
The Journal of Systems and Software 72 (2004) 59–69

www.elsevier.com/locate/jss
An uncaught exception analysis for Java q,qq

Jang-Wu Jo a,*, Byeong-Mo Chang b, Kwangkeun Yi c, Kwang-Moo Choe c

a Department of Computer Engineering, Pusan University of Foreign Studies, 55-1, Uam-dong, Nam-gu, Pusan 608-738, Republic of Korea
b Department of Information Science, Sookmyung Women’s University, Seoul 140-742, Republic of Korea

c Department of Computer Science, Korea Advanced Institute of Science and Technology, Daejon 305-701, Republic of Korea

Received 18 February 2002; received in revised form 4 June 2002; accepted 11 June 2002
Abstract

Current JDK Java compiler relies on programmer’s declarations (by throws clauses) for checking against uncaught exceptions

of the input program. It is not elaborate enough to remove programmer’s unnecessary handlers nor suggest to programmers for

specialized handlings (when programmer’s declarations are too broad). We propose a static analysis of Java programs that estimates

their uncaught exceptions independently of the programmer’s declarations. This analysis is designed and implemented based on set-

based framework. Its cost-effectiveness is suggested by sparsely analyzing the program at method level (hence reducing the number

of unknowns in the flow equations). We have shown that our interprocedural exception analysis is more precise than JDK-style

intraprocedural analysis, and also that our analysis can effectively detect uncaught exceptions for realistic Java programs.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Java; Uncaught exception analysis; Class analysis; Static analysis; Set-based analysis
1. Introduction

Exceptions and exception handling aim to support

the development of robust programs with reliable error

detection, and fast error handling (Goodenough, 1975).

Exception mechanism in Java allows the programmer to

define, throw and catch exceptional conditions (Gosling
et al., 1996). Programmers have to declare in a method

definition any checked exception classes which may es-

cape from its body.

Because uncaught exceptions will abort the program’s

execution, it is important to make sure at compile-time

that the input program will have no uncaught exceptions
qExpanded version of a talk presented at the ACM Symposium on

Applied Computing, Las Vegas, March 2001.
qqThis work was supported by grant no. 2001-30300-009-2 from

the Basic Research Program of Korea Science and Engineering Foun-

dation and by Creative Research Initiatives of the Korean Ministry of

Science and Technology.
*Corresponding author. Tel.: +82-51-640-3422; fax: +82-51-640-

3038.

E-mail addresses: jjw@taejo.pufs.ac.kr (J.-W. Jo), chang@cs.sook-

myung.ac.kr (B.-M. Chang), kwang@cs.kaist.ac.kr (K. Yi),

choe@cs.kasit.ac.kr (K.-M. Choe).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(03)00057-8
at run-time. The current Java compiler does an intra-

procedural exception analysis by relying on the declared

exceptions of methods, to check that the input program

will have no uncaught exceptions at run-time.

The problem is that the current compiler is not

elaborate enough to do ‘‘better’’ than as declared by the

programmers. It is foreseeable for careless (or unconfi-
dent) programmers to excessively declare at methods

some exceptions that may not be thrown. In order to use

such methods, programmers have to catch or redeclare

such exceptions unnecessarily. Similarly programmers

can declare exceptions in too broad a sense. Program-

mers can declare that a method throws exceptions of the

general class Exception even if the actual exceptions

are more specific ones. Then its handler can hardly offer
proper treatments specific to the exact classes of actual

exceptions.

We propose an interprocedural analysis of Java pro-

grams based on set-based framework, that estimates

uncaught exceptions independently of the declared ex-

ceptions. We aim to develop an effective and accurate

analysis. First, we design an expression-level analysis

that analyzes uncaught exceptions at every expression of
input programs. For enhancing cost-effectiveness of

analysis, we design sparse analysis that analyzes

mail to: jjw@taejo.pufs.ac.kr

60 J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69
uncaught exceptions at a larger granularity than at every

expression. We prove the soundness and equivalence of

accuracy between the two analyses. We implement our

exception analysis and JDK-style exception analysis,

and evaluate the two analyses by experiments on real-

istic Java programs. By the experiments, our analysis is
shown to detect uncaught exceptions for realistic Java

programs more precisely than JDK-style analysis.

Section 2 gives a motivation of this research using an

example. In Section 3, we first define sub-language of

Java with exception facilities, and basic concepts about

set-based analysis. In Section 4, we design an effective

and accurate exception analysis. Section 5 describes our

implementation and presents experimental results. We
discuss related works in Section 6 and then conclude in

Section 7.
2. Motivation

Java programmers must declare uncaught exceptions

from each method at its throws clause, which might
escape from execution of its body. Programmers may

declare with broad or unnecessary declaration for flex-

ibility. Careless (or unconfident) programmers may also

declare with unnecessary or broad declarations. Because

exceptions propagated from called methods must be

either caught or declared by a calling method, such a

broad or unnecessary declaration forces the calling

method to contain broad or unnecessary declaration or
catch clause. So the method that calls broadly or un-

necessarily declared methods has a difficulty to handle

exceptions specifically.

The example program in Fig. 1 illustrates such a sit-

uation. In this program, the method proc3() is de-

clared to throw IOException, which is broader than

the actual exception FileNotFoundException.
Fig. 1. Java code for broad and unnec
Then its handlers in line 7 of the method proc2() have

also to be written broadly, so it might not offer proper

treatments specific to the actual exceptions. The method

proc2() contains an unnecessary declaration in line

11, which causes proc1(), a caller of proc2(), to

have an unnecessary declaration in line 1. The unnec-
essary declaration of proc1() also causes main() to

have an unnecessary catch clause in line 19.

The problem is that the current JDK compiler is not

elaborate enough to report programmers unnecessary or

broad declarations ‘‘better’’ than as declared by the

programmers. It is also difficult to suggest to program-

mers for specialized handlings of exceptions. This is

mainly due to the intraprocedural exception analysis of
JDK compiler relying on programmers’ declaration.

To solve this problem, we will devise interprocedural

exception analysis independent of programmer’s decla-

ration. So it can not only produce more accurate in-

formation on uncaught exceptions but also verify the

usages of exceptions more accurately.

For example, our interprocedural analysis can report

for the program in Fig. 1, that FileNotFoundEx-
ception is uncaught from proc3(), and that

proc1(), proc2() and main() have no uncaught

exception. So, it can inform that FileNotFoundEx-

ception is thrown from try-block of proc2() in

lines 5–7 and it is caught broadly in the catch clause. It

can also report that throws declarations of proc1()

and proc2() are unnecessary, and that catch clause

of main() in line 19 is unnecessary as well.
JDK-style analysis can report that the uncaught ex-

ception of proc3() is FileNotFoundException,

and that throws declaration of proc2() is unneces-

sary. This is the same as our analysis. But it report that

throws declarations of proc1() is necessary and

exact (not broad), and that catch clause of main() in

line 19 is also necessary and exact.
essary declarations and catches.

J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69 61
3. Preliminaries

3.1. Source language

For presentation brevity we consider a sub-language

of Java with its exception constructs. Its abstract syntax
is in Fig. 2. A program is a sequence of class definitions.

Class bodies consist of field variable declarations and

method definitions. A method definition consists of the

method name, its parameter, and its body expression.

Every expression’s result is an object. Assignment ex-

pression returns the object of its right-hand-side ex-

pression. Sequence expression returns the object of the

last expression in the sequence. A method call returns
the object from the method body. The try expression

try e0 catch ðc x e1Þ
evaluates e0 first. If the expression returns a normal
object then this object is the result of the try expres-

sion. If an exception is raised from e0 and its class is
covered by c then the handler expression e1 is evaluated
with the exception object bound to x. If the raised ex-
ception is not covered by class c then the raised excep-
tion continues to propagate back along the method call
chain until it meets another handler. Note that nested

try expression can express multiple handlers for a

single expression e0:

try ðtry e0 catch ðc1 x1 e1ÞÞ catch ðc2 x2 e2Þ:
The exception object e0 is raised by throw e0. The
programmers have to declare at a throws clause ex-

ceptions which may escape from its body.
Fig. 2. Abstract syntax of sub-Java.
Note that exceptions are first-class objects in Java.

Like normal objects, they can be defined by classes, in-

stantiated, assigned to variables, passes as parameters,

etc. Exception facilities in Java allow the programmer to

define, throw and catch exceptional conditions.

We omit the formal semantics of the core language.
Its operational semantics should be straightforward, not

much different from existing works (Drossopoulou and

Eisenbach, 1997; Nipkow and Oheimb, 1998).

3.2. Set-based analysis

Set-based analysis consists of two phases (Heintze,

1992): collecting set constraints and solving them. The
first phase constructs constraints by the construction

rules, that describe the data flows between the expres-

sions of the analyzed program. The second phase finds

the sets of values that satisfy the constraints by the

solving rule. A solution is an assignment from set vari-

ables in the constraints to the finite descriptions of such

sets of values.

Each set constraint is of the form X � se where X is a
set variable and se is a set expression. The meaning of a

set constraint X � se is intuitive: set X contains the set

represented by set expression se. Multiple constraints

are conjunctions. We write C for a finite collection of set
constraints.

In case of exception analysis, every expression e of the
program has a constraint: Xe � se where se ! cjX jse[
sejse� fc1; . . . ; cng where c16 i6 n are exception class
names. The set variable Xe is for uncaught exceptions

from expression e.
The formal semantics of set expressions is defined by

an interpretation I that maps from set expressions to

sets of values. We call an interpretation I a model (a

solution) of a conjunction C of constraints if, for each
constraint X � se in C, IðX Þ � IðseÞ.
Our exception analysis is defined to be the least model

of constraints. Collected constraints for a program

guarantee the existence of its least solution (model) be-

cause every operator is monotonic (in terms of set-

inclusion) and each constraint’s left-hand-side is a single

variable (Heintze, 1992). We write lmðCÞ for the least
model of a collection C of constraints.
Our implementation computes the solution by the

conventional iterative fixpoint method. Note that the
iteration always terminates because our solution space is

finite: exception classes in the program. Correctness

proofs are done by the fixpoint induction over the

continuous functions that are derived from our con-

straint system (Cousot and Cousot, 1995).

4. Uncaught exception analysis

We present our exception analysis based on the set-

based framework (Heintze, 1992). We assume class

62 J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69
information ClassðeÞ is already available for every

expression e. There are several choices for class infor-
mation. First, we can approximate it using type infor-

mation, since Java is shown to be type sound

(Drossopoulou and Eisenbach, 1997; Nipkow and

Oheimb, 1998; Drossopoulou and Valkevych, 1999).
Second, we can utilize information from class analysis

(DeFouw et al., 1998; Palsberg and Schwarzbach, 1991).

The class analysis estimates for each expression e the
classes (including exception classes) that the expres-

sion e’s normal object belongs to. Note that excep-
tion classes are normal classes in Java until they are

thrown.

We first present a constraint system that analyzes
uncaught exceptions from every expression of the input

program. Because exception-related expressions are

sparse in programs, generating constraints for every ex-

pression is wasteful. The analysis cost-effectiveness

need to be addressed by enlarging the analysis granu-

larity. Hence we present a sparse constraint system that

analyzes uncaught exceptions at a larger granularity.

Our analysis result is the solution of this sparse con-
straints. We show the soundness of the method-level

analysis and equivalence of accuracy between the two

analyses. We discuss the complexity of exceptions anal-

ysis.
Fig. 3. Exception analysis

½MethCall� .e1 : C1 . e2 : C2
.e1 � mðe2Þ : fXe � Xc�mjc 2 Classðe1Þ;mðxÞ ¼ em 2 c
4.1. Exception analysis at expression-level

Fig. 3 has the rules to generate set constraints for the

uncaught exceptions from every expression. For excep-

tion analysis, every expression e of the program has a

constraint: Xe � se. The Xe is a set-variable for the un-
caught exceptions from expression e. The subscript e of
set variables Xe denotes the current expression to which

the rule applies. The relation ‘‘.e : C’’ is read ‘‘con-
straints C are generated from expression e.’’
Consider the rule for throw expression:

½Throw� .e1 : C1
. throw e1 : fXe � Classðe1Þ [Xe1g [C1

It throws an exception Classðe1Þ or, prior to throwing, it
can have uncaught exceptions from inside e1 too.
Consider the rule for try expression:

½Try�

� .e0 :C0.e1 :C1
.try e0 catch ðc1 x1 e1Þ :fXe�ðXe0�fc1g
Þ[Xe1g[C0[C1

Thrown exceptions from e0 can be caught only when
they are covered by a class c1. After this catching, ex-
ceptions can also be raised during the handling inside e1.
Hence, Xe � ðXe0 � fc1g
Þ [Xe1 , where fcg
 represents
the class c and all the sub-classes of it.
Consider the rule for method call:
at expression-level.

g [fXe � Xe1 [Xe2g [C1 [C2

J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69 63
Uncaught exceptions from the call expression first in-

clude those from the sub-expressions e1 and e2 : Xe �
Xe1 [Xe2 . The method mðxÞ ¼ em is the one defined in-
side the classes c 2 Classðe1Þ of e1’s objects. Hence,
Xe � Xc�m for uncaught exceptions. (The subscript c � m
indicates the index for the body expression of class c’s
method m.)

4.2. Exception analysis at method-level

In our sparse constraint system, only two groups of

set variables are considered: set variables for methods

and try-blocks. The number of unknowns is thus

proportional only to the number of methods and try

blocks, not to the total number of expressions. For each

method m, Xm is a set-variable for uncaught exceptions

from method m. The try-block eg in try eg catch
ðc x eÞ also has a set variable Xg, which is for uncaught

exceptions from eg.
Fig. 4 shows this new constraint system. The left-

hand-side m in relation m . e : C indicates that the

expression e is a sub-expression of a method m (or a try-
block g).
Consider the rule for throw expression:

½Throw�m
m . e1 : C1
m . throw e1 : fXm � Classðe1Þg [C1

Fig. 4. Exception analys
The set variable Xm for uncaught exceptions from

method m includes the thrown exception Classðe1Þ.
Consider the rule for try expression:

½Try�m

� g.eg :Cg m.e1 :C1
m. try eg catch ðc1 x1 e1Þ :fXm�Xg�fc1g
g[Cg[C1

Some of the uncaught exceptions Xg from eg can be
caught, if the exceptions are covered by a class c. Hence
the uncaught exceptions from this expression includes

the uncovered ones.

Consider the rule for method-call expression:

½MethCall�m

� m.e1 :C1m.e2 :C2
m.e1 �m0ðe2Þ :fXm�Xc�m0 jc2Classðe1Þ;m0ðxÞ¼em0 2cg[C1[C2

Thus, if m’s body has a method call e1 � m0ðe2Þ, uncaught
exceptions Xm from the method m include Xc�m0 which is a

set variable for uncaught exceptions from the called

method c � m0.

It should be noted that the derivation rules for try-

blocks, for example eg, are the same as those in Fig. 4,
except that m is replaced by g.
The least model of the sparse constraints C, which are

derived (.pgm : C) from an input program pgm is our

analysis result. The solutions for Xm has the exceptions

which might be escape from m’s execution.
is at method-level.

1 http://www.sharemation.com/~bokowski/barat/index.html.

64 J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69
4.3. Soundness and equivalence

We have designed the method-level exception analysis

from the expression-level analysis of Fig. 3. In order to

prove the soundness of the method-level analysis and

the equivalence of accuracy between the two analyses,
we first need to relate the expression-level analysis to the

method-level analysis.

To relate the expression-level exception analysis

to the method-level exception analysis, we can define

an index determination function p : Expr! Expr[
Method as follows:

pðeÞ ¼
g; if e is within a try-block eg

in try eg catch ðc1 x1 e1Þ
m; if e is within a method m:

8<
:

This index function specifies that there is one set vari-

able Xg for all sub-expressions of a try-block eg, and one
set-variable Xm for all sub-expressions of a method m,
not of a try-block.
In the following, we assume that C is the collection of

set constraints for a program pgm constructed by the

rules in Fig. 3, and Cp is the collection of set constraints

for the same program pgm constructed by the rules in

Fig. 4.

The least model of the method-level constraints Cp is

a sound approximation of that of the original con-

straints C. The proof is based on the observation in
Cousot and Cousot (1995), that the least model lmðCÞ is
equivalent to the least fixpoint of the continuous func-

tion F derived from C.

Theorem 1 (Soundness). lmðCpÞðpðX ÞÞ � lmðCÞðX Þ for
every set variable X in C.

Proof. See Appendix A. �

We show that the method-level analysis gives, for

every method and try-block, the same information on

uncaught exceptions as the expression-level analysis. We
call Cp is equivalent to C with respect to every method
and try-block: if lmðCpÞðXf Þ ¼ lmðCÞðXf Þ for every
method and try-block f .

Theorem 2 (Equivalence). lmðCpÞðXf Þ ¼ lmðCÞðXf Þ for
every method and try-block f .

Proof. See Appendix A. �

Our exception analysis consists of two phases:col-

lecting constraints and solving them. The complexity of
the first phase is OðnÞ where n is the number of ex-
pressions, because we make one set-constraint for every

expression. The complexity of the second phase is

Oðnm2Þ where n is the number of set variables and m is
the number of methods. In case of the expression-level
analysis, because it makes one set variable for every

expression, n is the number of expressions. In case of the
method-level analysis, because it makes one set variable

for every method and try-block, n is the number of
methods and try-blocks. The method-level analysis

does not change the order of complexity itself, but the
number n of set-variables is reduced to the number of
methods and try-blocks, which is much smaller than

the number of expressions.
5. Experiments

This section shows experiment numbers of our ex-
ception analysis and compares them against JDK-style

exception analysis on realistic Java benchmark pro-

grams (Table 1). Our experiments are done in the fol-

lowing way. First, we implemented our analysis and

JDK-style analysis. Second, we collected analysis in-

formation from the benchmark Java programs by ap-

plying each analysis. Third, with the collected analysis

information, we compared the two analyses with respect
to the precision of analysis.

5.1. Implementations

We implemented the two exception analyses; our

method-level exception analysis and JDK-style excep-

tion analysis. The reason of implementing method-level

exception analysis is that we have proven the equiva-
lence of accuracy between the expression-level and

method-level analyses. The JDK-style exception analysis

is the same as ours in Fig. 4 except for the method call

case. Since JDK-style analysis depends on throws

clauses, the rule for method call can be defined as fol-

lows:

½MethCall�m

� m.e1 :C1m.e2 :C2
m.e1 �m0ðe2Þ :C1[C2[fXm�Tc�m0 jc2Classðe1Þ;m0ðxÞ¼em0 2cg

where Tc�m0 means exceptions declared by the throws
clause of the method c � m.
Our implementation relies on the Barat framework 1

for the type information of ClassðeÞ. Barat is a front-end
for Java, which builds an abstract syntax tree from Java

source files, enriched with type and name analysis in-

formation, and also provides the interfaces for travers-

ing the abstract syntax trees.

We implemented the two analyses in Java. Each of
them consists of two passes. The first pass traverses

the input Java program and sets up set-constraints. The

second pass solves the generated set-constraints by the

conventional iterative fixpoint method.

http://www.sharemation.com/~bokowski/barat/index.html

Table 1

List of benchmark Java programs

Programs Description

jasmina Java assembler interface

JavaSimb Discrete event process-based simulation package

jbc Java parser generator using the Gnu Bison

javacupd LALR parser generator for Java

sablecce Framework for generating compilers and interpreters

jelf Compiler for simple expressions into Java byte code

JFlexg Lexical analyzer generator

antlrh Framework for compiler construction

com.ice.tari Utility for UNIX tar archives

org.apache.tomcatj Servlet container and JSP implementation

org.apache.jasperj Component of Tomcat that compiles and executes JSP pages

jessk Expert system shell based on NASA’s CLIP

sootl Framework for Java optimization

a http://mrl.nyu.edu/~meyer/jvm/jasmin.html.
b http://javasim.ncl.ac.uk/.
c http://www.cs.colorado.edu/serl/misc/jb.html.
d http://www.cs.princeton.edu/~appel/modern/java/CUP/.
e http://www.sablecc.org/.
f http://www.gnu.org/directory/jel.html.
g http://jflex.sourceforge.net/.
h http://www.antlr.org.
i http://www.trustice.com/java/tar/.
j http://jakarta.apache.org/tomcat/tomcat-3.2-doc/index.html.
k http://herzberg.ca.sandia.gov/jess/.
l http://www.sable.mcgill.ca/soot/.

J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69 65
In the implementation, we take the following into

consideration.

Java language: Even if we present our exception analy-
sis for sub-Java programs in Fig. 2, we considered the

full Java in the implementation, which includes object-

allocations, explicit constructor calls, interfaces, ab-

stract methods, and nested classes.
The exceptions analyzed: Java distinguishes between
checked and unchecked exceptions. The unchecked ex-
ceptions are sub-classes of RunTimeException and

Error, and are exempt from the requirement of being

declared. We consider checked exceptions only, be-

cause including unchecked exceptions can generate

too much information, which affects the usability of

our analysis.
How to handle libraries: Applications can also use li-
braries, which may have no source code. In case no

source code is available, our analysis also depends on

the throws delcarations as in JDK compiler, since

we can assume that exceptions of libraries are usually

well declared.

5.2. Experimental results

All experiments are conducted on a Compaq Arm-

arda M700 (Pentium III 700 MHz uni-processor with

256 MB of main memory), running Windows 2000
professional, and using the JVM of the SUN

JDK1.3.0. The Java applications used in our experi-
ments were obtained from several sources. Our col-

lection of programs covers a wide range of application

areas, including language processors, a compression

utility, an artificial intelligence system, a simulation

utility, and a servlet container. Table 1 provides a
brief description of each of the applications used in

our experiments. Table 2 shows the number of classes,

interfaces, methods for each benchmark, and the

number of exception-related constructs including try,

catch, and throws. In performing experiments, we

have made no effort to modify the applications for

experiments.

Our analysis and JDK-style analysis provide the same
kind of information: uncaught exceptions from each

method and each try-block. But these two analyses

differ on the precision because ours is interprocedural

and JDK-style analysis is intraprocedural. We have

compared the two analyses by the benchmark programs

in terms of the following measures:

• # exceptions declared by throws: the number of ex-
ceptions declared by throws.

• # exceptions declared by catch: the number of ex-

ceptions declared by catch.

• # exact throws: the number of exceptions declared

by throws, which exactly correspond to the analysis

result of its method.

• # exact catch: the number of exceptions declared by

catch, which exactly correspond to the analysis re-
sult of its try-block.

Table 2

Syntactic properties of benchmark Java programs (the number of classes, interfaces, methods, and exception-related constructs)

Programs # classes # interfaces # methods # try # catch # throws Kbytes

jasmin 11 0 77 2 4 39 107.0

JavaSim 29 0 207 16 18 83 72.6

jb 52 0 515 19 21 116 154.3

javacup 45 0 333 9 9 115 315.7

sablecc 280 4 1,753 78 77 11 612.3

jel 47 11 385 100 107 57 341.2

JFlex 51 4 395 20 26 31 461.5

antlr 156 31 1,886 76 87 292 1,047.8

com.ice.tar 10 2 127 17 21 40 88.3

tomcat 189 15 2,033 209 237 353 1,232.0

jasper 98 16 703 80 91 309 591.9

jess 235 11 1,085 115 148 436 548.9

soot 1,063 182 8,923 33 39 61 3,746.1

66 J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69
• # broad throws: the number of exceptions whose

higher classes are declared by throws than the anal-

ysis result of its method.

• # broad catch: the number of exceptions whose

higher classes are declared by catch than the analy-

sis result of its try-block.

• # unnecessary throws: the number of exceptions de-

clared by throws, but not included in the analysis
result of its method.

• # unnecessary catch: the number of exceptions

declared by catch, but not included in the analysis

result of its try-block.

• the analysis time.

With the analysis result of each method, we have

detected exact throws, broad throws and unnecessary

throws, and compared our analysis with JDK-style

analysis in Table 3.

Our analysis has detected more unnecessary throws

than JDK-style analysis. This is thanks to the following
reason. In case there is an unnecessary throws at some

method, the caller method should either catch or redeclare

it. JDK-style analysis can not detect this unnecessary op-
Table 3

Uncaught exceptions from methods and their declarations

Programs # exceptions

declared by

throws

exact throws

JDK Ours J

jamin 42 38 38

JavaSim 119 84 80

jb 109 68 52

javacup 114 108 105

sablecc 18 17 16

jel 72 62 60

JFlex 28 24 21

antlr 576 446 139 6

com.ice.tar 40 35 34

tomcat 338 183 121 1

jasper 397 246 188 2

jess 432 395 378

soot 65 39 36
eration because it depends soley on programmer’s throws

declarations. On the other hand our analysis estimates

program’s flows and can detect the unnecessary situations.

For example, IOException declared at the method

proc2() in Fig. 1 is unnecessary and so is IOExcep-

tion declared at the method proc1(). Our analysis can

detect, with the uncaught exception information from the

method proc2(), that IOException declared at the
method proc1() is unnecessary, while JDK-style analysis

can not detect this unnecessary declaration because it de-

pends on throws declarations at the method proc2().

Similarly our analysis detected more broad throws

than JDK-style analysis did.

With the analysis result of each try-block, we have

detected unnecessary catch, broad catch, and exact

catch. Our analysis is compared with JDK-style
analysis in Table 4.

Table 4 is similar to Table 3 except that it compares the

analysis results of the two analyses on try blocks and

catch clauses. Our analysis has detected more unnec-

essary catch and broad catch than JDK-style analysis

did. These results come from the same reason as the ex-

periment on throws declarations in Table 3.
broad throws # unnecessary throws

DK Ours JDK Ours

1 1 3 3

0 0 35 39

1 1 40 56

4 6 2 3

0 0 1 2

2 3 8 9

0 3 4 4

4 306 66 131

0 0 5 6

7 30 138 187

4 35 127 174

1 1 36 53

1 1 25 28

Table 4

Uncaught exceptions from try-blocks and their handlings

Programs # exceptions

declared by

catch

exact catch # broad catch # unnecessary catch

JDK Ours JDK Ours JDK Ours

jamin 4 3 3 0 0 1 1

JavaSim 18 11 11 1 1 6 6

jb 21 1 1 4 4 16 16

javacup 9 6 6 2 2 1 1

sablecc 77 69 68 2 2 6 7

jel 107 46 41 58 58 36 39

JFlex 26 7 7 1 1 18 18

antlr 87 68 40 11 34 8 13

com.ice.tar 21 16 16 2 2 3 3

tomcat 237 121 105 60 48 56 84

jasper 91 46 43 31 33 14 15

jess 148 100 99 18 18 30 31

soot 39 25 25 5 3 9 11

Table 5

Analysis time

Programs JDK Ours

Setup Solving Total Setup Solving Total

jamin 1.823 0.050 1.873 0.891 0.130 1.021

JavaSim 1.823 0.180 2.003 1.111 0.250 1.361

jb 2.353 0.040 2.393 1.572 0.100 1.672

javacup 2.273 0.050 2.323 1.062 0.33 1.392

sablecc 4.577 0.310 4.876 3.645 1.722 5.367

jel 5.608 0.471 6.079 3.234 2.413 5.647

JFlex 1.722 0.060 1.782 1.432 0.250 1.682

antlr 5.156 1.502 6.658 4.987 4.036 9.023

com.ice.tar 1.271 0.110 1.381 0.741 0.451 1.192

tomcat 11.456 2.223 13.679 8.803 14.171 22.974

jasper 10.214 1.131 11.345 5.718 3.775 9.493

jess 13.279 1.502 33.898 4.797 6.399 11.196

soot 26.698 0.200 26.898 18.076 0.732 18.808

J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69 67
These experiment results indicate that our analysis

can guide programmers to declare or catch exceptions

more precisely.

Table 5 compares the two analyses in terms of anal-

ysis time for each of the benchmarks. We measured

analysis time using System.currentTimeMil-

lis(). The analysis time consists of constraint set-up

and solving time. The analysis time of ours is compa-
rable to that of JDK-style analysis. As for the constraint

set up time, JDK-style approach is a little slower than

ours. A possible explanation is that, for every method-

call, JDK-style approach must traverse abstract syntax

tree to visit throws clause of a called method, while our

approach simply uses a new set variable without tra-

versing abstract syntax tree. As for the solving time,

however, JDK-style approach is up to 3 times faster
than ours. This is because the right hand sides of set-

constraints have no set variables except for that of catch

clause, so the number of iterations for computing the

solution does not exceed three. Ours, however in some

cases, may iterate more than ten times corresponding to

the depth of method call chains.
6. Related works

Ryder et al. (1999) and Sinha and Harrold (2000)

conducted a study of the usage patterns of exception-

handling constructs in Java programs. Their study offers

an evidence to support our belief that exception-handling

constructs are used frequently in Java programs and

more accurate exception information is necessary.
In Java (Gosling et al., 1996), the JDK compiler en-

sures by an intraprocedural analysis that clients of a

method either handle the exceptions declared by that

method, or explicitly declare them. It is useful for

enhancing modularity and code reuse to declare excep-

tions more broadly. However, it makes more specific

handling of exceptions difficult. Our interprocedural

analysis provides more exact uncaught exception infor-
mation for every method and try-block. So, our anal-

ysis can guide programmers to handle exceptions more

specifically and to declare them more exactly.

Robillard and Murphy (1999) have developed Jex: A

tool for analyzing exception flows in Java, which is

similar to our work. They describe a tool that extracts

68 J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69
the flow of exceptions in Java programs, and generates

views of the exception structure. They include checked

and unchecked exceptions. Jex is designed at expression-

level because it aims for programmers to determine the

uncaught exceptions at any point in the program. Be-

cause of these reasons, scalability of Jex is not certain.
We have designed analysis at method-level consider-

ing scalability, and shown its equivalence to the ex-

pression-level analysis. We have compared our analysis

with JDK-style analysis by experiments on large realistic

Java programs, and have shown that our analysis is able

to detect uncaught exceptions, unnecessary catch and

throws clauses effectively.

Several exception analyses have been introduced by
Yi to trace uncaught exceptions in ML (Yi, 1994; Yi and

Ryu, 1997; Yi and Ryu, 1998; Yi and Ryu, 2002) based

on abstract interpretation and set-based framework.

F€ahndrich et al. (1998) have applied their BANE toolkit
to the analysis of uncaught exceptions in SML. Their

system is based on equality constraints to keep track of

exception values. Pessaux and Leroy (1999) designed an

exception analysis for OCaml based on type and effect
systems, and provides good performance for real OCaml

programs.

Recently, several researchers have considered the

effects of exception-related constructs on various types

of analyses. Choi et al. (1999) describe a representation

called the factored control-flow graph to incorporate

exceptional control flow, and use the representation to

improve intraprocedural optimization in the presence
of exceptions. Sinha and Harrold (2000) discusses the

effects of exception-handling constructs on several

analyses such as control-flow, data-flow, and control

dependence analysis. They present techniques to con-

struct representations for programs with checked ex-

ception and exception-handling constructs. Chatterjee

et al. (1998) and Chatterjee and Ryder (1999) describe

an approach to performing points-to and data-flow
analyses that incorporate exceptional control flow.

Failure to account for the effects of exception in

performing analyses can result in incorrect analysis in-

formation. But these efforts differ from our work in that

they focus on modelling program execution in the

presence of exception rather than on enabling develop-

ers to make better use of exception mechanisms.
7. Conclusions

We have presented an exception analysis for Java, that

estimates their uncaught exceptions independently of the

programmer’s declarations. We have designed two ex-

ception analyses at expression-level and at method-level,

and have proven that the method-level exception analysis
gives the same analysis result as the expression-level

analysis. This situation is because we only consider un-
caught exceptions from each method and try-block. By

implementation and experiments, we have shown that

our exception analysis is more precise than JDK-style

analysis, and that our exception analysis can effectively

detect uncaught exceptions for realistic Java programs.

Java programmers can apply our exception analysis
to better use of exception mechanism. Our exception

analysis provides uncaught exceptions for each method,

and also provides uncaught exceptions for each try-

block. In case of writing catch clauses, Java pro-

grammers can be guided to handle specific exceptions by

using the uncaught exceptions for the corresponding

try-block. The uncaught exceptions for each method

also can be used for specifying throws-clauses.
Appendix A. Proofs

Proof of Theorem 1. As in Cousot and Cousot (1995),

the continuous function F can be defined from C, and Fp

can also be defined from Cp likewise. So, we will prove

this theorem by showing c � lfpðFpÞ � lfpðF Þ.
We can prove this by showing that:

(1) Galois insertion: Let D ¼ VarsðCÞ and Dp ¼
VarsðCpÞ. Let D ¼ D ! }ðValÞ be the domain of in-
terpretations I andDp ¼ Dp ! }ðValÞ be the domain
of partitioned interpretations Ip. For every interpre-
tation I , we define aðIÞ ¼ Ip where Ip : Dp ! }ðValÞ
is defined as ðIpÞðXmÞ ¼ [e2mIðXeÞ for every method
m 2 Dp. We define cðIpÞ ¼ I 0 such that I 0ðXeÞ ¼
IpðXpðeÞÞ for every set variable Xe 2 D. Then,
ðD; a;Dp; cÞ is a Galois insertion, since aðcðIpÞÞ ¼ Ip.

(2) Soundness of the operation c � FpðIpÞ � F � cðIpÞ:
For this proof, it should be noted as in Chang

et al., 2000 that the derivation rules in Fig. 4 can
be obtained by replacing every set variable Xe by

XpðeÞ in the corresponding rules in Fig. 3. So, if there
is a constraint Xe � se constructed by the rules in
Fig. 3, then there must be a constraint XpðeÞ � se=p
constructed by the rules in Fig. 4, where se=p de-
notes se with its set variable Xe0 replaced by Xpðe0Þ.

Let the function F be defined as a collection of
equations of the form : Xe ¼ se for every Xe 2 D, and Fp

as a collection of equations of the form: XpðeÞ ¼ se=p for
every XpðeÞ 2 pðDÞ. Assume that, for each set variable Xe0

in se, cðIpÞðXe0 Þ ¼ S. Then IpðXpðe0ÞÞ ¼ S by the definition
of c. Xe0 is replaced by Xpðe0Þ in XpðeÞ ¼ se=p in Fp, and

every set expression is monotone. Therefore, FpðIpÞ�
ðXpðeÞÞ � F � cðIpÞðXeÞ for every set variable Xe, and

c � FpðIpÞ � F � cðIpÞ by the definition of c. �

Proof of Theorem 2. As in the soundness proof, the

continuous function F and Fp can be defined. We prove

this theorem by showing that lfpðFpÞðXf Þ ¼ lfpðF ÞðXf Þ

J.-W. Jo et al. / The Journal of Systems and Software 72 (2004) 59–69 69
for every method and try-block f . By the soundness
theorem, lfpðFpÞðXf Þ � lfpðF ÞðXf Þ. So, we just prove
that lfpðFpÞðXf Þ � lfpðF ÞðXf Þ for every method and try-
block f .
The proof is by induction on the number of iterations

in computing lfpðFpÞ.
Induction step: Suppose IpðXf Þ � IðXf Þ for every

method and try-block f . Let I 0p ¼ FpðIpÞ. Then there
exists I 0 such that I 0 ¼ F iðIÞ for some i and I 0pðXf Þ �
I 0ðXf Þ for every method and try-block f .

(1) For every set variable Xf , suppose I 0pðXf Þ ¼
IpðXf Þ [a.

(2) Then, a must be added by some of the rules

[Throw]m, [Try]m, and [MethodCall]m in Fig. 4.

(3) There must be the corresponding rules [Throw],

[Try], and [MethodCall] in Fig. 3.
(4) By (3) and induction hypothesis, there must be Xe

such that F ðIÞðXeÞ � a, which will be eventually in-
cluded in Xf in some more iterations F iðIÞ by the
rules in Fig. 3, because e is in f . �
References

Chang, B.-M., Yi, K., Jo, J., 2000. Constraint-based analysis for Java.

In: SSGRR 2000 Computer and e-Business Conference, August

2000, L’Aquila, Italy.

Chatterjee, R.K., Ryder, B.G., 1999. Data-flow-based testing of

object-oriented libraries. Technical Report DCS-TR-382, Rutgers

University.

Chatterjee, R.K., Ryder, B.G., Landi, W.A., 1998. Complexity of

concrete type-inference in the presence of exceptions. In: Lecture

notes in Computer Science 1381, pp. 57–74.

Choi, J.-D., Grove, D., Hind, M., Sarkar, V., 1999. Efficient and

precise modeling of exceptions for analysis of Java programs. In:

Proceedings of PASTE ’99 ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering,

September 1999, pp. 21–31.

Cousot, P., Cousot, R., 1995. Compositional and inductive semantic

definitions in fixpoint, equational, constraint, closure-condition,

rule-based and game-theoretic form. In: Proceedings of the 7th

International Conference on Computer-Aided Verification Edition

Lecture Notes in Computer Science, vol. 939. Springer-Verlag,

Berlin, pp. 293–308.

DeFouw, G., Grove, D., Chambers, C., 1998. Fast interprocedural

class analysis. In: Proceedings of 25th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, January

1998. pp. 222–236.

Drossopoulou, S., Eisenbach, S., 1997. Java is type safe-probably. In:

Proceedings of 97 ECOOP.

Drossopoulou, S., Valkevych, T., 1999. Java type soundness revisited.

Techical Report, Imperial College. Available from <http://www.

doc.ic.ac.uk/scd>.

F€ahndrich, M., Foster, J.S., Aiken, A., Cu, J., 1998. Tracking down

exceptions in standard ML programs. Techical report, University

of California at Berkeley, Computer Science Division.

Gosling, J., Joy, B., Steele, G., 1996. The Java Programming Language

Specification. Addison-Wesley Longman.

Goodenough, J., 1975. Exception handling: Issues and proposed

notation. Communications of the ACM 18 (12).

Heintze, N., 1992. Set-based program analysis. Ph.D. thesis, Carnegie

Mellon University, October 1992.
Nipkow, T., Oheimb, D.V., 1998. Java is type safe-definitely. In:

Proceedings of 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages.

Palsberg, J., Schwarzbach, M.I., 1991. Object-oriented type inference.

In: Proceedings of ACM Conference on OOPSLA. pp. 141–

161.

Pessaux, F., Leroy, X., 1999. Type-based analysis of uncaught

exceptions. In: Proceedings of 26th ACM Conference on Principles

of Programming Languages.

Robillard, M.P., Murphy, G.C., 1999. Analyzing exception flow in

Java programs. In: Proceedings of the ESEC/FSE ’99 Seventh

European Software Engineering Conference and Seventh ACM

SIGSOFT Symposium on Notes in Computer Science. Springer-

Verlag, Berlin, pp. 322–337.

Ryder, B.G., Smith, D., Kremer, U., Gordon, M., Shah, N., 1999. A

static study of Java exceptions using JESP. Technical Report DCS-

TR-403, Rutgers University.

Sinha, S., Harrold, M., 2000. Analysis and testing of programs with

exception-handling constructs. IEEE Trans. SE., 26–29.

Yi, K., 1994. Compile-time detection of uncaught exceptions in

standard ML programs. In: Proceedings of the 1st Static Analysis

Symposium, September 1994 Lecture Notes in Computer Science,

vol. 864. Springer-Verlag, Berlin, pp. 238–254.

Yi, K., Ryu, S., 1997. Towards a cost-effective estimation of uncaught

exceptions in SML programs. In: Proceedings of the 4th Static

Analysis Symposium, September 1997 Lecture Notes in Computer

Science, vol. 1302. Springer-Verlag, Berlin, pp. 98–113.

Yi, K., Ryu, S., 1998. SML/NJ Exception Analysis version 0.98.

Available from <http://compiler.kaist.ac.kr/pub/

exna/>, December 1998.

Yi, K., Ryu, S., 2002. A cost-effective estimation of uncaught

exceptions in standard ML programs. Theoret. Comput. Sci.,

277–281.

Jang-Wu Jo received the BS and MS degrees in Computer Science and
Statistics from Seoul National University, in 1992 and 1994, respec-
tively and the Ph.D. degree in Computer Science from Korea Ad-
vanced Institute of Science and Technology (KAIST) in 2003. In 1997,
he became a faculty member of the Department of Computer Engi-
neering of Pusan University of Foreign Studies. His research interests
include compile-time program analysis, programming environment
and object-oriented programming.

Byeong-Mo Chang received the BS degree in Computer Engineering
from Seoul National University in 1988, and the MS and Ph.D. de-
grees in Computer Science from Korea Advanced Institute of Science
and Technology (KAIST), in 1990 and 1994, respectively. After getting
the Ph.D. degree, he spent a year in ETRI as a postdoctor. In 1995, he
became a faculty member of the Department of Computer Science of
Sookmyung Women’s University. His research interests include se-
mantics-based program analysis and formal verification of software.

Kwangkeun Yi received the BS degree in Computer Science and Sta-
tistics from Seoul National University in 1987, and the MS and Ph.D.
degrees in Computer Science from University of Illinois at Urbana-
Champaign, in 1990 and 1993, respectively. From 1993 to 1995, he was
a member of technical staff of Software Principles Research Depart-
ment, Bell Labs., Murray Hill. In 1995, he became a faculty member of
the Department of Computer Science of KAIST. His research interests
include Program analysis tools, Program Logics, and Program trans-
formation.

Kwang-Moo Choe received the BS degree in Electronic Engineering
from Seoul National University in 1976, and the MS and Ph.D. de-
grees in Computer Science from Korea Advanced Institute of Science
and Technology (KAIST), in 1978 and 1984, respectively. After getting
the Ph.D. degree, he spent a year in AT & T Bell Labs, Murray Hill as
a member of technical staff. In 1984, he became a faculty member of
the Department of Computer Science of KAIST. His research interests
include formal language theory, parallel evaluation of logic programs,
and optimizing compilers.

http://www-doc.ic.ac.uk/scd
http://www-doc.ic.ac.uk/scd
http://compiler.kaist.ac.kr/pub/exna/
http://compiler.kaist.ac.kr/pub/exna/

	An uncaught exception analysis for Java
	Introduction
	Motivation
	Preliminaries
	Source language
	Set-based analysis

	Uncaught exception analysis
	Exception analysis at expression-level
	Exception analysis at method-level
	Soundness and equivalence

	Experiments
	Implementations
	Experimental results

	Related works
	Conclusions
	Proofs
	References

