Exception Analysis for Multithreaded Java Programs*

Sukyoung Ryu and Kwangkeun Yi
Department of Computer Science
Korea Advanced Institute of Science and Technology
373-1 Kusong-dong Yusong-gu, Daejeon 305-701, Korea
{puppy, kwang@ropas.kaist.ac.kr

Abstract “Stopping a thread causes it to unlock all
the monitors that it has locked. (The mon-
This paper presents a static analysis that estimates un- itors are unlocked as th&hreadDeath ex-
caught exceptions in multithreaded Java programs. In Java, ception propagates up the stack.). Un-
throwing exceptions across threads is deprecated because like other unchecked exceptioihreadDeath
of the safety problem. Instead of restricting programmers’ kills threads silently; thus, the user has no warn-

freedom, we extend Java language to support multithreaded ing that his program may be corrupted.”

exception handling and propose a tool to detect uncaught

exceptions in the input programs. Instead of throwing exceptions across threads, Java rec-
Our analysis consists of two steps. The analysis firsty 0mmends a polling method. When a thread kills another

estimates concurrently evaluated expressions of the multhread, the former simply sets some flag to indicate that the

tithreads in Java programs by the Synchronization rela- latter should Stop running. The latter thread should check

tion among the threads. Using this concurrency informa- this flag regularly and stop if the flag is set.

tion, program’s exception flow is derived as set-constraints,

whose least model is our analysis result. Both of these twoOur Work

steps are proved safe.

In this paper, we extend Java language to support throw-
ing exceptions across threads and present a static analysis
1. Introduction that estimates uncaught exceptions in multithreaded Java
programs. In contrast to Java’s restriction on throwing asyn-
Java [8] offers both exception handling facilities and chronous exceptions because of the safety problem, we give
multithreading mechanisms. Exception facilities allow the Java programmers the freedom of programming and provide
programmer to define, throw and catch exceptional con-them with a tool to check the safety of the programs.
ditions. Exceptions are first-class objects in Java. Like Our analysis consists of two steps: analyzing Java pro-
normal objects, they can be defined by classes, instantigrams’ concurrency information and then exception flow.
ated, assigned to variables, passed as parameters, etc. JaFast, the analysis estimates expressions which may be eval-
provides a simple and tightly integrated support for multi- uated concurrently in each thread. And then it analyzes
threaded programs. A concurrent program consists of mul-the programs’ exception flow with the pre-analyzed concur-

tiple threads that run independently at the same time. rency information.

However, Java does not provide a good method to use Consider the example in Figure 1. When
these two features together. The only one way for a thread“main.stop(new Exception()) " is called in
to throw an asynchronous exception to another thread is in-the threadThreadOne , the exceptionException s
voking Thread.stop() . When thestop method of a thrown to the thread’hreadMain . In order to analyze

threadc, is invoked by another threadh, the exception the expressions ifThreadMain to which the excep-
ThreadDeath isthrown to the thread, andc; is stopped. tion is thrown, our analysis estimates the expressions
But Thread.stop() is deprecated from JDK1.2 [1] be- in ThreadMain which may be evaluated concurrently
cause it is unsafe [2]: with main.stop in ThreadOne . Using thewait and

*This work is supported by Creative Research Initiatives of the Korean NOtify relation amongThreadMain Thr'eadOne
Ministry of Science and Technology. and ThreadTwo , our concurrency analysis estimates

class ThreadOne extends Thread {
Object objectO;
Thread main;
public ThreadOne (Object objectO,
Thread main) {
this.objectO = objectO;
this.main = main;

}
public void run() {
try {
synchronized (objectO)
{ objectO.wait(); }
} catch (InterruptedException e) {}
/I asynchronous exception throw
main.stop(new Exception());

}

class ThreadTwo extends Thread {
Object objectO;
Object objectP;
public ThreadTwo (Object objectO,
Object objectP) {
objectO;
objectP;

this.objectO =
this.objectP =
}
public void run() {
try {
this.sleep(1000);
} catch (InterruptedException e) {}
synchronized (objectP)
{ objectP.notify(); }
synchronized (objectO) {
objectO.notify();
System.out.printin
("\nobjectO.notify by ThreadTwo");

}

class ThreadMain extends Thread {
public static void main (String args[]) {
Object objectO = new Object();
Object objectP = new Object();
Thread one = new ThreadOne(objectO,
Thread.currentThread());
one.start();
Thread two = new ThreadTwo(objectO,
objectP);
two.start();
try {
synchronized (objectP)
{ objectP.wait(); } // from HERE!!
} catch (Exception e) {}
synchronized (objectO) {
objectO.notify();
System.out.printin
("\nobjectO.notify by ThreadMain");

Figure 1. A Multithreaded Java Program with
An Asynchronous Exception Throw

P = C” program
C == class cext c{var z* M*}
class definition
M == m(z)=elthrows c*]
method definition
id = method parameter
| id.x field variable
c class name
m method name
x variable name
e = id variable
| wd:=e assignment
| newc new object
| this self object
| e;e sequence
| if ethen eelse e branch
| throw e exception raise
| try ecatch(cxze) exceptionhandle
| e.m(e) method call
| e.start thread start
| ewait object wait
| e.notify object notify
|

xthrow eto e cross exception raise

Figure 2. Abstract Syntax of an Extended
Core of Java

that the expressions evaluated aftdjectP.wait in
ThreadMain may be evaluated concurrently with the
main.stop in ThreadOne .

Section 2 presents the syntax and semantics of source
language. Section 3 and Section 4 present two analyses:
concurrency analysis and exception analysis, respectively.
Section 5 shows related work and Section 6 concludes.

2. Language

For presentation brevity, we consider an imaginary core
of Java with the extension of throwing exceptions across
threads. Its abstract syntax is in Figure 2. A program is a
sequence of class definitions. Class bodies consist of field
variable declarations and method definitions. A method def-
inition consists of the method name, its parameter, and its
body expression.

Every expression’s result is an object. Assignment ex-
pression returns the object of its right hand side expression.
Sequence expression’s result is the object of the last expres-
sion in the sequence and the result of a method call is the
object from the method body. They expression try
e; catch (¢ z eg)” evaluatese; first. If the expres-
sion returns a normal object then this object is the result of

thetry expression. If an exception is raised fremand its 3.1 Our Approach
class is covered bythen the handler expressiepis eval-
uated with the exception object boundo If the raised
exception is not covered by clagghen the raised excep- i i o
tion continues to propagate back along the evaluation chaindifferént executions of the same program result in dif-
until it meets another handler. Note that nestgd expres- 'erent synchronizations. Theof.wait " of Figure 3-

sion can express multiple handlers for a single expression (ar)].lsyzchf‘onizeg V\’/’ithfo“l..notify " in thi thread c,,)
Lty (try e1 catch (cizes) catch (coaes).” while the “o;.wait " of Figure 3-(b) synchronizes wit

The example in Figure 3 (a and b) illustrates how two

The exception object is raised bythrow e. The pro- 91'n°t'r':y oon th?_threaclj €3- dli)orf the fordme_r C‘?Se'
grammers have to declare in a method definition any excep-3"¢€ the op.wait "*is evaluated before and simulta-
neously with the 6 .notify in cg, all the expressions

tion class whose exceptions may escape from its body.
There are three language constructs for multithreading.
A new threade starts by ¢.start " and therun method

in co which may be evaluated concurrently withare in-
cluded in “the expressions which are evaluated later than

of the threack is executed after the thread is started. For :Ol'nOt_'fy . "in ¢;” (*1). And for the latter case, the
the sake of simplicity, we assume thain methods are o1.wait " is evaluated before and simultaneously with
' » the “o;.notify 7 in ¢, and the by.notify " is eval-

used only for thread start. Theait expression é.wait d bef B) » and simul v with th
causes a current thread to wait until the objei® notified }fate efore 4 .notify and simultaneously with the

by another thread. Andotify expression é.notify " oz.wait " in c;. Thus, all the EXpressions i Wh!,Ch
wakes up some thread which is waiting for the objetct be may be _evaluated concurrently withare mclude(_j n _the
notified. Note that this waiting and notification mechanism ex"prfssmns which are evaluated later thagwait " in
provides support for synchronizing the concurrent execu- 2 (*2). .))
tions of threads. In order to safely estimate the concurrent executions with

The extended construct for throwing exceptions across€ in c2, we consider all the possible synchronizations among
threads is kthrow e; to e,”. It throws the exception threads and, for each synchronization, we collect all the ex-
objecte; to the threac:,. The exception is thrown to the ~Pressions which may be evaluated concurrently witin
expression evaluated in the threadat the same time. co. As Figure 3-(c) represents, for each possible synchro-

We omit the formal semantics of our language. The se- Nization of “o;.wait " with “oy.notify " in ¢, andcs,
mantics is not quite different from the existing work [4, 5] Our approach collects all the possible concurrently executed
which present an event-based structural operational seman€Xpressionsiand .
tics for multi-threaded Java programs.

Throughout this paper, we callait , notify expres-
sions andhd(e.run), €crun fOr @ threadc in the input
programsynchronizing expressionghere hd(e) finds the
firstly evaluated expression during the evaluation.ofava We first analyze timing relation among expressions in a
threads synchronize with each othentgit andnotify given thread:pre(e) (suc(e)) estimates expressions evalu-
expressions. For a threadh the input program, the firstex- ated right before (aftel andpie(e) (sic(e)) estimates the
pression evaluated inis hd (e, run) @nd the last expression last (next) synchronizing expressionseof

3.2 Time Analysis Rules

evaluated i®c run- In Figure 4, every expressianof the input program has
two set constraintsP, O se andS, D se. The set variable
3. Step One: Concurrency Analysis P, is for the expressions which may be evaluated right be-

foree andS. is for the expressions which may be evaluated

In order to analyze uncaught exceptions in multithreaded 9Nt aftere. A set expressione is either an expression or

Java programs, we need a concurrency analysis which esti& umgn of sdet expressions. A colnstraggt_;hse f(tse % Sfe)
mates expressions evaluated concurrently in each thread di'®Y fe rr\ea as expressioms eval uated"ng tafter (before)
the same time. According to the semanticxthfrow ex- one of the expressions be Is evaluated®.

pression, whenxthrow e; to e,” is evaluated in a thread Consider the rule fothrow expression:

c1, the exceptiore; is thrown to the thread,. Thus, in or-

der to estimate the expressionsinto whiche; is thrown, >per:Cy

our exception analysis needs to know the expressions in > throw ey : {P. Dey,S, 2etUCy

which are evaluated in parallel witixthrow e; to e5”.

Section 3.1 presents our approach intuitively. We show During the evaluation of, “throw e;,", e is firstly evalu-
the concurrency analysis rules and the soundness of theated and thea is evaluated. Se is evaluated right after;
analysis in Section 3.2 and 3.3. (P. D e1) ande; is evaluated right before(S,, 2 e).

c1 c2 c3 Cc1 c2 c3 c1 Cc2 c3
| | \ | | | | | \
| \ \ | \ \ | \ \
| | | | | | | | |
| v v | v v | v
| oz.wait — os.notify | oz.wait — os.notify | o2.wait — os.notify
| I | I A | | \ |
y ’ | } te ! 2y, ol
. . . . ti
o1 Wait *ol_no}ify : o1 wait 4?‘;7 01 no‘tlfy o1.wait \/2\7,01 no‘lfy
v . . I
\\/ f o1.notify \\/ 01-nfitlfy I ‘l/ ol.no)?fy |
e AR ! e A ! e I
| 4 I I \ I I %*1 I
I q I | X I I § I
v V v v ¥ v v v
(a) (b) (©
X . . thread . thread \ / . may-concurrent
c1, ¢z, cs : threads ~ 77 execution * synchronization N7 * execution withe

Figure 3. Non-Deterministic Execution Example And Our Approach

Consider the rule fotry expression:

>ie1:C1 Drea:Ca
>: try ejcatch(¢z e2) :

{Pha(es) 2 €1, Pe D e1Uez, Se; D hd(ea)Ue, Se, D e}

UCiUCs
There are two possible evaluations ofe,
“try ey catch (¢ z1 ex)™ 1. after e; is evalu-

ated, e is evaluated whemr;’s value is a hormal object or
e1’s uncaught exceptions are not covered:by. aftere; is
evaluatede, and there are evaluated whegy's uncaught
exceptions are covered hy. For the former cases is
evaluated right aftee; (P. 2 e1, S., 2 €). For the latter
case, hd(ez) is evaluated right aftee; (Prg(e,) 2 e1,
Se, D hd(ez)) ande is evaluated right aftees (P. D eq,
Se, D €).

Definition 1 For a program (a closed expressiog) and
an evaluation of the program, Time.(e) denotes the time
whene is evaluated ire. We write Time(e) when it is clear
from the context which evaluation the expressidielongs
to.

Our time analysis among expressions safely approxi-

mates timing relation among the expressions in a given

thread:

Lemma 1 For a programg, let >, : C and letim(C) be
the least model of. If pre(e) = Im(C)(P.) and suc(e) =
Im(C)(S.), then the followings hold for any evaluation of
the program and for any expressioelsand e evaluated in
a threadc:
1. If Time(e') <
2. If Time(e') >

Proof. In [15]. O
Another timing analysigie(e) (sic(e)) which estimates

(e) thene’ € pre*(e).

Time
Time(e) thene’ € suc*(e).

3.3 Concurrency Analysis Rules

Now, we present our concurrency analysis rules in this
section. We assume that class informatiGlass(e) is al-
ready available for every expressiom our analysis. There
are several existing work for class analysis[6, 13, 16]. The
class analysis estimates for each expressitine classes
(including exception classes) that the expressismormal
object belongs to. Note that exception classes are normal
classes in Java.

When we say “an expressianin a threadc”, it means
thate may be evaluated in. If e is the body of thaun
method of a thread or e's enclosing method is theun
method ofc, e is evaluated only ire. Otherwiseg is eval-
uated in threads whegés enclosing method is called. This
is formally defined as follows:

{c} wheree =e.run Ore € e.run

U owner(er. m(ez))
wheree = e, Ore € e,,, m # c.run
ande;. m(e2) € .

owner(e) =

We writee € ¢ whenc € owner(e).
Figure 5 presents our rules to estimate the concurrency

clc

information of a progranp. An edgee e, ¢ (e == ¢€')
denotes that an expressiehin a threadc’ may be evalu-
ated at the same time or before (after) the evaluatioa of
in c. We show only a half of the rules; dual rules which
swape.wait ande.notify ~ are omitted for presentation
brevity. Rule p,] is for the case whea in ¢ synchronizes
with ¢’ in ¢’ directly. In contrast, rulesip] to [d5] are for the
cases whea in ¢ does not synchronize wiii in ¢’ directly
but gets timing relation by using other synchronizations.
Consider rule ¢,]:

the last (next) synchronizing expressions of an expressionin

a given thread is omitted for brevity. We refer the intereste
readers to [15].

g ewait €c epnotify €

Class(e) N Class(ey) # 0

.. cle . ., clcd .
e.wait — ej.notify e.wait — ej.notify

DtC’i:Ci,i:I,~~,n

p
[Program] > Cr,,Cn:CU-- UGy
[ClassDef] o M G, o b
>; class cext ¢ {var z* M*}:
CiU---UCy
>t em : C
MethDe _
[fl > m(x)= em:C
[Variable], >¢id: ()
. >ser: Ch
A
[Assign) D>¢id = e1: {Pe 2 e1,8 2e}UC
[New], >, newc: ()
[This], > this : 0
[Seql . Dt.el :C1 D>ires:Co
Deer; ea:{ Priey) 2 €1, Pe 2 e2,
Ser 2 hd(62)7562 2 6}
UCi UCq
[Cond], >rep:Cp D¢ ea:Co Dy e3:C3

> if ejthen eselse es:
{Phi(es) 2 €1, Ph(es) 2 €1, Pe 2 e2 Ues,
Se; 2 hd(e2) U hd(es), Se, 2 €,Se; 2 e}

ewait € ¢ ej.notify € d

61] Class(e) N Class(e1) # 0

., el . ., cle .
e.wait — ej.notify e.wait — ej.notify

(‘NTC/

e.wait € ¢ ej.notify € d"#c ea — e3
Class(e) N Class(e1) # 0 ez € pre(er.notify)

[62] .. clc
e.wait — e3
C//Tc/
ewait €c¢ epmotifye€c’ £ ex /A e3

(6] Class(e) N Class(e1) # 0 ez € pre(e1.notify)
3

evait 3% hd(ee run)

(‘Nlc/

ewait €c ejmotifyec’ #c e — e3
Class(e) N Class(e1) # 0 ez € siic(er.notify)

[64] clc!
e.wait — e3
C//lc/
ewait €c¢ epmotify €’ £ ex /A e3

(6] Class(e) N Class(e1) # 0 ez € siic(er.notify)
5

., ocle
e.wait — €./ yun

Figure 5. Concurrency Analysis Rules

Sincee.wait in ¢ may be notified by, .notifyin ¢, these

UCUCyUCs two expressions may be evaluated at the same time.
Consider rule ds]:
[Throw], Pier: Gy
> throw e; : {Pe) er, Sel D) 6} Ul . A " " , "¢
ewait € ¢ ejmotifyed d"#cd€p es — es
[Ty, Deei:C Dres:Co Class(e) N Class(e1) #0 es € pre(er.notify)
> try ejcatch(¢z e2) : T e
{Pra(es) 2 €1, P D €1 Ues, e.wait — €3
Ser 2 hd(ez) Ue, Se; 2 e} UCLUC Sincee.wait in ¢ may be notified by .notifyin ¢’, these
Drep:Cr Drex:Co two expressions may be evaluated at the same time. Be-
[MethCall], . :
> e1. m(ez) : causee, is evaluated before, .notify andes may be eval-
{Pra(es) 2 €1, Pr(e,n) 2 €2, Pe 2 em, uated at the same time or befarg e3 is evaluated before
Sey 2 hd(ez2), Se; 2 hd(em), Se,, 2 e} e1.notify. Thus,es is evaluated before.wait.
UCLUC: Finally, consider ruleds]:
>ier:Cy 1
[ThaStard >eerstart :{P. 2e1, 8, 2etUC ewait € ¢ ejmotifyec’ ' #c €p e C7£> es
_ > e :Ch Class(e) N Class(e1) #0 eq € pre(e;.notify)
[V\/alt]t > ep.wait {Pe D) 61,561 B 6} UcC: ewait ﬂ hd(ec’.run)
[Notify] : PG As the same as in rule®;] and [j2] it i d
> ep.notify : {P. Dei, S, DetUC . 1 2], ewait in ¢ and
ei.notify in ¢’ may be evaluated at the same time. Since
[Xthrow], Dier:C1 Deez:Co the last synchronizing expressionsegfnotify in ¢’ may

>: xthrow e;to es:
{Phd(eg) 2 elvpe 2 €2,
Se; D hd(e2), Sey; 2 e} UC1 UC2

Figure 4. Time Analysis among Expressions

not synchronize with the expressionsdn e.wait cannot
get any timing relation here. Thuswait safely makes an
edge withhd (eq run) becauséd (e run) is the first expres-
sion evaluated i’

Rules in Figure 5 safely finds the expressionsg iwhich
may be synchronized with the expressiongliefore (after)
the evaluation oé:

Lemma 2 For a programg, let

Si(c,e,) ={e'|e °1< ' is deducible by the rules in Figure}5
5i(ce,c) = {e' | e £S5 ¢ is deducible by the rules in Figure}s

Then the followings hold for any evaluation of the program
and an expressioain a threadc in p:

1. 3¢ € 61(c,e,c') such thatTime(e’) < Time(e) or
e’ = hd(e¢ run)-

2.3¢ €0(c,e,c) such thatTime(e’') > Time(e) or

A
€ = €¢ .run-

Proof. In [15]. O

Definition 2 For some threads, ¢’ in a programgp and an
expressiore in ¢, the concurrency analysis is defined by:

Concur(c,e, ') = {e'| e1 € pie(e), ez € siic(e),
ell € 5T(C,61,C/)7 6/2 € 6l(cv 6236/)7
e € suc*(e}) Npre*(eh)}.

Our concurrency analysioncur(c,e,c’) > ¢’ denotes
thate’ in the thread’ may be evaluated concurrently with
e in ¢. As Definition 2 shows, the analysis is done by the
following steps:

1. Since Java threads synchronize only Wgit or
notify expressions, the analysis first finds a pair
of the lastwait or notify expressions and the
nextwait ornotify expressions of: e; € pie(e),
es € suc(e).

2. And then the analysis finds expressionscinwhich
may be synchronized with the expressions imefore
the evaluation ot — ¢ € d;(c,eq,c’) —and after the
evaluation ofe —ef, € d;(c, ez,).

4. Step Two: Exception Analysis

Now, our analysis predicts uncaught exceptions in the
input program by using the pre-analyzed concurrency in-
formation.

Our exception analysis is presented in the set-constraint
framework [9, 3]. As we mentioned before, we as-
sume a safe class informatioflass(e) for every ex-
pressione and we use the safe concurrency information
Concur(c,e,c’) (Section 3) for every pair o € ¢ and
¢’ in the exception analysis.

Figure 6 shows our rules to generate set constraints
for the uncaught exception classes from every method and
try -block of the input program. For each methodand
try -blockeg in“try e, catch(cxe)”, the setvariables
X, and X, are for the classes that the uncaught exceptions
during the evaluation of’s body ande,, respectively, be-
long to. A new relationn>.e : C (g>. e : C) isread as “a
set of constraint€ is generated from an expressiowhich
is a subexpression of the body of a methadtry -block
eg).”

Consider the rule fothrow expression:

mb>,. e :Cq
m >. throw ey : {X,, 2 Class(e;)}UCy

Uncaught exceptions from the method X,,, include the
exception classes of the expressiqr(Class(ey)).
Consider the rule fotry expression:

g>eeg:Cqg m>ce 1 Gy
mD>. try egcatch(c;xyer) :
{Xm 2 (Xy —{e})u CoUC

Among the classes of raised exceptions freynthose ex-
ceptions covered by, are not included in the uncaught ex-
ceptions fromm. Note that the left-hand side of the deriva-
tion rule fore, is g.

Finally, consider the rule faxthrow expression:

mb>eer:C1. mD>eeg:Co

3. Finally, the analysis collects all the expressions 7> Xthrow ejto e;:

during the pair of synchronized expressions:
e € suc*(e}) N pre*(eh).

Now, we show the soundness of our concurrency analy-

Sis:

Theorem 1 For a program o and any evaluation of the
program, the expression evaluated in a threddoncur-
rently with an expressior in a threadc is included in
Concur(c,e,c).

Proof. In [15]. O

{X 2 Class(er) | ¢ € owner(xthrow e; to ez),
¢ € Class(eg), m'(x) = e € p, e € ey,
e’ € Concur(c,xthrow e to eq,)}
UCi UC,

Exceptions e; are thrown to the methodsm/’
(X 2 Class(e1)) whose subexpressions’ may be
evaluated in the thread < Class(ez) concurrently with
the evaluation ofxthrow expression in the thread
(Concur(c,xthrow ejt0 eq,c)).

Our exception analysis is safe:

> Ci:Ciyi=1,---,n

Program
[Program] >.C1,--,CniCiU---UCy
[ClassDef] Poli: iy i — Looo,n
>, class cext ¢ {var z* M"}:
CiU---UCp
mD>eenm:C
MethDe
[. >em(z) = em:C
[Variable]. m>eid:
. mb>e e1:Cy
Assign
[gnl mbD>e id:= e :Cy
[New]. m>.newc:)
[This], m > this :0
mb>e er :Ci mp>ees:Co
Se
[qL mb>e. e1; ex:C1UCo
m>c er :Cl ml>662:CQ m [>c es3 C,g
Cond -
[Cond. mp>.if ejthen exelse es3:CiUC2UCs
mD>. e1:C1
[Throw]. m>c throw e; : {X,, 2 Class(e1)} UCy
[Try]. geeg:Cqg m>ecer : C1
m D> try egcatch(cizier) :
(X 2 (X, — {a})}UC, UG
[MethCaII]e m DEI e1:C1 mD>e.es:Co
mp>. er. m'(e2) :
{Xm D Xer g | & € Class(er),
m'(z) = e, €'}
JC1 UCs
[ThdStart] mbe €1:C
m >, e;.start :C1
. mb. e :C
[Wait. mbD>. er.wait :Ci
. mb. e :Cy
N -
[Notify]. m >, ej.notify :C1
[Xthrow]. m>eer :C1 mbDees:Co

m >. Xthrow e;to ez :
{ X 2 Class(er) |
¢ € owner(xthrow e; to e2),
¢ € Class(ez2), €’ € emr,
m/(z) = en € p,
e’ € Concur(c,xthrow e;to e2,c)}
JC1UCs

Figure 6. Exception Analysis at Method-Level

Theorem 2 For a program g, let >.p : C. Then, if
m >, e: C'occursduring>. p : Cthenim(C)(X,,)in-
cludes all the exceptions that escape frenuring the exe-
cution ofg.

Proof. In [15].]

5. Related Work

Several exception analyses have been developed to de-
tect uncaught exceptions in ML programs [17, 19, 20, 12].
Yi first designed an exception analysis for Standard ML
(SML) programs based on abstract interpretation [17],
which was very accurate but too slow. Yi and Ryu re-
designed the analysis by set-based framework [19, 20],
which shows a good cost-accuracy performanérigrich
and Aiken [7] developed an exception analyzer for SML
programs by using their BANE (Berkeley ANalysis Engine)
toolkit. As in effect systems, their system casts the type and
exception inference. Leroy and Pessaux [12] developed an
exception analysis for OCaml programs which relies on a
unification-based type inference in a non-standard type sys-
tem. Their type system uses unified mechanisms both to
collect the sets of uncaught exceptions of expressions and
to refine the usual ML types by more precise information
about the possible values of expressions.

Even though Java compiler ensures the programmer’s
specification for the possible uncaught exceptions in each
method definition, there exist several work for helping fine-
grained exception handling. Yi and Chang [18] developed
an exception analyzer for single-threaded Java programs
by a set-constraint framework, which estimated the excep-
tion flows independently of the programmer’s specifica-
tions. Robillard and Murphy [14] developed a tool called
Jex that analyzes the flow of exceptions in Java programs
by analyzing exception handling expressions, but Jex does
not report asynchronous exceptions.

Since Java does not provide a good method for multi-
threaded exception handling, several work were proposed
to deal with the problem. Lea [11] presented a method
called Completion Callbacks In order for a threadd to
know whether the other thredgl completed successfully or
with an exceptionA should implement a predefined inter-
face andB must call this interface to indicate success or
failure. Similarly, Haggar [10] proposed a solution by us-
ing the listener paradigm. If a threadl wants to get an
asynchronous signal from a thre&t A should register as
a listener of B and notification is sent to objects that are
registered as listeners &f by calling a predefined method.

6. Conclusion

We have presented an exception analysis for multi-
threaded Java programs. In Java, throwing exceptions

across threads is deprecated because of the safety probfll] D. Lea. Concurrent Programming in Jav, Second Edi-
lem. Instead of restricting programmers’ freedom, we ex-
tend Java language to support multithreaded exception han-

dling and propose a tool to detect uncaught exceptions in thel12]
input programs. Our analysis firstly estimates concurrently

evaluated expressions among threads, and then predicts u
caught exceptions by using the pre-analyzed concurrenc

information.

Our method can be applied to other languages with [14]

both exception handling facilities and multithreading mech-
anisms. One contribution of this paper is an analysis in di-
vide and conquer style. By dividing one complex analysis
to several simpler analyses, the analysis result is achieved
systematically. Another merit of our method is designing

a sparse constraint system. When the interesting propertie

13
;[1

{151

are sparse in programs, it is reasonable to analyze the prop-
erties at a larger granularity than at every expression.

References

(1]

[2] Why Are Thread.stop, Thread.suspend, Thread.resume

(3]

(4]

(5]

(6]

(7]

Javd™ 2 SDK, Standard Edition
http://java.sun.com/products /jdk/1.2 .

1.2.

and Runtime.runFinalizersOnExit
http://java.sun.com/products/jdk/1.2/docs
/guide/misc/threadPrimitiveDeprecation.html .
A. Aiken and N. Heintze. Constraint-based program analy-
sis. Tutorial Notes of the ACM Symposium on Principles of
Programming Languages, Jan. 1995.

P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. From
sequential to multi-threaded java: An event-based opera-
tional semantics. In M. Johnson, editdhe Proceedings of
the 6th International Conference on Algebraic Methodology
and Software Technologyolume 1349 of_ecture Notes in
Computer Sciencgages 75-90. Springer—Verlag, 1997.

P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing.
An event-based structural operational semantics of multi-
threaded java. In J. Alves-Foss, editBormal Syntax and
Semantics of Jayavolume 1523 of_ecture Notes in Com-
puter Sciencgpages 157-200. Springer—Verlag, 1999.

G. DeFouw, D. Grove, and C. Chambers. Fast interprocedu-
ral class analysis. IProceedings of The ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guagespages 222-236, Jan. 1998.

M. Fahndrich, J. S. Foster, A. Aiken, and J. Cu. Tracking
down exceptions in standard ml programs. Technical Report
UCB/CSD-98-996, Computer Science Division, University
of California, Berkeley, Feb. 1998.

Deprecated?

[8] J. Gosling, B. Joy, G. L. S. Jr.,, and G. BrachiEhe Javad’

(9]

(10]

Language Specification Addison Wesley, second edition
edition, 2000.

N. Heintze. Set Based Program AnalysisPhD thesis,
Carnegie Mellon University, Oct. 1992.

J. D. R. lll and P. Haggar. Multithreaded exception handling
in java. Java Report, Aug. 1998.

(16]

(17]

(18]

(19]

(20]

tion: Design Principles and Patterns Addison-Wesley,
1999.

X. Leroy and F. Pessaux. Type-based analysis of uncaught
exceptionsACM Transactions on Programming Languages
and System2(2):340-377, Mar. 2000.

J. Palsberg and M. |. Schwarzbach. Object-oriented type
inference. InProceedings of ACM Conference on OOPSLA
pages 141-161, 1991.

M. P. Robillard and G. C. Murphy. Analyzing exception flow
in java programs. lProceedings of the 7th European Soft-
ware Engineering Conference and 7th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineerimdume
1687 ofLecture Notes in Computer Scienpages 322—-337.
Springer-Verlag, 1999.

S. Ryu. Exception analysis for multithreaded Java pro-
grams. Technical Memorandum ROPAS-2001-11, Research
On Program Analysis System, Korea Advanced Institute of
Science and Technology, Apr. 2001.

F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. IRroceedings of ACM Conference
on OOPSLApages 281-293, 2000.

K. Yi. Compile-time detection of uncaught exceptions for
Standard ML programs. |becture Notes in Computer Sci-
ence volume 864, pages 238-254. Springer-Verlag, pro-
ceedings of the first international static analysis symposium
edition, 1994.

K. Yi and B.-M. Chang. Exception analysis for java. In
A. Moreira and D. Demeyer, editor®bject-Oriented Tech-
nology. ECOOP’99 Workshop Reader (Formal Techniques
for Java Programs)volume 1743 otecture Notes in Com-
puter Sciencepages 111-112. Springer-Verlag, June 1999.
K. Yiand S. Ryu. Towards a cost-effective estimation of
uncaught exceptions in SML programs. Pmoceedings of
the 4th International Static Analysis Symposjwolume
1302 ofLecture Notes in Computer Scien@ages 98-113.
Springer-Verlag, 1997.

K. Yiand S. Ryu. A cost-effective estimation of uncaught
exceptions in Standard ML prograniheoretical Computer
Science273(1), 2001. Extended version of [19] (to appear).

