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1. This work

Modular program analysis, which analyzes sepa-
rated program sources such as modules, is a practical
alternative to whole-program analysis. It does not need
the entire program text as its input, and if some parts
of the program are modified, it re-analyzes only the
dependent parts of a modified module.

This article is about our findings when we tried
to derive a modular version from a whole-program
control-flow analysis (CFA) [1–3], to be used inside a
modularized version of our exception analysis [4–6]:
• Deriving a modular version from a whole-program

monovariant (or context-insensitive) CFA makes
the resulting analysis polyvariant (or context-
sensitive) at the module level.

• Hence the correctness of its modularized version
cannot be proven in general with respect to the
original CFA.

• A convenient stepping stone to prove the correct-
ness of a modularized version (instead of proving it
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against the program semantics) is a whole-program
CFA that is polyvariant at the module level.
Because CFA is a basis of almost all analyses

for higher-order programs, our result can be seen as
a general hint of using themodule-variantwhole-
program analysis in order to ease the correctness proof
for a modularized version. We think this is worthwhile
to report because usually in practice we first design a
whole-program analysis, prove its correctness against
the program semantics, and then only after its cost-
accuracy balance is assured we start designing its
modularized version. Our work can also be seen as
a formal investigation, for CFA, of the folklore that
modularization improves the analysis accuracy.

Example 1. As an example that modularization im-
proves the accuracy, consider a CFA of the following
two higher-order code fragments:

id = λx.x

dec = id λy.y-1

and

inc = id λz.z+1.

The goal of CFA is to safely estimate which functions
flow into each expression. Suppose we analyze the
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two fragments together. Because of the two calls to
id, id’s formal parameterx is bound to bothλy.y-
1 andλz.z+1. This information is propagated back
to the call sites that we concludeinc hasλy.y-1
(a false flow) as well asλz.z+1. On the other hand,
analyzing the first fragment in isolation concludes that
id hasλx.x anddec hasλy.y-1. Analyzing the
second fragment with this information concludes that
inc has onlyλz.z+1.

Section 2 shows the language and its monovari-
ant CFA (0CFA), and Section 3 describes an incre-
mental model for our modular analysis. Section 4
presents 0CFA’s modular version (0CFA/m). Section 5
shows that 0CFA/m is not a conservative extension
of the original 0CFA. Section 6 presents a module-
variant whole-program 0CFA and Section 7 proves
that 0CFA/m is its conservative extension.

2. 0CFA

The whole-program 0CFA [1], whose modular ver-
sion we are designing, is shown in Fig. 1. We present
0CFA in the style similar to [2]. Nodes are syntactic
objects: the variables or sub-expressions of the input
program. All variables and labels are assumed distinct.
Edge “n → m” indicates thatn may have the values
of m (or, values ofm may flow inton). Applying the
rules of Fig. 1, we collect such edges until no more
additions are possible. Edge “n → λx.el” in the final

Label l Var x Constant c

Expr e ::= x | λx.el | el el | c
Decl d ::= x = el

Program ℘ ::= d∗

Node n ::= x | l | λx.el
Edge g ::= n → n

x = el ∈ ℘

x → l

xl ∈ ℘

l → x

(λx.el0)l ∈ ℘

l → λx.el0

(e
l1
1 e

l2
2 )l ∈ ℘ l1 → λx.el0

l → l0 x → l2

n →m m → λx.el

n → λx.el

Fig. 1. The language and its 0CFA.

result indicates thatn may evaluate into (or, is bound
to) functionλx.el in the input program. The correct-
ness of 0CFA is known [1,3].

3. Incremental model for modular analysis

We assume that a modular analysis works inside an
incremental compilation environment [7]. A module
consists of variable declarations (“x= e”) and a signa-
ture that lists a subset of the declared variables visible
from other modules. ModuleM directly depends on
another moduleM ′, writtenM ′ ❁ M, iff M uses vari-
ables ofM ′.

We assume an acyclic dependency between mod-
ules and we analyze modules in sequence by their
topological order [7]. In cases that modules have a
cyclic dependency, (1) we can consider mutually-
dependent modules as one unit of a modular analy-
sis, or (2) we repeat analyzing mutually-dependent
modules until their analyses reach a fixpoint. In this
paper, we do not consider cyclic module dependen-
cies.

Fig. 2 illustrates our incremental model of modu-
lar analysis. We analyze each module in its depen-
dence order and export some of its results that sub-
sequent modules may need. For a given moduleM =
(decl,sig), let the analysis phase beA(M, δ) with
A : Module×Results→ Results. The second inputδ is
the exported results from the modules thatM directly
depends on. Let∆ be the analysis result. From∆,
we export only those parts of it that subsequent mod-
ules may need. Let this export phase beE(∆,sig) with
E : Results× Signature→ Results. For a program that
consists of modulesM1, . . . ,Mn, each moduleMi ’s
analysis result∆i and its exported setδi (in Fig. 2)
are ∆i = A(Mi,

⋃
Mj❁Mi

δj ) and δi = E(∆i,sigi ),
where sigi is the signature ofMi . The final analy-
sis resultSol(M1, . . . ,Mn) for the whole-program is
∆1 ∪ · · · ∪ ∆n.

It is clear that this model has an inherent effect
of polyvariant analysis; a module’s analysis result is
separately copied in analyzing subsequent modules.
Our point here is to show how to ease the correctness
proof of a modularized version when we move a
whole-program analysis into this modular analysis
model.
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Fig. 2. Incremental model for modular analysis. ModuleM2 uses names declared inM1, andM3 uses those ofM1 andM2.

Signature sig::= {x1, . . . , xn}
Module M ::= (decl,sig) decl::= (x = el )∗

Node n ::= x | l | λx.el
Edge g ::= n → n

Analysis phase.A(M, δ) = edge-set∆, closed by the five rules:

(Dec)
x = el ∈ M

x → l ∈ ∆
(App)

l1 → λx.el0 ∈ ∆ (e
l1
1 e

l2
2 )l ∈ M or δ

l → l0 ∈ ∆ x → l2 ∈ ∆

(Var)
xl ∈ M or δ

l → x ∈ ∆
(Tr)

n → m ∈ ∆ m → λx.el ∈ ∆

n → λx.el ∈ ∆

(Lam)
(λx.el0)l ∈ M or δ

l → λx.el0 ∈ ∆

Export phase.E(∆,sig) = exported-edge-setδ, closed by the two rules:

(Sig)
x ∈ sig

x ∈ Needed
(ExportFn)

x ∈ Needed x → λy.el ∈ ∆

FV(λy.el) ⊆ Needed x → λy.el ∈ δ

Fig. 3. 0CFA/m: a modularized 0CFA.

4. 0CFA/m: A modularized 0CFA

We present a modular version of 0CFA in Fig. 3.
Rules in the analysis phaseA(M, δ) are the same as
the rules in 0CFA except that instead of examining
the whole-program text, they only examine the current
moduleM and the exported edgesδ from the refer-
enced modules. The premise “∈ M or δ” means “is a
sub-expression in either moduleM or a node ofδ”. In

the export phaseE(∆,sig), we conservatively export
all the edges that may be needed by subsequent mod-
ules. We calculateNeeded, the set of variables needed
by other modules, and exported edgesδ, as follows:

Case(Sig): The starting point is the signature. For a
variablex in the signature,x ’s bindings are needed to
analyze subsequent modules.

Case(ExportFn): If variablex is needed to analyze
subsequent modules (x ∈ Needed), then
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(a) its analysis results (x → λy.el) are all exported;
(b) we record (FV(λy.el) ⊆ Needed) that the free

variables of the function are needed to analyze
subsequent modules.

Note that, even if a variable is not in the signature, its
analysis results can be exported.

Algorithm for 0CFA/m is the same as for 0CFA:
we add edges by applying the rules until no more
additions are possible. Note that we export code-
segments in (ExportFn) and re-use them in (Var),
(Lam), and (App). For an efficient implementation of
0CFA/m, we can replace code-segments by equivalent
edges using simplification algorithms [8].

5. 0CFA/m is not a conservative extension of 0CFA

The 0CFA/m analysis is more accurate than 0CFA.

Example 2. Consider the program (consisting of two
modules) and its modular analysis:

M1 =
(
f = (λx.x2)1

g = (f4 (λy.y6)5)3
, {f,g}

)

and

M2 = (
h = (f8 (λz.z10)9)7, {h}).

If we analyze the whole program by 0CFA, the re-
sult includes a false-flow edgeh → λy.y6. However,
0CFA/m does not conclude the false-flow edge. Ana-
lyzing the first module returns

4 → f→ 1 → λx.x2,

g→ 3→ 2 → x→ 5 → λy.y6,

6 → y,

among which 0CFA/m exports only two edges:f →
λx.x2 and g → λy.y6. Note that x → λy.y6 is
not included. With the exported edges from the first
module, analyzing the second module returns

8 → f→ λx.x2,

g→ λy.y6,

h→ 7→ 2 → x→ 9 → λz.z10.

The false-flow edgeh→ λy.y6 is absent.

This situation does not mean that 0CFA/m is incor-
rect; 0CFA/m is still correct (with respect to the pro-
gram semantics), but because modularization makes
the resulting analysis polyvariant, 0CFA/m fails to be
a conservative extension of the original 0CFA.

In order to prove the correctness of 0CFA/m, we
want to find a correct analysisA such that it is easy to
prove that 0CFA/m is a conservative extension ofA.

We show that such analysisA is a whole-program
analysis that is polyvariant at the module-level. We
call it module-variant 0CFA. This analysis is a con-
venient stepping stone to proving the correctness of
0CFA/m because:
• the proof is between two static analyses (0CFA/m

and module-variant 0CFA) that have a smaller gap
than between a static analysis (0CFA/m) and the
program semantics, and

• the correctness of module-variant 0CFA is free
since it is an instance of the infinitary CFA of
Nielson and Nielson [3].

6. Module-variant 0CFA

Module-variant 0CFA distinguishes the same ex-
pression label (or variable) by the originating mod-
ules whose evaluations need its values. For example,
if λx.x is called from modulesM1 andM2 with actual
argumente1 ande2, then we distinguish the formal pa-
rameterx by M1 andM2, bindinge1 to (x,M1) and
e2 to (x,M2). The function’s body expression also has
two instances, indexed byM1 andM2.

The definition of the module-variant 0CFA is shown
in Fig. 4. In order to achieve its correctness for free,
we define it as an instance of the infinitary CFA [3]. In
order to fit with the program syntax in the infinitary
CFA, we assume that a program (declarations in
modules) is a single nested let-expression whose
innermost let-body is a dummy constant.

A judgment “S |=σ
M el” meansS is a correct solu-

tion which covers the situation that evaluating mod-
ule M needs to evaluatee under environmentσ . En-
vironmentσ maps free variables ofe into the mod-
ules whose evaluation bind them. This environment
determines the variable’s module indices for the poly-
variant effect. Note that, in comparison with judgment
(C,ρ) |=me

m el in [3], we useS for (C,ρ), σ for me,
andM for m.
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Module M

ModEnv σ ∈ Var → Module

Value v ::= (λx.el , σ )

Solution S ∈ (Var + Label)× Module→ Value

(var) S |=σ
M xl iff S(x,σ (x)) ⊆ S(l,M)

(fn) S |=σ
M (λx.el0)l iff (λx.el0, σ |FV(λx.el0)

) ∈ S(l,M)

(app) S |=σ
M (e

l1
1 e

l2
2 )l iff S |=σ

M e
l1
1 ∧

S |=σ
M e

l2
2 ∧

∀(λx.el0, σ ′) ∈ S(l1,M) :
S |=σ ′[x �→M]

M
el0∧

S(l2,M) ⊆ S(x,M)∧
S(l0,M) ⊆ S(l,M)

(con) S |=σ
M cl iff true

(let) S |=σ
M (let x = e

l1
1 in e

l2
2 )l iff S |=σ

M ′ e
l1
1 ∧

S |=σ [x �→M ′]
M

e
l2
2 ∧

S(l1,M
′) ⊆ S(x,M ′)∧

S(l2,M) ⊆ S(l,M)

wherex = e
l1
1 is in moduleM ′

Fig. 4. Module-variant 0CFA.

For the input program℘ that consists of modules
M1, . . . ,Mn, its module-variant 0CFA is defined [3]
as the leastS such thatS |=∅

ε ℘ holds where∅ is the
empty module-context environment andε is a dummy
module index for the whole program.

Case(var). If a variable is necessary (S |=σ
M xl ) for

evaluating expressions of moduleM then the values
S(l,M) of its label must include thoseS(x,σ (x)) of
the variable.

Case(fn). If an immediate function expression is
needed (S |=σ

M (λx.el0)l ) for module M then the
analysis resultS(l,M) at the label must include it.

Case(app). If an application is necessary (S |=σ
M

(e
l1
1 e

l2
2 )

l ) for evaluating moduleM, we propagate the
same module context to its sub-expressions (S |=σ

M

e
l1
1 ∧ S |=σ

M e
l2
2 ). Moreover, for each function

(∀(λx.el0, σ ′) ∈ S(l1,M)) that can be called,
(a) its formal parameterx and its bodyel0 have the

same module context:S |=σ ′[x �→M]
M el0;

(b) actual parameterel2 flow to the formal parameter
x: S(l2,M) ⊆ S(x,M);

(c) return valueel0 flow to the call expression(el11 e
l2
2 )l :

S(l0,M) ⊆ S(l,M).
Note that the module-variant effect occurs because the
function’s argument and body have the call expres-
sion’s module index.

Case(let). Similar to the application case, except
that because the let-binding “x = e

l1
1 ” is a declaration

in a module, we have to use this module context for
the variablex and its definitionel11 .

Because the module-variant 0CFA is an instance of
the infinitary control flow analysis [10], it is correct by
Theorem 4.1 of Nielson and Nielson [3].

7. 0CFA/m is a conservative extension of
module-variant 0CFA

We show that there exists a solutionS of the
module-variant 0CFA that is covered by the result
of 0CFA/m. Definition 2 defines such a solutionS,
and Theorem 1 asserts that theS is a solution of the
module-variant 0CFA.
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Definition 1. Let ∆M be the solved edges in analyz-
ing moduleM by 0CFA/m.
• Variable x reachesMn via M0 iff M0 = Mn and

x ∈ ∆Mn , or there exists a pathM0 ❁ M1 · · · ❁ Mn

such that for all 0� i < n, x ∈ NeededMi , where
NeededMi denotes theNeededset of the exporting
phase in analyzing moduleMi by 0CFA/m (see
Fig. 3).

• Environmentσ reachesM iff, for all x in dom(σ ),
x reachesM via σ(x).

Definition 2 (|Sol0CFA/m(M1, . . . ,Mn)|). Let

Sol0CFA/m(M1, . . . ,Mn)

be the result edges from analyzing modulesM1, . . . ,

Mn by 0CFA/m. Its corresponding form|Sol0CFA/m(M1,

. . . ,Mn)| in the solution space for the module-variant
0CFA is defined as:∣∣Sol0CFA/m(M1, . . . ,Mn)

∣∣(n,M)

= {
(λx.el, σ ) | n → λx.el ∈ ∆M, σ reachesM,

dom(σ ) = FV(λx.el)
}
,

where∆M is the 0CFA/m’s solution for moduleM.

Fact. By definition, |Sol0CFA/m(·)| is “covered by”
Sol0CFA/m(·): (λx.el,) ∈ |Sol0CFA/m(·)|(n,M) implies
(n → λx.el) ∈ Sol0CFA/m(·).

Theorem 1 (Correctness of 0CFA/m).Let program℘,
as a let-expression, consist of modulesM1, . . . ,Mn.
|Sol0CFA/m(M1, . . . ,Mn)| |=∅

ε ℘ holds, where∅ is the
empty module-context environment andε is a dummy
module index for the whole program.

Proof. Let S = |Sol0CFA/m(M1, . . . ,Mn)|. Judgment
S |=σ

M el holds if it is included in the greatest fixed
point of the functionF : Judgments→ Judgments
derived from Fig. 4 [3].F(Q) gives us a set of left-
hand side judgments asserted by the rules of Fig. 4
assuming that judgments inQ hold. If we find a setQ
of judgments such that(S |=∅

ε ℘) ∈ Q andQ ⊆ F(Q),
then by the co-induction principle [9],Q is included
in the greatest fixed point ofF andS |=∅

ε ℘ holds.
Therefore, the module-variant 0CFA’s solution,

which is defined as the leastX such thatX |=∅
ε ℘, is in-

cluded in the modularized solutionSol0CFA/m(M1, . . . ,

Mn). The detailed proof is in [10]. ✷

Note that the module-variant 0CFA is not a modular
analysis. It is awhole-programanalysis, found as
facilitating the correctness proof of the modular 0CFA
(0CFA/m).

Example 3. Let us consider an example of Theo-
rem 1. Consider the program in Example 2. In order
to fit with the program syntax in the infinitary CFA,
the program can be considered as:

℘
�= (let f = (λx.x2)1 in

(let g = (f4 (λy.y6)5)3 in

(let h = (f8 (λz.z10)9)7 in c11)12)13)14,

wherec is a dummy constant. Note that the module
of f and g is M1 and the module ofh is M2. Let
Sol0CFA/m(M1,M2) be the analysis result as shown in
Example 2, andS be |Sol0CFA/m(M1,M2)|. Then by
Definition 2,

S(1,M1) = S(4,M1) = S(8,M1)

= S(f,M1 or M2) = {
(λx.x2,∅)},

S(2,M1) = S(3,M1) = S(5,M1)

= S(x,M1) = S(g,M1 or M2)

= {
(λy.y6,∅)},

S(2,M2) = S(7,M2) = S(9,M2)

= S(x,M2) = S(h,M2)

= {
(λz.z10,∅)},

andS(n,M) = ∅ for other (n,M). Now we can see
that S |=∅

ε ℘ holds. This can be proved by induction
(co-induction is not necessary because℘ has no
recursive function).

8. Discussion

One question is: what if we modularize a more so-
phisticated CFA than 0CFA? The situation is similar
to 0CFA. In case of context-sensitive CFAs, modular-
ization can still improve their accuracies. For example,
modularized versions ofkCFA [1] or the polymorphic-
splitting CFA [11] can be more accurate than their
original whole-program versions [10]. The correctness
of their modularized versions can be proven similarly,
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by using module-variant whole-program versions. De-
tailed proof is available in [10].

Another question is: how far-reaching is the princi-
ple of module-variant analysis? If CFAs are already
polyvariant at the module level (e.g., one in [11,
p. 178]), then their modularizations cannot improve
their accuracies, hence no need for module-variant
versions to facilitate the correctness proof. For any
analysis in general, we conjecture the same is true.
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