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Abstract

This paper presents a static analysis that estimates un-
caught exceptions in multithreaded Java programs. In Java,
throwing exceptions across threads is deprecated because
of the safety problem. Instead of restricting programmers’
freedom, we extend Java language to support multithreaded
exception handling and propose a tool to detect uncaught
exceptions in the input programs.

Our analysis consists of two steps. The analysis firstly
estimates concurrently evaluated expressions of the mul-
tithreads in Java programs by the synchronization rela-
tion among the threads. Using this concurrency informa-
tion, program’s exception flow is derived as set-constraints,
whose least model is our analysis result. Both of these two
steps are proved safe.

1. Introduction

Java [8] offers both exception handling facilities and
multithreading mechanisms. Exception facilities allow the
programmer to define, throw and catch exceptional con-
ditions. Exceptions are first-class objects in Java. Like
normal objects, they can be defined by classes, instanti-
ated, assigned to variables, passed as parameters, etc. Java
provides a simple and tightly integrated support for multi-
threaded programs. A concurrent program consists of mul-
tiple threads that run independently at the same time.

However, Java does not provide a good method to use
these two features together. The only one way for a thread
to throw an asynchronous exception to another thread is in-
voking Thread.stop() . When thestop method of a
threadc1 is invoked by another threadc2, the exception
ThreadDeath is thrown to the threadc1 andc1 is stopped.
But Thread.stop() is deprecated from JDK1.2 [1] be-
cause it is unsafe [2]:
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“Stopping a thread causes it to unlock all
the monitors that it has locked. (The mon-
itors are unlocked as theThreadDeath ex-
ception propagates up the stack.). . . Un-
like other unchecked exceptions,ThreadDeath
kills threads silently; thus, the user has no warn-
ing that his program may be corrupted.”

Instead of throwing exceptions across threads, Java rec-
ommends a polling method. When a thread kills another
thread, the former simply sets some flag to indicate that the
latter should stop running. The latter thread should check
this flag regularly and stop if the flag is set.

Our Work

In this paper, we extend Java language to support throw-
ing exceptions across threads and present a static analysis
that estimates uncaught exceptions in multithreaded Java
programs. In contrast to Java’s restriction on throwing asyn-
chronous exceptions because of the safety problem, we give
Java programmers the freedom of programming and provide
them with a tool to check the safety of the programs.

Our analysis consists of two steps: analyzing Java pro-
grams’ concurrency information and then exception flow.
First, the analysis estimates expressions which may be eval-
uated concurrently in each thread. And then it analyzes
the programs’ exception flow with the pre-analyzed concur-
rency information.

Consider the example in Figure 1. When
“main.stop(new Exception()) ” is called in
the threadThreadOne , the exceptionException is
thrown to the threadThreadMain . In order to analyze
the expressions inThreadMain to which the excep-
tion is thrown, our analysis estimates the expressions
in ThreadMain which may be evaluated concurrently
with main.stop in ThreadOne . Using thewait and
notify relation amongThreadMain , ThreadOne
and ThreadTwo , our concurrency analysis estimates



class ThreadOne extends Thread {
Object objectO;
Thread main;
public ThreadOne (Object objectO,

Thread main) {
this.objectO = objectO;
this.main = main;

}
public void run() {

try {
synchronized (objectO)

{ objectO.wait(); }
} catch (InterruptedException e) {}

// asynchronous exception throw
main.stop(new Exception());

}
}

class ThreadTwo extends Thread {
Object objectO;
Object objectP;
public ThreadTwo (Object objectO,

Object objectP) {
this.objectO = objectO;
this.objectP = objectP;

}
public void run() {

try {
this.sleep(1000);

} catch (InterruptedException e) {}
synchronized (objectP)

{ objectP.notify(); }
synchronized (objectO) {

objectO.notify();
System.out.println

("\nobjectO.notify by ThreadTwo");
}

}
}

class ThreadMain extends Thread {
public static void main (String args[]) {

Object objectO = new Object();
Object objectP = new Object();

Thread one = new ThreadOne(objectO,
Thread.currentThread());

one.start();
Thread two = new ThreadTwo(objectO,

objectP);
two.start();
try {

synchronized (objectP)
{ objectP.wait(); } // from HERE!!!

} catch (Exception e) {}
synchronized (objectO) {

objectO.notify();
System.out.println

("\nobjectO.notify by ThreadMain");
}

}
}

Figure 1. A Multithreaded Java Program with
An Asynchronous Exception Throw

P ::= C∗ program
C ::= class c ext c {var x∗ M∗}

class definition
M ::= m(x) = e [throws c∗]

method definition
id ::= x method parameter

| id . x field variable
c class name
m method name
x variable name
e ::= id variable

| id := e assignment
| new c new object
| this self object
| e ; e sequence
| if e then e else e branch
| throw e exception raise
| try e catch ( c x e) exception handle
| e. m( e) method call
| e.start thread start
| e.wait object wait
| e.notify object notify
| xthrow e to e cross exception raise

Figure 2. Abstract Syntax of an Extended
Core of Java

that the expressions evaluated afterobjectP.wait in
ThreadMain may be evaluated concurrently with the
main.stop in ThreadOne .

Section 2 presents the syntax and semantics of source
language. Section 3 and Section 4 present two analyses:
concurrency analysis and exception analysis, respectively.
Section 5 shows related work and Section 6 concludes.

2. Language

For presentation brevity, we consider an imaginary core
of Java with the extension of throwing exceptions across
threads. Its abstract syntax is in Figure 2. A program is a
sequence of class definitions. Class bodies consist of field
variable declarations and method definitions. A method def-
inition consists of the method name, its parameter, and its
body expression.

Every expression’s result is an object. Assignment ex-
pression returns the object of its right hand side expression.
Sequence expression’s result is the object of the last expres-
sion in the sequence and the result of a method call is the
object from the method body. Thetry expression “try
e1 catch ( c x e2) ” evaluatese1 first. If the expres-
sion returns a normal object then this object is the result of



thetry expression. If an exception is raised frome1 and its
class is covered byc then the handler expressione2 is eval-
uated with the exception object bound tox. If the raised
exception is not covered by classc then the raised excep-
tion continues to propagate back along the evaluation chain
until it meets another handler. Note that nestedtry expres-
sion can express multiple handlers for a single expressione1

: “ try (try e1 catch ( c1 x1 e2)) catch ( c2 x2 e3) .”
The exception objecte is raised bythrow e. The pro-
grammers have to declare in a method definition any excep-
tion class whose exceptions may escape from its body.

There are three language constructs for multithreading.
A new threade starts by “e.start ” and therun method
of the threade is executed after the thread is started. For
the sake of simplicity, we assume thatrun methods are
used only for thread start. Thewait expression “e.wait ”
causes a current thread to wait until the objecte is notified
by another thread. Andnotify expression “e.notify ”
wakes up some thread which is waiting for the objecte to be
notified. Note that this waiting and notification mechanism
provides support for synchronizing the concurrent execu-
tions of threads.

The extended construct for throwing exceptions across
threads is “xthrow e1 to e2”. It throws the exception
objecte1 to the threade2. The exception is thrown to the
expression evaluated in the threade2 at the same time.

We omit the formal semantics of our language. The se-
mantics is not quite different from the existing work [4, 5]
which present an event-based structural operational seman-
tics for multi-threaded Java programs.

Throughout this paper, we callwait , notify expres-
sions andhd(ec.run), ec.run for a threadc in the input
programsynchronizing expressionswherehd(e) finds the
firstly evaluated expression during the evaluation ofe. Java
threads synchronize with each other bywait andnotify
expressions. For a threadc in the input program, the first ex-
pression evaluated inc is hd(ec.run) and the last expression
evaluated isec.run.

3. Step One: Concurrency Analysis

In order to analyze uncaught exceptions in multithreaded
Java programs, we need a concurrency analysis which esti-
mates expressions evaluated concurrently in each thread at
the same time. According to the semantics ofxthrow ex-
pression, when “xthrow e1 to e2” is evaluated in a thread
c1, the exceptione1 is thrown to the threade2. Thus, in or-
der to estimate the expressions ine2 to whiche1 is thrown,
our exception analysis needs to know the expressions ine2

which are evaluated in parallel with “xthrow e1 to e2”.
Section 3.1 presents our approach intuitively. We show

the concurrency analysis rules and the soundness of the
analysis in Section 3.2 and 3.3.

3.1 Our Approach

The example in Figure 3 (a and b) illustrates how two
different executions of the same program result in dif-
ferent synchronizations. The “o1.wait ” of Figure 3-
(a) synchronizes with “o1.notify ” in the thread c2,
while the “o1.wait ” of Figure 3-(b) synchronizes with
“o1.notify ” in the threadc3. For the former case,
since the “o1.wait ” is evaluated beforee and simulta-
neously with the “o1.notify ” in c2, all the expressions
in c2 which may be evaluated concurrently withe are in-
cluded in “the expressions which are evaluated later than
“o1.notify ” in c2” (* 1). And for the latter case, the
“o1.wait ” is evaluated beforee and simultaneously with
the “o1.notify ” in c3, and the “o2.notify ” is eval-
uated before “o1.notify ” and simultaneously with the
“o2.wait ” in c2. Thus, all the expressions inc2 which
may be evaluated concurrently withe are included in “the
expressions which are evaluated later than “o2.wait ” in
c2” (* 2).

In order to safely estimate the concurrent executions with
e in c2, we consider all the possible synchronizations among
threads and, for each synchronization, we collect all the ex-
pressions which may be evaluated concurrently withe in
c2. As Figure 3-(c) represents, for each possible synchro-
nization of “o1.wait ” with “ o1.notify ” in c2 andc3,
our approach collects all the possible concurrently executed
expressions *1 and *2.

3.2 Time Analysis Rules

We first analyze timing relation among expressions in a
given thread:pre(e) (suc(e)) estimates expressions evalu-
ated right before (after)e and ˆpre(e) ( ˆsuc(e)) estimates the
last (next) synchronizing expressions ofe.

In Figure 4, every expressione of the input program has
two set constraints:Pe ⊇ se andSe ⊇ se. The set variable
Pe is for the expressions which may be evaluated right be-
foree andSe is for the expressions which may be evaluated
right aftere. A set expressionse is either an expression or
a union of set expressions. A constraintPe ⊇ se (Se ⊇ se)
may be read as “expressione is evaluated right after (before)
one of the expressions inse is evaluated”.

Consider the rule forthrow expression:

¤t e1 : C1

¤t throw e1 : {Pe ⊇ e1, Se1 ⊇ e} ∪ C1
.

During the evaluation ofe, “ throw e1”, e1 is firstly evalu-
ated and thene is evaluated. Soe is evaluated right aftere1

(Pe ⊇ e1) ande1 is evaluated right beforee (Se1 ⊇ e).
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Figure 3. Non-Deterministic Execution Example And Our Approach

Consider the rule fortry expression:

¤t e1 : C1 ¤t e2 : C2

¤t try e1 catch ( c1 x1 e2) :
{Phd(e2) ⊇ e1, Pe ⊇ e1 ∪ e2, Se1 ⊇ hd(e2) ∪ e, Se2 ⊇ e}
∪ C1 ∪ C2

.

There are two possible evaluations ofe,
“ try e1 catch ( c1 x1 e2) ”: 1. after e1 is evalu-
ated,e is evaluated whene1’s value is a normal object or
e1’s uncaught exceptions are not covered byc1 2. aftere1 is
evaluated,e2 and thene are evaluated whene1’s uncaught
exceptions are covered byc1. For the former case,e is
evaluated right aftere1 (Pe ⊇ e1, Se1 ⊇ e). For the latter
case, hd(e2) is evaluated right aftere1 (Phd(e2) ⊇ e1,
Se1 ⊇ hd(e2)) ande is evaluated right aftere2 (Pe ⊇ e2,
Se2 ⊇ e).

Definition 1 For a program (a closed expression)℘ and
an evaluation of the programε, Timeε(e) denotes the time
whene is evaluated inε. We writeTime(e) when it is clear
from the context which evaluation the expressione belongs
to.

Our time analysis among expressions safely approxi-
mates timing relation among the expressions in a given
thread:

Lemma 1 For a program℘, let ¤t℘ : C and let lm(C) be
the least model ofC. If pre(e) = lm(C)(Pe) andsuc(e) =
lm(C)(Se), then the followings hold for any evaluation of
the program and for any expressionse′ ande evaluated in
a threadc:

1. If Time(e′) ≤ Time(e) thene′ ∈ pre∗(e).
2. If Time(e′) ≥ Time(e) thene′ ∈ suc∗(e).

Proof. In [15]. 2

Another timing analysisˆpre(e) ( ˆsuc(e)) which estimates
the last (next) synchronizing expressions of an expression in
a given thread is omitted for brevity. We refer the interested
readers to [15].

3.3 Concurrency Analysis Rules

Now, we present our concurrency analysis rules in this
section. We assume that class informationClass(e) is al-
ready available for every expressione in our analysis. There
are several existing work for class analysis[6, 13, 16]. The
class analysis estimates for each expressione the classes
(including exception classes) that the expressione’s normal
object belongs to. Note that exception classes are normal
classes in Java.

When we say “an expressione in a threadc”, it means
that e may be evaluated inc. If e is the body of therun
method of a threadc or e’s enclosing method is therun
method ofc, e is evaluated only inc. Otherwise,e is eval-
uated in threads wheree’s enclosing method is called. This
is formally defined as follows:

owner(e) =





{c} wheree = ec.run or e ∈ ec.run⋃
owner(e1. m( e2) )

wheree = em or e ∈ em, m 6= c.run ,
ande1. m( e2) ∈ ℘.

We writee ∈ c whenc ∈ owner(e).
Figure 5 presents our rules to estimate the concurrency

information of a program℘. An edgee
c↑c′−→ e′ (e

c↓c′−→ e′)
denotes that an expressione′ in a threadc′ may be evalu-
ated at the same time or before (after) the evaluation ofe
in c. We show only a half of the rules; dual rules which
swape.wait ande.notify are omitted for presentation
brevity. Rule [δ1] is for the case whene in c synchronizes
with e′ in c′ directly. In contrast, rules [δ2] to [δ5] are for the
cases whene in c does not synchronize withe′ in c′ directly
but gets timing relation by using other synchronizations.

Consider rule [δ1]:

e.wait ∈ c e1.notify ∈ c′ Class(e) ∩ Class(e1) 6= ∅
e.wait

c↑c′−→ e1.notify e.wait
c↓c′−→ e1.notify

.



[Program]t
¤t Ci : Ci, i = 1, · · · , n

¤t C1, · · · , Cn : C1 ∪ · · · ∪ Cn

[ClassDef]t
¤t Mi : Ci, i = 1, · · · , n

¤t class c ext c′ {var x∗ M∗} :
C1 ∪ · · · ∪ Cn

[MethDef]t
¤t em : C

¤t m( x) = em : C

[Variable]t ¤t id : ∅

[Assign]t
¤t e1 : C1

¤t id := e1 : {Pe ⊇ e1, Se1 ⊇ e} ∪ C1

[New]t ¤t new c : ∅

[This]t ¤t this : ∅

[Seq]t
¤t e1 : C1 ¤t e2 : C2

¤t e1 ; e2 : { Phd(e2) ⊇ e1, Pe ⊇ e2,
Se1 ⊇ hd(e2), Se2 ⊇ e}
∪ C1 ∪ C2

[Cond]t
¤t e1 : C1 ¤t e2 : C2 ¤t e3 : C3

¤t if e1 then e2 else e3 :
{Phd(e2) ⊇ e1, Phd(e3) ⊇ e1, Pe ⊇ e2 ∪ e3,
Se1 ⊇ hd(e2) ∪ hd(e3), Se2 ⊇ e, Se3 ⊇ e}
∪ C1 ∪ C2 ∪ C3

[Throw]t
¤t e1 : C1

¤t throw e1 : {Pe ⊇ e1, Se1 ⊇ e} ∪ C1

[Try] t

¤t e1 : C1 ¤t e2 : C2

¤t try e1 catch ( c1 x1 e2) :
{Phd(e2) ⊇ e1, Pe ⊇ e1 ∪ e2,
Se1 ⊇ hd(e2) ∪ e, Se2 ⊇ e} ∪ C1 ∪ C2

[MethCall]t
¤t e1 : C1 ¤t e2 : C2

¤t e1. m( e2) :
{Phd(e2) ⊇ e1, Phd(em) ⊇ e2, Pe ⊇ em,
Se1 ⊇ hd(e2), Se2 ⊇ hd(em), Sem ⊇ e}
∪ C1 ∪ C2

[ThdStart]t
¤t e1 : C1

¤t e1.start : {Pe ⊇ e1, Se1 ⊇ e} ∪ C1

[Wait]t
¤t e1 : C1

¤t e1.wait : {Pe ⊇ e1, Se1 ⊇ e} ∪ C1

[Notify] t

¤t e1 : C1

¤t e1.notify : {Pe ⊇ e1, Se1 ⊇ e} ∪ C1

[Xthrow]t
¤te1 : C1 ¤t e2 : C2

¤t xthrow e1 to e2 :
{Phd(e2) ⊇ e1, Pe ⊇ e2,
Se1 ⊇ hd(e2), Se2 ⊇ e} ∪ C1 ∪ C2

Figure 4. Time Analysis among Expressions

[δ1]

e.wait ∈ c e1.notify ∈ c′

Class(e) ∩ Class(e1) 6= ∅
e.wait

c↑c′−→ e1.notify e.wait
c↓c′−→ e1.notify

[δ2]

e.wait ∈ c e1.notify ∈ c′′ 6= c′ e2
c′′↑c′−→ e3

Class(e) ∩ Class(e1) 6= ∅ e2 ∈ ˆpre(e1.notify)

e.wait
c↑c′−→ e3

[δ3]

e.wait ∈ c e1.notify ∈ c′′ 6= c′ e2

c′′↑c′

6−→ e3

Class(e) ∩ Class(e1) 6= ∅ e2 ∈ ˆpre(e1.notify)

e.wait
c↑c′−→ hd(ec′.run)

[δ4]

e.wait ∈ c e1.notify ∈ c′′ 6= c′ e2
c′′↓c′−→ e3

Class(e) ∩ Class(e1) 6= ∅ e2 ∈ ˆsuc(e1.notify)

e.wait
c↓c′−→ e3

[δ5]

e.wait ∈ c e1.notify ∈ c′′ 6= c′ e2

c′′↓c′

6−→ e3

Class(e) ∩ Class(e1) 6= ∅ e2 ∈ ˆsuc(e1.notify)

e.wait
c↓c′−→ ec′.run

Figure 5. Concurrency Analysis Rules

Sincee.wait in c may be notified bye1.notify in c′, these
two expressions may be evaluated at the same time.

Consider rule [δ2]:

e.wait ∈ c e1.notify ∈ c′′ c′′ 6= c′ ∈ ℘ e2
c′′↑c′−→ e3

Class(e) ∩ Class(e1) 6= ∅ e2 ∈ ˆpre(e1.notify)

e.wait
c↑c′−→ e3

.

Sincee.wait in c may be notified bye1.notify in c′′, these
two expressions may be evaluated at the same time. Be-
causee2 is evaluated beforee1.notify ande3 may be eval-
uated at the same time or beforee2, e3 is evaluated before
e1.notify. Thus,e3 is evaluated beforee.wait.

Finally, consider rule [δ3]:

e.wait ∈ c e1.notify ∈ c′′ c′′ 6= c′ ∈ ℘ e2

c′′↑c′
6−→ e3

Class(e) ∩ Class(e1) 6= ∅ e2 ∈ ˆpre(e1.notify)

e.wait
c↑c′−→ hd(ec′.run)

.

As the same as in rules [δ1] and [δ2], e.wait in c and
e1.notify in c′′ may be evaluated at the same time. Since
the last synchronizing expressions ofe1.notify in c′′ may
not synchronize with the expressions inc′, e.wait cannot
get any timing relation here. Thus,e.wait safely makes an
edge withhd(ec′.run) becausehd(ec′.run) is the first expres-
sion evaluated inc′.



Rules in Figure 5 safely finds the expressions inc′ which
may be synchronized with the expressions inc before (after)
the evaluation ofe:

Lemma 2 For a program℘, let

δ↑(c, e, c′) = {e′ | e c↑c′−→ e′ is deducible by the rules in Figure 5}
δ↓(c, e, c′) = {e′ | e c↓c′−→ e′ is deducible by the rules in Figure 5}.

Then the followings hold for any evaluation of the program
and an expressione in a threadc in ℘:

1. ∃ e′ ∈ δ↑(c, e, c′) such thatTime(e′) ≤ Time(e) or
e′ = hd(ec′.run).

2. ∃ e′ ∈ δ↓(c, e, c′) such thatTime(e′) ≥ Time(e) or
e′ = ec′.run.

Proof. In [15]. 2

Definition 2 For some threadsc, c′ in a program℘ and an
expressione in c, the concurrency analysis is defined by:

Concur(c, e, c′) = {e′ | e1 ∈ ˆpre(e), e2 ∈ ˆsuc(e),
e′1 ∈ δ↑(c, e1, c

′), e′2 ∈ δ↓(c, e2, c
′),

e′ ∈ suc∗(e′1) ∩ pre∗(e′2)}.

Our concurrency analysisConcur(c, e, c′) 3 e′ denotes
thate′ in the threadc′ may be evaluated concurrently with
e in c. As Definition 2 shows, the analysis is done by the
following steps:

1. Since Java threads synchronize only bywait or
notify expressions, the analysis first finds a pair
of the last wait or notify expressions and the
nextwait or notify expressions ofe: e1 ∈ ˆpre(e),
e2 ∈ ˆsuc(e).

2. And then the analysis finds expressions inc′ which
may be synchronized with the expressions inc before
the evaluation ofe – e′1 ∈ δ↑(c, e1, c

′) – and after the
evaluation ofe – e′2 ∈ δ↓(c, e2, c

′).

3. Finally, the analysis collects all the expressions
during the pair of synchronized expressions:
e′ ∈ suc∗(e′1) ∩ pre∗(e′2).

Now, we show the soundness of our concurrency analy-
sis:

Theorem 1 For a program ℘ and any evaluation of the
program, the expression evaluated in a threadc′ concur-
rently with an expressione in a thread c is included in
Concur(c, e, c′).

Proof. In [15]. 2

4. Step Two: Exception Analysis

Now, our analysis predicts uncaught exceptions in the
input program by using the pre-analyzed concurrency in-
formation.

Our exception analysis is presented in the set-constraint
framework [9, 3]. As we mentioned before, we as-
sume a safe class informationClass(e) for every ex-
pressione and we use the safe concurrency information
Concur(c, e, c′) (Section 3) for every pair ofe ∈ c and
c′ in the exception analysis.

Figure 6 shows our rules to generate set constraints
for the uncaught exception classes from every method and
try -block of the input program. For each methodm and
try -blockeg in “ try eg catch ( c x e) ”, the set variables
Xm andXg are for the classes that the uncaught exceptions
during the evaluation ofm’s body andeg, respectively, be-
long to. A new relationm ¤ε e : C (g ¤ε e : C) is read as “a
set of constraintsC is generated from an expressione which
is a subexpression of the body of a methodm (try -block
eg).”

Consider the rule forthrow expression:

m ¤ε e1 : C1

m ¤ε throw e1 : {Xm ⊇ Class(e1)} ∪ C1
.

Uncaught exceptions from the methodm, Xm, include the
exception classes of the expressione1 (Class(e1)).

Consider the rule fortry expression:

g ¤ε eg : Cg m ¤ε e1 : C1

m ¤ε try eg catch ( c1 x1 e1) :
{Xm ⊇ (Xg − {c1}∗)} ∪ Cg ∪ C1

.

Among the classes of raised exceptions fromeg, those ex-
ceptions covered byc1 are not included in the uncaught ex-
ceptions fromm. Note that the left-hand side of the deriva-
tion rule foreg is g.

Finally, consider the rule forxthrow expression:

m ¤ε e1 : C1 m ¤ε e2 : C2

m ¤ε xthrow e1 to e2 :
{Xm′ ⊇ Class(e1) | c ∈ owner(xthrow e1 to e2),

c′ ∈ Class(e2),m′(x) = em′ ∈ ℘, e′ ∈ em′ ,
e′ ∈ Concur(c, xthrow e1 to e2, c

′)}
∪ C1 ∪ C2

.

Exceptions e1 are thrown to the methodsm′

(Xm′ ⊇ Class(e1)) whose subexpressionse′ may be
evaluated in the threadc′ ∈ Class(e2) concurrently with
the evaluation ofxthrow expression in the threadc
(Concur(c, xthrow e1 to e2, c

′)).
Our exception analysis is safe:



[Program]ε
¤ε Ci : Ci, i = 1, · · · , n

¤ε C1, · · · , Cn : C1 ∪ · · · ∪ Cn

[ClassDef]ε
¤xMi : Ci, i = 1, · · · , n

¤x class c ext c′ {var x∗ M∗} :
C1 ∪ · · · ∪ Cn

[MethDef]ε
m ¤ε em : C

¤εm( x) = em : C

[Variable]ε m ¤ε id : ∅

[Assign]ε
m ¤ε e1 : C1

m ¤ε id := e1 : C1

[New]ε m ¤ε new c : ∅

[This]ε m ¤ε this : ∅

[Seq]ε
m ¤ε e1 : C1 m ¤ε e2 : C2

m ¤ε e1 ; e2 : C1 ∪ C2

[Cond]ε
m ¤ε e1 : C1 m ¤ε e2 : C2 m ¤ε e3 : C3

m ¤ε if e1 then e2 else e3 : C1 ∪ C2 ∪ C3

[Throw]ε
m ¤ε e1 : C1

m ¤ε throw e1 : {Xm ⊇ Class(e1)} ∪ C1

[Try]ε

g ¤ε eg : Cg m ¤ε e1 : C1

m ¤ε try eg catch ( c1 x1 e1) :
{Xm ⊇ (Xg − {c1}∗)} ∪ Cg ∪ C1

[MethCall]ε
m ¤ε e1 : C1 m ¤ε e2 : C2

m ¤ε e1. m′( e2) :
{Xm ⊇ Xc′.m′ | c′ ∈ Class(e1),

m′(x) = em′ ∈ c′}
∪ C1 ∪ C2

[ThdStart]ε
m ¤ε e1 : C1

m ¤ε e1.start : C1

[Wait]ε
m ¤ε e1 : C1

m ¤ε e1.wait : C1

[Notify] ε

m ¤ε e1 : C1

m ¤ε e1.notify : C1

[Xthrow]ε
m ¤ε e1 : C1 m ¤ε e2 : C2

m ¤ε xthrow e1 to e2 :
{Xm′ ⊇ Class(e1) |
c ∈ owner(xthrow e1 to e2),
c′ ∈ Class(e2), e

′ ∈ em′ ,
m′(x) = em′ ∈ ℘,
e′ ∈ Concur(c, xthrow e1 to e2, c

′)}
∪ C1 ∪ C2

Figure 6. Exception Analysis at Method-Level

Theorem 2 For a program ℘, let ¤ε℘ : C. Then, if
m ¤ε e : C′ occurs during¤ε ℘ : C thenlm(C)(Xm) in-
cludes all the exceptions that escape frome during the exe-
cution of℘.
Proof. In [15]. 2

5. Related Work

Several exception analyses have been developed to de-
tect uncaught exceptions in ML programs [17, 19, 20, 12].
Yi first designed an exception analysis for Standard ML
(SML) programs based on abstract interpretation [17],
which was very accurate but too slow. Yi and Ryu re-
designed the analysis by set-based framework [19, 20],
which shows a good cost-accuracy performance. Fähndrich
and Aiken [7] developed an exception analyzer for SML
programs by using their BANE (Berkeley ANalysis Engine)
toolkit. As in effect systems, their system casts the type and
exception inference. Leroy and Pessaux [12] developed an
exception analysis for OCaml programs which relies on a
unification-based type inference in a non-standard type sys-
tem. Their type system uses unified mechanisms both to
collect the sets of uncaught exceptions of expressions and
to refine the usual ML types by more precise information
about the possible values of expressions.

Even though Java compiler ensures the programmer’s
specification for the possible uncaught exceptions in each
method definition, there exist several work for helping fine-
grained exception handling. Yi and Chang [18] developed
an exception analyzer for single-threaded Java programs
by a set-constraint framework, which estimated the excep-
tion flows independently of the programmer’s specifica-
tions. Robillard and Murphy [14] developed a tool called
Jex that analyzes the flow of exceptions in Java programs
by analyzing exception handling expressions, but Jex does
not report asynchronous exceptions.

Since Java does not provide a good method for multi-
threaded exception handling, several work were proposed
to deal with the problem. Lea [11] presented a method
called Completion Callbacks. In order for a threadA to
know whether the other threadB completed successfully or
with an exception,A should implement a predefined inter-
face andB must call this interface to indicate success or
failure. Similarly, Haggar [10] proposed a solution by us-
ing the listener paradigm. If a threadA wants to get an
asynchronous signal from a threadB, A should register as
a listener ofB and notification is sent to objects that are
registered as listeners ofB by calling a predefined method.

6. Conclusion

We have presented an exception analysis for multi-
threaded Java programs. In Java, throwing exceptions



across threads is deprecated because of the safety prob-
lem. Instead of restricting programmers’ freedom, we ex-
tend Java language to support multithreaded exception han-
dling and propose a tool to detect uncaught exceptions in the
input programs. Our analysis firstly estimates concurrently
evaluated expressions among threads, and then predicts un-
caught exceptions by using the pre-analyzed concurrency
information.

Our method can be applied to other languages with
both exception handling facilities and multithreading mech-
anisms. One contribution of this paper is an analysis in di-
vide and conquer style. By dividing one complex analysis
to several simpler analyses, the analysis result is achieved
systematically. Another merit of our method is designing
a sparse constraint system. When the interesting properties
are sparse in programs, it is reasonable to analyze the prop-
erties at a larger granularity than at every expression.
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