain Implementation 180
7.3 Static Analysis of Expressions and Conditions 183
7.4 Static Analysis Based on a Compositional Semantics 186
7.5 Static Analysis Based on a Transitional Semantics 190

8 Static Analysis for Advanced Programming Features 195

8.1 For a Language with Pointers and Dynamic Memory Allocations 196
8.1.1 Language and Concrete Semantics 196
8.1.2 An Abstract Semantics 199

8.2 For a Language with Functions and Recursive Calls 203
8.2.1 Language and Concrete Semantics 203
8.2.2 An Abstract Semantics 206

8.3 Abstractions for Data Structures 212
8.3.1 Arrays 212
8.3.2 Buffers and Strings 217
8.3.3 Pointers 219
8.3.4 Dynamic Heap Allocation 223

8.4 Abstraction for Control Flow Structures 229
8.4.1 Functions and Procedures 230
8.4.2 Parallelism 237



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

x Contents

9 Classes of Semantic Properties and Verification by Static Analysis 243
9.1 Trace Properties 243

9.1.1 Safety 244
9.1.2 Liveness 247
9.1.3 General Trace Properties 250

9.2 Beyond Trace Properties: Information Flows and Other Properties 251

10 Specialized Static Analysis Frameworks 257
10.1 Static Analysis by Equations 258

10.1.1 Data-Flow Analysis 258
10.2 Static Analysis by Monotonic Closure 262

10.2.1 Pointer Analysis 263
10.2.2 Higher-Order Control-Flow Analysis 265

10.3 Static Analysis by Proof Construction 268
10.3.1 Type Inference 268

11 Summary and Perspectives 275

A Reference for Mathematical Notions and Notations 277
A.1 Sets 277
A.2 Logical Connectives 277
A.3 Definitions and Proofs by Induction 278
A.4 Functions 278
A.5 Order Relations and Ordered Sets 278
A.6 Operators over Ordered Structures and Fixpoints 279

B Proofs of Soundness 281
B.1 Properties of Galois Connections 281
B.2 Proofs of Soundness for Chapter 3 282

B.2.1 Soundness of the Abstract Interpretation of Expressions 282
B.2.2 Soundness of the Abstract Interpretation of Conditions 283
B.2.3 Soundness of the Abstract Join Operator 283
B.2.4 Abstract Iterates with Widening 283
B.2.5 Soundness of the Abstract Interpretation of Commands 285

B.3 Proofs of Soundness for Chapter 4 286
B.3.1 Transitional-Style Static Analysis over Finite-Height Domains 286
B.3.2 Transitional-Style Static Analysis with Widening 287
B.3.3 Use Example of the Transitional-Style Static Analysis 288

Bibliography 291

Index 297



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Preface

Static program analysis or, for short, static analysis aims at discovering semantic prop-
erties of programs without running them. Initially, it was introduced in the seventies to
enable compiler optimizations and guide the synthesis of efficient machine code. Since
then, the interest in static analysis has grown considerably, as it plays an important role in
all phases of program development, including the verification of specifications, the verifi-
cation of programs, the synthesis of optimized code, and the refactoring and maintenance
of software applications. It is commonly used to certify critical software. It also helps im-
prove the quality of general-purpose software and enables aggressive code optimizations.
Consequently, static analysis is now relevant not only to computer scientists who study the
foundations of programming but also to many working engineers and developers who can
use it for their everyday work.

The purpose of this book is to provide an introduction to static analysis and to cover
the basics of both theoretical foundations and practical considerations underlying the im-
plementation and use of static analysis tools. The scientific literature on static analysis is
huge and may seem hard for students or working engineers to get started quickly. Indeed,
while we can recommend great scientific articles on many specific topics, these are often
too advanced for a general audience; thus, it is harder to find good references that could
provide a quick and comprehensive introduction for nonexperts. The aim of this book is
precisely to provide such a general introduction, which explains the key basic concepts
(both in the theory and from a practical point of view), gives the gist of the state of the
art in static program analysis, and can be read rather quickly and easily. More precisely,
we cover the mathematical foundations of static analysis (semantics, semantic abstraction,
computation of program invariants), more advanced notions and techniques (abstractions
for advanced programming features and for answering a wide range of semantic questions),
and techniques to implement and use static analysis tools.

On the other hand, it is not possible to provide an exhaustive description of the state of
the art, simply because the sheer number of scientific reports and articles published every
year on the topic far exceeds what a single person can assimilate or will even need. A huge
number of practical techniques and fundamental constructions could be studied, yet they



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

xii

may be useful to only a small group of readers. Therefore, we believe that exhaustivity
should not be the purpose of this book, and it is likely that most readers will have to com-
plement it with additional material that covers their personal interest. However, we hope
that this book will help all readers quickly reach the point where they master the foun-
dational principles of static analysis, and help them acquire additional knowledge more
easily when they need it. To better achieve this, we try to present, in an intuitive manner,
some ideas and principles that often take years of research and practical experience to fully
understand and learn.

We divide our material into chapters that can often be skipped or omitted in the first
reading, depending on the motivations of the reader. Furthermore, we distinguish several
reader profiles, which we consider part of the target audience of this book and for whom
we can provide specific advice on where to start and how to handle each chapter:

• Students (abbreviated as [S] in the introduction to each chapter) who follow a course
on programming languages, compilers, program analysis, or program verification will
find here material to construct a theoretical and practical knowledge of static analysis;
we expect advanced students (e.g., graduate students specializing in program analysis
or verification) to read most of the chapters and complement them with additional
readings, whereas more junior students can focus on the first chapters.

• Developers ([D]) of programming tools (e.g., compilers and program verifiers) who
need to implement static analysis techniques to solve practical problems will find both
the technical basics that they need and practical examples with actual code to learn
about common approaches to implementing static analyzers.

• Users ([U]) of static analysis tools need to know about the general principles under-
lying static analyzers and how to set up an analysis; they will find not only general
notions on static analysis but also a chapter devoted specifically to the use of static
analysis tools, including their configuration and the exploitation of the analysis results.

Structure of the Book Chapters 1 and 2 provide a high-level introduction to the main
principles of static analysis. Chapter 1 provides the background to understand the goals of
static analysis and the kind of questions it can answer. In particular, it discusses the conse-
quence of the fact that interesting semantic properties about programs are not computable.
It also compares static analysis with other techniques for reasoning about programs. Chap-
ter 2 presents an intuitive graphical introduction to the abstraction of program semantics
and to the static analysis of programs. These two chapters are fundamental for all readers.

Chapters 3–5 formalize the scientific foundations of program analysis techniques, in-
cluding the definition of the semantics of a programming language, the abstraction of the
semantics of programs, and the computation of conservative program invariants. These
chapters present not only the most general methods but also some advanced static anal-
ysis techniques. The notion of abstraction is central to the whole book as it defines the
logical predicates that a static analysis may use to compute program properties; thus, it



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

xiii

is extensively studied here. Chapters 3 and 4 cover the notions of semantics, abstraction,
and abstract interpretation and show how they work using a toy language as an example.
Chapter 5 describes a few advanced methods to construct abstractions and static analysis
algorithms. Readers who seek a comprehensive understanding of the foundations should
read these three chapters. On the other hand, users of static analysis tools may skip part
of this material in a first reading and refer back to these chapters when the need arises.
Developers of static analyzers may take a similar approach and skip chapter 5 in a first
reading, returning to it when needed.

The following two chapters focus on the practical implementation and use of static anal-
ysis techniques. Chapter 6 discusses the practical use of a static analysis tool, its configu-
ration, and how the analysis results can be used to answer specific semantic questions. It is
particularly targeted at users of static analyzers, even though its content should be useful
to all readers. Chapter 7 reviews the implementation of a simple static analyzer, provides
source code, and discusses implementation choices. It was written for readers who intend
to develop static analyzers, although other readers may also find it useful for gaining deeper
understanding of how a static analyzer works. Readers who are mainly interested in the
foundations may skip these two chapters, at least in the first reading.

The next two chapters consider more advanced applications. Chapter 8 reviews more
advanced programming language features than those included in the examples shown in
chapters 3 and 4 and discusses abstractions that apply to them. Chapter 9 studies more
complex semantic properties than those considered in earlier chapters and highlights ab-
stractions to cope with them. Chapter 10 discusses a few specialized frameworks that
are less general than those presented in chapters 3 and 4, yet take advantage of specific
programming language features or properties of interest to build efficient static analyses.
These chapters often focus on the high-level ideas and main abstractions to solve a class
of problems. We expect readers interested in these issues to pursue reading of additional
material.

Finally, chapter 11 summarizes the main concepts of static analysis, several routes for
further studies, and a few challenges for the future.

For reference, appendix A recalls standard mathematical notations used throughout the
book (to make it accessible even without a background in discrete mathematics and logics),
and appendix B collects the proofs of the theorems presented in the core of the formal
chapters.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

xiv

Acknowledgments

We are grateful to the many people who helped bring this book to fruition. First and
foremost, we thank all the great researchers and professors who contributed to the emer-
gence and development of the static analysis field. In particular, Patrick Cousot and Radhia
Cousot have built a very robust, powerful, and general framework for designing static anal-
ysis and more generally for reasoning about program semantics. Since these foundational
works have been achieved, many research scientists, developers, engineers, and pioneer
end users have contributed to the development and adoption of static analysis and have
greatly advanced the state of the art. We would like to thank them all here.

Many colleagues have contributed directly or indirectly in the genesis of this book with
discussions, ideas, and encouragement, and we thank them all, even though we cannot
gather an exhaustive list. We especially thank Alex Aiken, Bor-Yuh Evan Chang, Cezara
Drăgoi, Jérôme Feret, Kihong Heo, Chung-kil Hur, Woosuk Lee, Mayur Naik, Peter O’Hearn,
Hakjoo Oh, Sukyoung Ryu, Makoto Tatsuda, and Hongseok Yang. We also thank the
anonymous reviewers commissioned by the publisher, who were extremely helpful with
their productive comments and suggestions.

This book is based on our work throughout our careers, which was supported by a series
of research grants. Kwangkeun is grateful to National Research Foundation of Korea for
continued and generous grants, including the National Creative Research Initiatives and the
Engineering Research Center of Excellence. Kwangkeun also thanks Samsung Electronics
and SparrowFasoo.com for their support, which drove his team to go the extra mile to
industrialize a static analysis tool beyond the laboratory workbench. Xavier is grateful to
the French Agence Nationale de la Recherche and the European Research Council for their
support.

We would also like to acknowledge the organizations that supported the building of this
book, including Seoul National University, the Institut National de Recherche en Informa-
tique et Automatique (INRIA), the Centre National de la Recherche Scientifique (CNRS),
the École Normale Supérieure de Paris, and Université Paris Sciences et Lettres (PSL Uni-
versity). We are also grateful to MIT Press editors Marie Lee and Stephanie Cohen for
their professional assistance in realizing this book project since our proposal.

Last, but not least, Kwangkeun expresses his deep appreciation for his wife Young-ae,
for her love and care, and both authors gratefully acknowledge the love and encouragement
of their family members and relatives.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

1 Program Analysis

Goal of This Chapter Before we dive into the way static analysis tools operate, we need
to define their scope and describe the kinds of questions they can help solve. In section 1.1
we discuss the importance of understanding the behavior of programs by semantic rea-
soning, and we show applications in section 1.2. Section 1.3 sets up the main concepts
of static analysis and shows the intrinsic limitations of automatic program reasoning tech-
niques based on semantics. Section 1.4 classifies the main approaches to semantic-based
program reasoning and clarifies the position of static analysis in this landscape.

Recommended Reading: [S], [D], [U]

1.1 Understanding Software Behavior

In every engineering discipline, a fundamental question is, will our design work in reality
as we intended? We ask and answer that question when we design mechanical machines,
electrical circuits, or chemical processes. The answer comes from analyzing our designs
using our knowledge about nature that will carry out the designs. For example, using
Newtonian mechanics, Maxwell equations, Navier-Stokes equations, or thermodynamic
equations, we analyze our design to predict its actual behavior. When we design a bridge,
for example, we analyze how nature runs the design, namely, how various forces (e.g.,
gravitation, wind, and vibration) are applied to the bridge and whether the bridge structure
is strong enough to withstand them.

The same question applies to computer software. We want to ensure that our software
will work as intended. The intention for analysis ranges widely. For general reliability,
we want to ensure that the software will not crash with abrupt termination. If the software
interacts with the outside world, we want to ensure it will not be deceived to violate the
host computer’s security. For specific functionalities, we want to check if the software will
realize its functional goal. If the software is to control cars, we want to ensure it will not
drive them to an accident. If the software is to learn our preference, we want to ensure it
will not degrade as we teach more. If the software transforms the medical images of our



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

2 Chapter 1

bodies, we want to ensure it will not introduce false pixels. If the software is to bookkeep
the ledgers for crypto currency, we want to ensure it will not allow double spending. If
the software translates program text, we want to ensure the source’s meaning is not lost in
translation.

There is, however, one difference between analyzing software and analyzing other types
of engineering designs: for computer software, it is not nature that will run the software
but the computer itself. The computer will execute the software according to the meanings
of the software’s source language. Software’s run-time behavior is solely defined by the
meanings of the software’s source language. The computer is just an undiscerning tool that
blindly executes the software exactly as it is written. Any execution behavior that deviates
from our intention is because the software is mistakenly written to behave that way.

Hence, for computer software, to answer the question of whether our design will work
as we intended, we need knowledge by which we can somehow analyze the meanings of
software source language. Such knowledge corresponds to knowledge that natural sciences
have accumulated about nature. We need knowledge that computer science has accumu-
lated about handling the meanings of software source languages.

We call a formal definition of a software’s run-time behavior, which is determined by its
source language’s meanings, semantics:
Definition 1.1 (Semantics and semantic properties) The semantics of a program is a (generally
formal—although we do not make it so in this chapter) description of its run-time behaviors.
We call semantic property any property about the run-time behavior (semantics) of a program.

Hence, checking if a software will run as we intended is equivalent to checking if this
software satisfies a semantic property of interest.

In the following, we call a technique to check that a program satisfies a semantic property
program analysis, and we refer to an implementation of program analysis as a program
analysis tool.

Figure 1.1 illustrates the correspondence between program analysis and design analysis
of other engineering disciplines.

1.2 Program Analysis Applications and Challenges

Program analysis can be applied wherever understanding program semantics is important
or beneficial. First, software developers (both humans and machines) may be the biggest
beneficiaries. Software developers can use program analysis for quality assurance, to lo-
cate errors of any kind in their software. Software maintainers can use program analysis
to understand legacy software that they maintain. System security gatekeepers can use
program analysis to proactively screen out programs whose semantics can be malicious.

Software that handles programs as data can use program analysis for the programs’ per-
formance improvement too. Language processors such as translators or compilers need



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 3

Computing area Other engineering areas

Object Software Machine/building/circuit/chemical
process design

Execution subject Computer runs it Nature runs it

Our question Will it work as intended? Will it work as intended?

Our knowledge Program analysis Newtonian mechanics, Maxwell equa-
tions, Navier-Stokes equations, ther-
modynamic equations, and other prin-
ciples

Figure 1.1
Program analysis addresses a basic question common in every engineering area

program analysis to translate the input programs into optimized ones. Interpreters, vir-
tual machines, and query processors need program analysis for optimized execution of the
input programs. Automatic program synthesizers can use program analysis to check and
tune what they synthesize. Mobile operating systems need to understand an application’s
semantics in order to minimize the energy consumption of the application. Automatic tu-
toring systems for teaching programming can use program analysis to hint to students a
direction to amend their faulty programs.

Use of program analysis is not limited to professional software or its developers. As
programming becomes a way of living in a highly connected digitized environment, citizen
programmers can benefit from program analysis, too, to sanity-check their daily program
snippets.

The target of program analysis is not limited to executable software, either. Once the
object’s source language has semantics, program analysis can circumscribe its semantics
to provide useful information. For example, program analysis of high-level system config-
uration scripts can provide information about any existing conflicting requests.

Though the benefits of program analysis are obvious, building a cost-effective program
analysis is not trivial, since computer programs are complex and often very large. For
example, the number of lines of smartphone applications frequently reaches over half a
million, not to mention larger software such as web browsers or operating systems, whose
source sizes are over ten million lines. With semantics, the situation is much worse because
a program execution is highly dynamic. Programs usually need to react to inputs from
external, uncontrolled environments. The number of inputs, not to mention the number of
program states, that can arise in all possible use cases is so huge that software developers
are likely to fail to handle some corner cases. The number easily can be greater than the
number of atoms in the universe, for example. The space of the inputs keeps exploding as



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

4 Chapter 1

we want our software to do more things. Also, constraints that could keep software simple
and small quickly diminish because of the ever-growing capacity of computer hardware.

Given that software is in charge of almost all infrastructures in our personal, social, and
global life, the need for cost-effective program analysis technology is greater than ever
before. We have already experienced a sequence of appalling accidents whose causes are
identified as mistakes in software. Such accidents have occurred in almost all sectors,
including space, medical, military, electric power transmission, telecommunication, se-
curity, transportation, business, and administration. The long list includes accidents, the
large-scale Twitter outage (2016), the fMRI software error (2016) that invalidated fifteen
years of brain research, the Heartbleed bug (2014) in the popular OpenSSL cryptographic
library that allows attackers to read the memory of any server that uses certain instances of
OpenSSL, the stack overflow issues that can explain the Toyota sudden unintended accel-
eration (2004–2014), the Northeast blackout (2003), the explosion of the Ariane 5 Flight
501 (1996), which took ten years and $7 billion to build, and the Patriot missile defense
system in Dhahran (1991) that failed to intercept an incoming Scud missile, to name just a
few of the more prominent software accidents.

Though building error-free software may be far-fetched, at least within reasonable costs
for large-scale software, cost-effective ways to reduce as many errors as possible are always
in high demand.

Static analysis, which is the focus of this book, is one kind of program analysis. We
conclude this chapter by characterizing static analysis in comparison with other program
analysis techniques.

1.3 Concepts in Program Analysis

The remainder of this chapter characterizes static program analysis and compares it with
other program analysis techniques. We provide keys to understand how each program anal-
ysis technique operates and to assess their strengths and weaknesses. This characterization
will give basic intuitions of the strengths and limitations of static analysis.

1.3.1 What to Analyze
The first question to answer to characterize program analysis techniques is what programs
they analyze in order to determine what properties.

Target Programs An obvious characterization of the target programs to analyze is the
programming languages in which the programs are written, but this is not the only one.

• Domain-specific analyses: Certain analyses are aimed at specific families of pro-
grams. This specialization is a pragmatic way to achieve a cost-effective program
analysis, because each family has a particular set of characteristics (such as program
idioms) on which a program analysis can focus. For example, consider the C program-



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 5

ming language. Though the language is widely used to write software, including oper-
ating systems, embedded controllers, and all sorts of utilities, each family of programs
has a special character. Embedded software is often safety-critical (thus needs thor-
ough verification) but rarely uses the most complex features of the C language (such
as recursion, dynamic memory allocation, and non-local jumps / ),
which typically makes analyzing such programs easier than analyzing general appli-
cations. Device drivers usually rely on low-level operations that are harder to reason
about (e.g., low-level access to sophisticated data structures) but are often of moderate
size (a few thousand lines of code).

• Non-domain-specific analyses: Some analyses are designed without focus on a par-
ticular family of programs of the target language. Such analyses are usually those
incorporated inside compilers, interpreters, or general-purpose programming environ-
ments. Such analyses collect information (e.g., constants variables, common errors
such as buffer overruns) about the input program to help compilers, interpreters, or
programmers for an optimized or safe execution of the program. Non-domain-specific
analyses risk being less precise and cost-effective than domain-specific ones in order
to have an overall acceptable performance for a wide range of programs.

Besides the language and family of programs to consider, the way input programs are
handled may also vary and affects how the analysis works. An obvious option is to handle
source programs directly just like a compiler would, but some analyses may input different
descriptions of programs instead. We can distinguish two classes of techniques:

• Program-level analyses are run on the source code of programs (e.g., written in C or
in Java) or on executable program binaries and typically involve a front end similar to
a compiler’s that constructs the syntax trees of programs from the program source or
compiled files.

• Model-level analyses consider a different input language that aims at modeling the
semantics of programs; then the analyses input not a program in a language such as
C or Java but a description that models the program to analyze. Such models either
need to be constructed manually or are computed by a separate tool. In both cases,
the construction of the model may hide either difficulties or sources of inaccuracy that
need to be taken precisely into account.

Target Properties A second obvious element of characterization of a program analysis
is the set of semantic properties it aims at computing. Among the most important families
of target properties, we can cite safety properties, liveness properties, and information flow
properties.

• A safety property essentially states that a program will never exhibit a behavior ob-
servable within finite time. Such behaviors include termination, computing a particular
set of values, and reaching some kind of error state (such as integer overflows, buffer
overruns, uncaught exceptions, or deadlocks). Hence, a program analysis for some



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

6 Chapter 1

safety properties chases program behaviors that are observable within finite time. His-
torically this class is called safety property because the goal of the analysis is to prove
the absence of bad behaviors, and the bad behaviors are mostly those that occur on
finite executions.

• A liveness property essentially states that a program will never exhibit a behavior ob-
servable only after infinite time. Examples of such behaviors include non-termination,
live-lock, or starvation.
Hence, program analysis for liveness properties searches for the existence of program
behaviors that are observable after infinite time.

• Information flow properties define a large class of program properties stating the
absence of dependence between pairs of program behaviors. For instance, in the case
of a web service, users should not be able to derive the credential of another user from
the information they can access. Unlike safety and liveness properties, information
flow properties require reasoning about pairs of executions. More generally, so-called
hyperproperties define a class of program properties that are characterized over several
program executions.

The techniques to reason about these classes of semantic properties are different. As indi-
cated above, safety properties require considering only finite executions, whereas liveness
properties require reasoning about infinite executions. As a consequence, the program
analysis techniques and algorithms dedicated to each family of semantic properties will
differ as well.

1.3.2 Static versus Dynamic
An important characteristic of a program analysis technique is when it is performed or,
more precisely, whether it operates during or before program execution.

A first solution is to make the analysis at run-time, that is, during the execution of the pro-
gram. Such an approach is called dynamic, as it takes place while the program computes,
typically over several executions.
Example 1.1 (User assertions) User assertions provide a classic case of a dynamic approach to
checking whether some conditions are satisfied by all program executions. Once the assertions are
inserted, the process is purely dynamic: whenever an assertion is executed, its condition is evaluated,
and an error is returned if the result is false.

Note that some programming languages perform run-time checking of specific properties. For
instance, in Java, any array access is preceded by a dynamic bound check, which returns an exception
if the index is not valid; this mechanism is equivalent to an assertion and is also dynamic.

A second solution is to make the analysis before program execution. We call such an
approach a static analysis, as it is done once and for all and independently from any exe-
cution.
Example 1.2 (Strong typing) Many programming languages require compilers to carry out some
type-checking stage, which ensures that certain classes of errors will never occur during the exe-



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 7

cution of the input program. This is a perfect example of a static analysis since typing takes place
independently from any program execution, and the result is known before the program actually runs.

Static and dynamic techniques are radically different and come with distinct sets of ad-
vantages and drawbacks. While dynamic approaches are often easier to design and imple-
ment, they also often incur a performance cost at run-time, and they do not force developers
to fix issues before program execution. On the other hand, after a static analysis is done
once, the program can be run as usual, without any slowdown. Also, some properties
cannot be checked dynamically. For example, if the property of interest is termination,
dynamically detecting a non-terminating execution would require constructing an infinite
program run. Dynamic and static analyses have different aftermaths once they detect a
property violation. A dynamic analysis upon detecting a property violation can simply
abort the program execution or apply an unobtrusive surgery to the program state and let
the execution continue with a risk of having behaviors unspecified in the programs. On the
other hand, when a static analysis detects a property violation, developers can still fix the
issue before their software is in use.

1.3.3 A Hard Limit: Uncomputability
Given a language of programs to analyze and a property of interest, an ideal program
analysis would always compute in a fully automated way the exact result in finite time.
For instance, let us consider the certification that a program (e.g., a piece of safety-critical
embedded software) will never crash due to a run-time error. Then we would like to use
a static program analysis that will always successfully catch any possible run-time error,
that will always say when a program is run-time error free, and that will never require any
user input.

Unfortunately, this is, in general, impossible.

The Halting Problem Is Not Computable The canonical example of a semantic property
for which no exact and fully automatic program analysis can be found is termination.
Given a programming language, we cannot have a program analysis that, for any program
in that language, correctly decides in finite time whether the program will terminate or not.

Indeed, it is well known that the halting problem is not computable. We explain more
precisely the meaning of this statement. In the following, we consider a Turing-complete
language, that is, a language that is as expressive as a Turing machine (common general-
purpose programming languages all satisfy this condition), and we denote the set of all the
programs in this language by L. Second, given a program p in L, we say that an execution
e terminates if it reaches the end of p after finitely many computation steps. Last, we say
that a program terminates if and only if its executions terminate.
Theorem 1.1 (Halting problem) The halting problem consists in finding an algorithm halt such
that,

for every program p ∈ L, halt(p) = true if and only if p terminates.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

8 Chapter 1

The halting problem is not computable: there is no such algorithm halt, as proved simultaneously
by Alonso Church [20] and Alan Turing [106] in 1936.

This means that termination is beyond the reach of a fully automatic and precise program
analysis.

Interesting Semantic Properties Are Not Computable More generally, any nontrivial se-
mantic properties are also not computable. By semantic property we mean a property that
can be completely defined with respect to the set of executions of a program (as opposed
to a syntactic property, which can be decided directly based on the program text). We call
a semantic property nontrivial when there are programs that satisfy it and programs that do
not satisfy it. Obviously only such properties are worth the effort of designing a program
analysis.

It is easy to see that a particular nontrivial semantic property is uncomputable; that is,
the property cannot have an exact decision procedure (analyzer). Otherwise, the exact
decision procedure solves the halting problem. For example, consider a property: this
program prints 1 and finishes. Suppose there exists an analyzer that correctly decides the
property for any input program. This analyzer solves the halting problem as follows. Given
an input program P, the analyzer checks its slightly changed version “P; print 1.” That
the analyzer says “yes” means P stops, and “no” means P does not stop.

Indeed, Rice’s theorem settles the case that any nontrivial semantic property is not com-
putable:
Theorem 1.2 (Rice theorem) Let L be a Turing-complete language, and let P be a nontrivial
semantic property of programs of L. There exists no algorithm such that,

for every program p ∈ L, it returns true if and only if p satisfies the semantic property P .

As a consequence, we should also give up hope of finding an ideal program analysis that
can determine fully automatically when a program satisfies any interesting property such
as the absence of run-time errors, the absence of information flows, and functional correct-
ness.

Toward Computability However, this does not mean that no useful program analysis can
be designed. It means only that the analyses we are going to consider will all need to suffer
some kind of limitation, by giving up on automation, by targeting only a restricted class of
programs (i.e., by giving up the for every program in theorem 1.2), or by not always being
able to provide an exact answer (i.e., by giving up the if and only if in theorem 1.2). We
discuss these possible compromises in the next sections.

1.3.4 Automation and Scalability
The first way around the limitation expressed in Rice’s theorem is to give up on automation
and to let program analyses require some amount of user input. In this case, the user is
asked to provide some information to the analysis, such as global or local invariants (an



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 9

invariant is a logical property that can be proved to be inductive for a given program). This
means that the analysis is partly manual since users need to compute part of the results
themselves.

Obviously, having to supply such information can often become quite cumbersome when
programs are large or complex, which is the main drawback of manual methods.

Worse still, this process may be error prone, such that human error may ultimately lead to
wrong results. To avoid such mistakes, program analysis tools may independently verify
the user-supplied information. Then, when the user-supplied information is wrong, the
analysis tool will simply reject it and produce an error message. When the analysis tool
can complete the verification and check the validity of the user-supplied information, the
correctness of the final result will be guaranteed.

Even when a program analysis is automatic, it may not always produce a result within
a reasonable time. Indeed, depending on the complexity of the algorithms, a program
analysis tool may not be able to scale to large programs due to time costs or other resource
constraints (such as memory usage). Thus, scalability is another important characteristic
of a program analysis tool.

1.3.5 Approximation: Soundness and Completeness
Instead of giving up on automation, we can relax the conditions about program analysis by
letting it sometimes return inaccurate results.

It is important to note that inaccurate does not mean wrong. Indeed, if the kind of
inaccuracy is known, the user may still draw (possibly partly) conclusive results from the
analysis output. For example, suppose we are interested in program termination. Given
an input program to verify, the program analysis may answer “yes” or “no” only when
it is fully sure about the answer. When the analysis is not sure, it will just return an
undetermined result: “don’t know.” Such an analysis would be still useful if the cases
where it answers “don’t know” are not too frequent.

In the following paragraphs, we introduce two dual forms of inaccuracies (or, equiva-
lently, approximations) that program analysis may make. To fix the notations, we assume
a semantic property of interest P and an analysis tool analysis, to determine whether
this property holds.

Ideally, if analysis were perfectly accurate, it would be such that,

for every program p ∈ L, analysis(p) = true ⇐⇒ p satisfies P .

This equivalence property can be decomposed into a pair of implications:




For every program p ∈ L, analysis(p) = true =⇒ p satisfies P.

For every program p ∈ L, analysis(p) = true ⇐= p satisfies P.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

10 Chapter 1

Therefore, we can weaken the equivalence by simply dropping either of these two impli-
cations. In both cases, we get a partially accurate too that may return either a conclusive
answer or a nonconclusive one (“don’t know”).

We now discuss in detail both of these implications.

Soundness A sound program analysis satisfies the first implication.
Definition 1.2 (Soundness) The program analyzer analysis is sound with respect to property P

whenever, for any program p ∈ L, analysis(p) = true implies that p satisfies property P .

When a sound analysis (or analyzer) claims that the program has property P , it guarantees
that the input program indeed satisfies the property. We call such an analysis sound as it
always errs on the side of caution: it will not claim a program satisfies P unless this
property can be guaranteed. In other words, a sound analysis will reject all programs that
do not satisfy P .
Example 1.3 (Strong typing) A classic example is that of strong typing that is used in program
languages such as ML, that is based on the principle that “well-typed programs do not go wrong”:
indeed, well-typed programs will not present certain classes of errors whereas certain programs that
will never crash may still be rejected.

From a logical point of view, the soundness objective is very easy to meet since the
trivial analysis defined to always return false obviously satisfies definition 1.2. Indeed,
this trivial analysis will simply reject any program. This analysis is not useful since it will
never produce a conclusive answer. Therefore, in practice, the design of a sound analysis
will try to give a conclusive answer as often as possible. This is in practice possible. As an
example, the case of an ML program that cannot be typed (i.e., is rejected) although there
exists no execution that crashes due to a typing error is rare in practice.

Completeness A complete program analysis satisfies the second, opposite implication:
Definition 1.3 (Completeness) The program analyzer analysis is complete with respect to prop-
erty P whenever, for every program p ∈ L, such that p satisfies P , analysis(p) = true.

A complete program analysis will accept every program that satisfies property P . We call
such an analysis complete because it does not miss a program that has the property. In other
words, when a complete analysis rejects an input program, the completeness guarantees
that the program indeed fails to satisfy P .

Example 1.4 (User assertions) The error search technique based on user assertions is complete
in the sense of definition 1.3. User assertions let developers improve the quality of their software
thanks to run-time checks inserted as conditions in the source code and that are checked during
program executions. This practice can be seen as a very rudimentary form of verification for a
limited class of safety properties, where a given condition should never be violated. Faults are
reported during program executions, as assertion failures. If an assertion fails, this means that at
least one execution will produce a state where the assertion condition is violated.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 11

Programs
satisfying P

Programs
not satisfying P

(a) Programs

Programs
satisfying P

Programs
not satisfying P

true false

(b) Sound, incomplete analysis

Programs
satisfying P

Programs
not satisfying P

true false

(c) Unsound, complete analysis

Programs that satisfy P

Programs that do not satisfy P

Programs for which the analysis returns true

Programs for which the analysis returns false

(d) Legend

Figure 1.2
Soundness and completeness demonstrated with Venn diagrams

As in the case of soundness, it is very easy to provide a trivial but useless complete
analysis. Indeed, if analysis always returns true, then it never rejects a program that
satisfies the property of interest; thus, it is complete, though it is of course of no use. To be
useful, a complete analyzer should often reject programs that do not satisfy the property of
interest. Building such useful complete analyses is a difficult task in general (just as it is
also difficult to build useful sound analyses).

Soundness and Completeness Soundness and completeness are dual properties. To bet-
ter show them, we represent answers of sound and complete analyses using Venn diagrams
in figure 1.2, following the legend in figure 1.2(d):

• Figure 1.2(a) shows the set of all programs and divides it into two subsets: the programs
that satisfy the semantic property P and the programs that do not satisfy P . A sound
and complete analysis would always return true exactly for the programs that are in
the left part of the diagram.

• Figure 1.2(b) depicts the answers of an analysis that is sound but incomplete: it rejects
all programs that do not satisfy the property but also rejects some that do satisfy it;
whenever it returns true, we have the guarantee that the analyzed program satisfies P .

• Figure 1.2(c) depicts the answers of an analysis that is complete but unsound: it accepts
all programs that do satisfy the property but also accepts some that do not satisfy it;
whenever it returns false, we have the guarantee that the analyzed program does not
satisfy P .

Due to the computability barrier, we should not hope for a sound, complete, and fully au-
tomatic analysis when trying to determine which programs satisfy any nontrivial execution



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

12 Chapter 1

property for a Turing-complete language. In other words, when a program analysis is au-
tomatic, it is either unsound or incomplete. However, this does not mean it is impossible
to design a program analysis that returns very accurate (sound and complete) results on a
specific set of input programs. But even in that case, there will always exist input programs
for which the analysis will return inaccurate (unsound or incomplete) results.

In the previous paragraphs, we have implicitly assumed that the program analysis tool
analysis always terminates and never crashes. In general, non-termination or crashes of
analysis should be interpreted conservatively. For instance, if analysis is meant to be
sound, then its answer should be conservatively considered negative (false) whenever it
does not return true within the allocated time bounds.

1.4 Families of Program Analysis Techniques

In this section, we describe several families of approaches to program analysis. Due to
the negative result presented in section 1.3.3, no technique can achieve a fully automatic,
sound, and complete computation of a nontrivial property of programs. We show the char-
acteristics of each of these techniques using the definitions of section 1.3.

1.4.1 Testing: Checking a Set of Finite Executions
When trying to understand how a system behaves, often the first idea that comes to mind
is to observe the executions of this system. In the case of a program that may not terminate
and may have infinitely many executions, it is of course not feasible to fully observe all
executions.

Therefore, the testing approach observes only a finite set of finite program executions.
This technique is used by all programmers, from beginners to large teams designing com-
plex computer systems. In industry, many levels of testing are performed at all stages
of development, such as unit testing (execution of sample runs on a basic function) and
integration testing (execution of large series of tests on a completed system, including
hardware and software).

Basic testing approaches, such as random testing [11], typically provide a low coverage
of the tested code. However, more advanced techniques improve coverage. As an exam-
ple, concolic testing [47] combines testing with symbolic execution (computation of exact
relations between input and output variables on a single control flow path) so as to improve
coverage and accuracy.

Testing has the following characteristics:
• It is in general easy to automate, and many techniques (such as concolic testing) have

been developed to synthesize useful sets of input data to maximize various measures
of coverage.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 13

• In almost all cases, it is unsound, except in the cases of programs that have only a finite
number of finite executions (though it is usually prohibitively costly in that case).

• It is complete since a failed testing run will produce an execution that is incorrect with
respect to the property of interest (such a counter-example is very useful in practice
since it shows programmers exactly how the property of interest may be violated and
often gives precise information on how to fix the program).

Besides, testing is often costly, and it is hard to achieve a very high path coverage on very
large programs. On the other hand, a great advantage of testing is that it can be applied to a
program in the conditions in which it is supposed to be run; for instance, testing a program
on the target hardware, with the target operating system and drivers, may help diagnose
issues that are specific to this combination.

When the semantics of programs is non-deterministic, it may not be feasible to reproduce
an execution, which makes the exploitation of the results produced by testing problematic.
As an example, the execution of a set of concurrent tasks depends on the scheduling strat-
egy so that two runs with the same input may produce different results, if this strategy is
not fully deterministic.

Another consideration is that testing will not allow attacking certain classes of properties.
For instance, it will not allow proving that a program terminates, even over a finite set of
inputs.

1.4.2 Assisted Proof: Relying on User-Supplied Invariants
A second way to avoid the limitation shown in section 1.3.3 consists in giving up on au-
tomation.

This is essentially the approach followed by machine-assisted techniques. This means
that users may be required to supply additional information together with the program to
analyze. In most cases, the information that needs to be supplied consists of loop invariants
and possibly some other intermediate invariants. This often requires some level of exper-
tise. On the other hand, a large part of the verification can generally still be carried out in
a fully automatic way.

We can cite several kinds of program analyses based on machine-assisted techniques.
A first approach is based on theorem-proving tools like Coq [24], Isabelle/HOL [49], and
PVS [88] and requires the user to formalize the semantics of programs and the properties
of interest and to write down proof scripts, which are then checked by the prover. This
approach is adapted to the proof of sophisticated program properties. It was applied to the
verified CompCert compiler [77] from C to Power-PC assembly (the compiler is verified
in the sense that it comes with a proof that it will compile any valid C program properly).
It was also used for the design of the microkernel seL4 verified [69]. A second approach
leverages a tool infrastructure to prove a specific set of properties over programs in a spe-
cific language. The B-method [1] tool set implements such an approach. Also, tools such



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

14 Chapter 1

as the Why C program verification framework [43] or Dafny [76] input a program with a
property to verify and attempt to prove the property using automatic decision procedures,
while relying on the user for the main program invariants (such as loop invariants) and
when the automatic procedures fail.

Machine-assisted techniques have the following characteristics:
• They are not fully automatic and often require the most tedious logical arguments to

come from the human user.
• In practice, they are sound with respect to the model of the program semantics used

for the proof, and they are also complete up to the abilities of the proof assistant to
verify proofs (the expressiveness of the logics of the proof assistant may prevent some
programs to be proved, though this is rarely a problem in practice).

In practice, the main limitation of machine-assisted techniques is the significant resources
they require, in terms of time and expertise.

1.4.3 Model Checking: Exhaustive Exploration of Finite Systems
Another approach focuses on finite systems, that is, systems whose behaviors can be ex-
haustively enumerated, so as to determine whether all executions satisfy the property of
interest. This approach is called finite-state model checking [38, 93, 21] since it will check
a model of a program using some kind of exhaustive enumeration. In practice, model-
checking tools use efficient data structures to represent program behaviors and avoid enu-
merating all executions thanks to strategies that reduce the search space.

Note that this solution is very different from the testing approach discussed in sec-
tion 1.4.1. Indeed, testing samples a finite set of behaviors among a generally infinite
set, whereas model checking attempts to check all executions of a finite system.

The finite model-checking approach has been used both in hardware verification and in
software verification.

Model checking has the following characteristics:
• It is automatic.
• It is sound and complete with respect to the model.

An important caveat is that the verification is performed at the model level and not at the
program level. As a first consequence, this means that a model of the program needs to
be constructed, either manually or by some automatic means. In practice, most model-
checking tools provide a front end for that purpose. A second consequence is that the
relation between this model and the input program should be taken into account when
assessing the results; indeed, if the model cannot capture exactly the behaviors of the pro-
gram (which is likely as programs are usually infinite systems since executions may be
of arbitrary length), the checking of the synthesized model may be either incomplete or
unsound, with respect to the input program. Some model-checking techniques are able to
automatically refine the model when they realize that they fail to prove a property due to



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 15

a spurious counter-example; however, the iterations of the model checking and refinement
may continue indefinitely, so some kind of mechanism is required to guarantee termina-
tion. In practice, model-checking tools are often conservative and are thus sound and
incomplete with respect to the input program. A large number of model-checking tools
have been developed for verifying different kinds of logical assertions on various models
or programming languages. As an example, UPPAAL [8] verifies temporal logic formulas
on timed automata.

1.4.4 Conservative Static Analysis: Automatic, Sound, and Incomplete Approach
Instead of constructing a finite model of programs, static analysis relies on other techniques
to compute conservative descriptions of program behaviors using finite resources. The core
idea is to finitely over-approximate the set of all program behaviors using a specific set of
properties, the computation of which can be automated [26, 27]. A (very simple) example
is the type inference present in many modern programming languages such as variants of
ML. Types [50, 81] provide a coarse view of what a function does but do so in a very effec-
tive manner, since the correctness of type systems guarantees that a function of type int -

> bool will always input an integer and return a Boolean (when it terminates). Another
contrived example is the removal of array bound checks by some compilers for optimiza-
tion purposes, using numerical properties over program variables that are automatically
inferred at compile-time. The next chapters generalize this intuition and introduce many
other forms of static analyses.

Besides compilers, static analysis has been very heavily used to design program verifiers
and program understanding tools for all sorts of programming languages. Among many
others, we can cite the ASTRÉE [12] static analyzer for proving the absence of run-time
errors in embedded C codes, the Facebook INFER [15] static analyzer for the detection of
memory issues in C/C++/Java programs, the JULIA [103] static analyzer for discovering
security issues in Java programs, the POLYSPACE [34] static analyzer for ADA/C/C++
programs, and the SPARROW [66] static analyzer for the detection of memory errors in C
programs.

Static analysis approaches have the following characteristics:
• They are automatic.
• They produce sound results, as they compute a conservative description of program

behaviors, using a limited set of logical properties. Thus, they will never claim the
analyzed program satisfies the property of interest when it is not true.

• They are generally incomplete because they cannot represent all program properties
and rely on algorithms that enforce termination of the analysis even when the input
program may have infinite executions. As a consequence, they may fail to prove correct
some programs that satisfy the property of interest.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

16 Chapter 1

Static analysis tools generally input the source code of programs and do not require model-
ing the source code using an external tool. Instead, they directly compute properties taken
in a fixed set of logical formulas, using algorithms that we present throughout the following
chapters.

While a static analysis is incomplete in general, it is often possible to design a sound
static analysis that gives the best possible answer on classes of interesting input programs,
as discussed in section 1.3.5. However, it is then always possible to craft a correct input
program for which the analysis will fail to return a conclusive result.

Last, we remark that it is entirely possible to drop soundness so as to preserve automa-
tion and completeness. This leads to a different kind of analysis that produces an under-
approximation of the program’s actual behaviors and answers a very different kind of ques-
tion. Indeed, such an approach may guarantee that a given subset of the executions of the
program can be observed. For instance, the approach may be useful to establish that this
program has at least one successful execution. On the other hand, it does not prove prop-
erties such as the absence of run-time errors.

1.4.5 Bug Finding: Error Search, Automatic, Unsound, Incomplete, Based on Heuristics
Some automatic program analysis tools sacrifice not only completeness but also soundness.
The main motivation to do so is to simplify the design and implementation of analysis tools
and to provide lighter-weight verification algorithms. The techniques used in such tools are
often similar to those used in model checking or static analysis, but they relax the sound-
ness objective. For instance, they may construct unsound finite models of programs so as
to quickly enumerate a subset of the executions of the analyzed program, such as by con-
sidering only what happens in the first iteration of each loop [110], whereas a sound tool
would have to consider possibly unbounded iteration numbers. As an example, the com-
mercial tool COVERITY [10] applies such techniques to programs written in a wide range
of languages (e.g., Java, C/C++, JavaScript, or Python). Similarly, the tool CODESONAR

[79] relies on such approaches so as to search for defects in C/C++ or Assembly programs.
The CBMC tool (C Bounded Model Checker) [70] extracts models from C/C++ or Java
programs and performs bounded model checking on them, which means that it explores
models only up to a fixed depth. It is thus a case that a model checker gives up on sound-
ness in order to produce fewer alarms.

Since the main motivation of this approach is to discover bugs (and not to prove their
absence), it is often referred to as bug finding. Such tools are usually applied to improve
the quality of noncritical programs at a low cost.

Bug-finding tools have the following characteristics:
• They are automatic.
• They are neither sound nor complete; instead, they aim at discovering bugs rather

quickly, so as to help developers.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

Program Analysis 17

Auto-
matic

Sound Complete Object When

Testing Yes No Yes Program Dynamic

Assisted proving No Yes Yes/No Model Static

Model checking of
finite-state model

Yes Yes Yes
Finite
model

Static

Model checking at
program level

Yes Yes No Program Static

Conservative static
analysis

Yes Yes No Program Static

Bug finding Yes No No Program Static

Figure 1.3
An overview of program analysis techniques

1.4.6 Summary
Figure 1.3 summarizes the techniques for program analysis introduced in this chapter and
compares them based on five criteria. As this comparsion shows, due to the computability
barrier, no technique can provide fully automatic, sound, and complete analyses. Testing
sacrifices soundness. Assisted proving is not automatic (even if it is often partly auto-
mated, the main proof arguments generally need to be human provided). Model-checking
approaches can achieve soundness and completeness only with respect to finite models,
and they generally give up completeness when considering programs (the incompleteness
is often introduced in the modeling stage). Static analysis gives up completeness (though it
may be designed to be precise for large classes of interested programs). Last, bug finding
is neither sound nor complete.

As we remarked earlier, another important dimension is scalability. In practice, all ap-
proaches have limitations regarding scalability, although these limitations vary depending
on the intended applications (e.g., input programs, target properties, and algorithms used).

1.5 Roadmap

From now on, we focus on conservative static analysis, from its design methodologies to
its implementation techniques.

Definition 1.4 (Static analysis) Static analysis is an automatic technique for program-level anal-
ysis that approximates in a conservative manner semantic properties of programs before their exe-
cution.



MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 August 26, 2019 2:20am

18 Chapter 1

After a gentle introduction to static analysis in chapter 2, we present a static analysis
framework based on a compositional semantics in chapter 3, a static analysis framework
based on a transitional semantics in chapter 4, and some advanced techniques in chap-
ter 5. These frameworks, thanks to a semantics-based viewpoint, are general so that they
can guide the design of conservative static analyses for any programming language and for
any semantic property. In chapter 6, we present issues and techniques regarding the use
of static analysis in practice. Chapter 7 discusses and demonstrates the implementation
techniques to build a static analysis tool. In chapter 8, we present how we use the general
static analysis framework to analyze seemingly complex features of realistic programming
languages. Chapter 9 discusses several important families of semantic properties of in-
terest and shows how to cope with them using static analysis. In chapter 10, we present
several specialized yet high-level frameworks for specific target languages and semantic
properties. Finally, in chapter 11 we summarize this book.


