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1. Thiswork

Modular program analysis, which analyzes sepa-

against the program semantics) is a whole-program
CFA that is polyvariant at the module level.
Because CFA is a basis of almost all analyses

rated program sources such as modules, is a practicafor higher-order programs, our result can be seen as
alternative to whole-program analysis. It does not need @ general hint of using thenodule-variantwhole-
the entire program text as its input, and if some parts Program analysis in order to ease the correctness proof

of the program are modified, it re-analyzes only the

dependent parts of a modified module.

This article is about our findings when we tried
to derive a modular version from a whole-program
control-flow analysis (CFA) [1-3], to be used inside a
modularized version of our exception analysis [4—6]:
e Deriving a modular version from a whole-program

monovariant (or context-insensitive) CFA makes

the resulting analysis polyvariant (or context-
sensitive) at the module level.

e Hence the correctness of its modularized version
cannot be proven in general with respect to the
original CFA.

e A convenient stepping stone to prove the correct-
ness of a modularized version (instead of proving it
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for a modularized version. We think this is worthwhile
to report because usually in practice we first design a
whole-program analysis, prove its correctness against
the program semantics, and then only after its cost-
accuracy balance is assured we start designing its
modularized version. Our work can also be seen as
a formal investigation, for CFA, of the folklore that
modularization improves the analysis accuracy.

Example 1. As an example that modularization im-
proves the accuracy, consider a CFA of the following
two higher-order code fragments:

id = AX. X

dec =id ay.y-1
and

inc =id Az.z+1.

The goal of CFA is to safely estimate which functions
flow into each expression. Suppose we analyze the
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two fragments together. Because of the two calls to
i d, i d'sformal parametex is bound to bothy. y-

1 andAz. z+1. This information is propagated back
to the call sites that we concludenc hasiy. y- 1

(a false flow) as well agz. z+1. On the other hand,
analyzing the first fragmentin isolation concludes that
i d hasix. x anddec hasiy. y- 1. Analyzing the
second fragment with this information concludes that
i nc hasonlyaz. z+1.

Section 2 shows the language and its monovari-
ant CFA (OCFA), and Section 3 describes an incre-
mental model for our modular analysis. Section 4
presents OCFA's modular version (OCFA/m). Section 5
shows that OCFA/m is not a conservative extension
of the original OCFA. Section 6 presents a module-
variant whole-program OCFA and Section 7 proves
that OCFA/m is its conservative extension.

2. OCFA

The whole-program OCFA [1], whose modular ver-
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result indicates that may evaluate into (or, is bound
to) functionix.e! in the input program. The correct-
ness of OCFA is known [1,3].

3. Incremental model for modular analysis

We assume that a modular analysis works inside an
incremental compilation environment [7]. A module
consists of variable declarationx(= ¢”) and a sigha-
ture that lists a subset of the declared variables visible
from other modules. Modul@/ directly depends on
another modulé/’, written M’ C M, iff M uses vari-
ables ofM’.

We assume an acyclic dependency between mod-
ules and we analyze modules in sequence by their
topological order [7]. In cases that modules have a
cyclic dependency, (1) we can consider mutually-
dependent modules as one unit of a modular analy-
sis, or (2) we repeat analyzing mutually-dependent
modules until their analyses reach a fixpoint. In this
paper, we do not consider cyclic module dependen-

sion we are designing, is shown in Fig. 1. We present Ci€s.

OCFA in the style similar to [2]. Nodes are syntactic

Fig. 2 illustrates our incremental model of modu-

objects: the variables or sub-expressions of the input lar analysis. We analyze each module in its depen-

program. All variables and labels are assumed distinct.

Edge ‘n — m” indicates that: may have the values
of m (or, values ofn may flow intor). Applying the
rules of Fig. 1, we collect such edges until no more
additions are possible. Edge “> Ax.e!” in the final

Label I Var x Constant ¢
Expr e=x IAx.el Iel ¢ |c
Decl di=x=¢
Program g ::=d*
Node ni=x|l| rx.el
Edge gu=n—n
x=él € x! € (Ax.eloy! €
x—1 l—x [ — Ax.elo
(ell1 6122)[ ep I1— Ax.elo n—>m m—>x.e

=1y x—1Io n— Ax.el

Fig. 1. The language and its OCFA.

dence order and export some of its results that sub-
sequent modules may need. For a given modile:
(decl sig), let the analysis phase hd(M,§) with
A:Modulex Results— ResultsThe second inputis

the exported results from the modules thatdirectly
depends on. LetA be the analysis result. From,

we export only those parts of it that subsequent mod-
ules may need. Let this export phaseflie, sig) with

£ :Resultsx Signature— Results For a program that
consists of moduled14, ..., M,,, each moduleV;’s
analysis resultd; and its exported sej; (in Fig. 2)

are A; = AM;, UM;:MI 8;) and §; = £(4;, sig,),
where sig; is the signature off;. The final analy-
sis resultSo(My, ..., M,) for the whole-program is
ArU---UA,.

It is clear that this model has an inherent effect
of polyvariant analysis; a module’s analysis result is
separately copied in analyzing subsequent modules.
Our point here is to show how to ease the correctness
proof of a modularized version when we move a
whole-program analysis into this modular analysis
model.
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analyze |
A |
| 1
[ ,_‘_\ [
| export ) | 6
[ N\ )1

Fig. 2. Incremental model for modular analysis. ModMe uses names declared M, and M3 uses those off1 and M>.

Signature  sig:={x1, ..., xn}
Module M ::=(declsig)  decl:=(x=¢')*

Node nu=x|l |Ax.el
Edge gi=n—n
Analysis phased(M, §) = edge-setA, closed by the five rules:
] 1 I 2,1
x=eeM [1—> X x.e0eA (efes) eMors
(Dey ———— (App L2
x—leA l—>lpeA x—lpeA
1 /
M oré A Ax. A
(Van) x'e T n—me m— Ax.e' €
l—>xeA n— ix.el e

(Ax.elo)l eMors

Lam
( ) - ax.eoea

Export phasef (A, sig) = exported-edge-sét closed by the two rules:
x € sig xeNeeded x > Ay.el € A

Si _ ExportF
(Si9 x € Needed (ExportFn FV(Ly.el) € Needed x — ry.el €6
Fig. 3. 0OCFA/m: a modularized OCFA.
4. OCFA/m: A modularized OCFA the export phasé€ (A, sig), we conservatively export

all the edges that may be needed by subsequent mod-
We present a modular version of OCFA in Fig. 3. ules. We calculatbleededthe set of variables needed

Rules in the analysis phas&(M, §) are the same as by other modules, and exported eddeas follows:

the rules in OCFA except that instead of examining ~ Case(Sig): The starting point is the signature. For a
the whole-program text, they only examine the current variablex in the signaturey’s bindings are needed to
module M and the exported edgésfrom the refer-  analyze subsequent modules.

enced modules. The premise M or §” means “is a Case(ExportFn): If variable x is needed to analyze
sub-expression in either modul¢ or a node 08”. In subsequent modules € Neededl, then
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(a) its analysis resultsc(— ry.e') are all exported:;

(b) we record EV(ry.e') € Needed that the free
variables of the function are needed to analyze
subsequent modules.

Note that, even if a variable is not in the signature, its

analysis results can be exported.

Algorithm for OCFA/m is the same as for OCFA:
we add edges by applying the rules until no more
additions are possible. Note that we export code-
segments in ExportFn) and re-use them inVr),
(Lam), and @App. For an efficient implementation of
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This situation does not mean that OCFA/m is incor-
rect; OCFA/m is still correct (with respect to the pro-
gram semantics), but because modularization makes

the resulting analysis polyvariant, OCFA/m fails to be

a conservative extension of the original OCFA.
In order to prove the correctness of OCFA/m, we

want to find a correct analysi such that it is easy to

prove that 0CFA/m is a conservative extensiomof

We show that such analysis is a whole-program
analysis that is polyvariant at the module-level. We
call it module-variant OCFAThis analysis is a con-

OCFA/m, we can replace code-segments by equivalentvenient stepping stone to proving the correctness of

edges using simplification algorithms [8].

5. OCFA/misnot a conservative extension of 0OCFA
The OCFA/m analysis is more accurate than OCFA.

Example 2. Consider the program (consisting of two
modules) and its modular analysis:

M1=< {f,g}>

and

My = (h=({8(z. 21997, (h}).

f =(x. x5t
g=@f*(y.y®®?*

If we analyze the whole program by OCFA, the re-
sult includes a false-flow eddge— 1y.y®. However,
OCFA/m does not conclude the false-flow edge. Ana-
lyzing the first module returns

45f 51— AX.XZ,

g—>3->2>X— 5—>Ay.y6,

6>y,

among which OCFA/m exports only two edgés:—
Ax.x2 and g — Ay.y®. Note thatx — Ay.y® is

not included. With the exported edges from the first
module, analyzing the second module returns

8—f — Ax.x2,

g—ay.y®,
h—>7->2->5x—-9-1z.2%0

The false-flow edgé — Ay.y® is absent.

OCFA/m because:

e the proof is between two static analyses (OCFA/m
and module-variant OCFA) that have a smaller gap
than between a static analysis (OCFA/m) and the
program semantics, and

e the correctness of module-variant OCFA is free
since it is an instance of the infinitary CFA of
Nielson and Nielson [3].

6. Module-variant OCFA

Module-variant OCFA distinguishes the same ex-
pression label (or variable) by the originating mod-
ules whose evaluations need its values. For example,
if Ax.x is called from module3/; andM> with actual
argument; andez, then we distinguish the formal pa-
rameterx by My and M», bindinge; to (x, M1) and
e2 10 (x, M>). The function’s body expression also has
two instances, indexed byf1 and M>.

The definition of the module-variant OCFA is shown
in Fig. 4. In order to achieve its correctness for free,
we define it as an instance of the infinitary CFA [3]. In
order to fit with the program syntax in the infinitary
CFA, we assume that a program (declarations in
modules) is a single nested let-expression whose
innermost let-body is a dummy constant.

A judgment 'S =4, ¢” meanss is a correct solu-
tion which covers the situation that evaluating mod-
ule M needs to evaluate under environment. En-
vironmento maps free variables aof into the mod-
ules whose evaluation bind them. This environment
determines the variable’s module indices for the poly-
variant effect. Note that, in comparison with judgment
(C, p) EMee! in [3], we usesS for (C, p), o for mg
andM for m.
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Module M

ModEnv o € Var — Module

Value V= (Kx.e[,a)

Solution S € (Var + Label) x Module— Value

(var) S k9, x
(fr) S G, (hx.eloy
@pp S G (et )

(con Sk, ¢
(lety SEG (et x=élinep)!

iff

S(x,0(x)) €S, M)

(Ax.eZO,lo|FV(M_e,0)) €S, M)

S EG e A

S G, €A

V(ix.e, o'y e Sy, M) :
S|: "[x+>M] 10/\
S(lp, M) C S(x, M)A
Sdo, M) € S, M)

true

S E, eg_l/\/

ST M 2 A

SU1, M') € S(x, M)A

S(lo, M) C SU, M)

wherex = elll is in moduleM’

Fig. 4. Module-variant OCFA.

For the input prograng that consists of modules
Mai, ..., M,, its module-variant OCFA is defined [3]
as the leass such thatS =/ o holds where/ is the
empty module-context environment ang a dummy
module index for the whole program.

Case(var). If a variable is necessarg (=4, xt) for
evaluating expressions of modulé then the values
S(l, M) of its label must include thos&(x, o (x)) of
the variable.

Case(fn). If an immediate function expression is
needed § =9, (Ax.el0)!) for module M then the
analysis resul§(/, M) at the label must include it.

Case(app). If an application is necessary 9,
(elll e[22)’) for evaluating modulé/, we propagate the
same module context to its sub-expressiofig=(j,
el A S EY ’22). Moreover, for each function
(Y(rx.€lo, 6"y € S(I1, M)) that can be called,

(a) its formal parameter and its bodye/o have the
same module contexs: =9, LMl o

(b) actual parametes2 flow to the formal parameter
x: S(l2, M) C S(x, M);

(c) returnvalue'o flow to the call expressiofs! ¢2)':
S{o, M) C S, M).

Note that the module-variant effect occurs because the
function’s argument and body have the call expres-
sion’s module index.

Case(let). Similar to the application case, except
that because the let-binding < e’ll” is a declaration
in a module, we have to use this module context for
the variablex and its definitiore!?.

Because the module-variant OCFA is an instance of
the infinitary control flow analysis [10], it is correct by
Theorem 4.1 of Nielson and Nielson [3].

7. OCFA/m isa conservative extension of
module-variant OCFA

We show that there exists a solutioh of the
module-variant OCFA that is covered by the result
of OCFA/m. Definition 2 defines such a solutidh
and Theorem 1 asserts that thidés a solution of the
module-variant OCFA.
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Definition 1. Let Ay be the solved edges in analyz-

ing moduleM by OCFA/m.

e Variable x reachesM,, via My iff Mg = M, and
x € Ay, or there exists a pathlo — M1--- C M,
such that for all 0< i < n, x € Needeg,,, where
Neededy, denotes théNeededset of the exporting
phase in analyzing moduléZ; by OCFA/m (see
Fig. 3).

e Environments reachesV iff, for all x in dom(o),
x reachesVf via o (x).

Definition 2 (|Sobcram(M1, . .

SObCFA/m(Mlv et Mn)

be the result edges from analyzing moduiés, .. .,

M,, by OCFA/m. Its corresponding forf@obcram(M1,
..., My,)| in the solution space for the module-variant
OCFA is defined as:

., Mp))). Let

|Soberam(M1, ..., My)|(n, M)
= {(Ax.el, o)|n— rx.el e Ay, o reachesv,
dom(o) = FV(ax.e)},

whereA, is the OCFA/m'’s solution for modulg/.

Fact. By definition, |Sobcram(-)| is “covered by
Sobcram(-): (Ax.el,) € |SObcram()|(n, M) implies
(n — rx.e') € Soberam(:).

Theorem 1 (Correctness of OCFA/mi.et programy,
as a let-expression, consist of modulds, ..., M,.
|Sobcram(Ma, - .., My)| =2 o holds, whered is the
empty module-context environment anig a dummy
module index for the whole program.

Proof. Let S = |SObcram(M1, ..., My)|. Judgment
S =5, €' holds if it is included in the greatest fixed
point of the function F:Judgments—~ Judgments
derived from Fig. 4 [3].F(Q) gives us a set of left-

hand side judgments asserted by the rules of Fig. 4

assuming that judgments @ hold. If we find a seQ
of judgments such thats =7 o) e 0 andQ € F(Q),
then by the co-induction principle [9]? is included
in the greatest fixed point df andS |=? g holds.
Therefore, the module-variant OCFA's solution,
which is defined as the leaktsuch thatX =7 g, is in-
cluded in the modularized soluti®obcram(Ma, .. .,
M,). The detailed proofis in [10]. O
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Note that the module-variant OCFA is not a modular
analysis. It is awhole-programanalysis, found as
facilitating the correctness proof of the modular OCFA
(OCFA/m).

Example 3. Let us consider an example of Theo-
rem 1. Consider the program in Example 2. In order
to fit with the program syntax in the infinitary CFA,
the program can be considered as:

p2det f = oxxdtin
(et g = F*yy®®»%in
(et h = (F81z.z1997 in (11)12)13)14

wherec is a dummy constant. Note that the module
of f andg is M1 and the module of is M>. Let
Sobcram(M1, M>2) be the analysis result as shown in
Example 2, andS be |Sobcram(M1, M2)|. Then by
Definition 2,

S(1, M) = S(4, M1) = S(8, My)

= S(f, M1 or Mp) = {(Ax X%, 9)},
S(2, M1) = S(3, M) = S(5, M)

= S(X, M1) = S(g, M1 or Mp)

= {(yy°. !}
S(2, M) = S(7, M2) = S(9, M)

S(x, M2) = S(h, M)
= |z »)},

and S(n, M) = ¢ for other (n, M). Now we can see
that S |:? g holds. This can be proved by induction
(co-induction is not necessary becaugehas no
recursive function).

8. Discussion

One question is: what if we modularize a more so-
phisticated CFA than OCFA? The situation is similar
to OCFA. In case of context-sensitive CFAs, modular-
ization can still improve their accuracies. For example,
modularized versions &CFA [1] or the polymorphic-
splitting CFA [11] can be more accurate than their
original whole-program versions [10]. The correctness
of their modularized versions can be proven similarly,
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by using module-variant whole-program versions. De-
tailed proof is available in [10].

Another question is: how far-reaching is the princi-
ple of module-variant analysis? If CFAs are already
polyvariant at the module level (e.g., one in [11,
p. 178]), then their modularizations cannot improve
their accuracies, hence no need for module-variant
versions to facilitate the correctness proof. For any
analysis in general, we conjecture the same is true.
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