
Theoretical Computer Science 277 (2002) 185–217
www.elsevier.com/locate/tcs

A cost-e!ective estimation of uncaught exceptions
in Standard ML programs�

Kwangkeun Yi ∗, Sukyoung Ryu
Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1

Kusong-dong Yusong-gu, Taejon 305-701, South Korea

Abstract

We present a static analysis that detects potential runtime exceptions that are raised and never
handled inside Standard ML (SML) programs. This analysis will predict abrupt termination of
SML programs, which is SMLs only one “safety hole”. Even though SML program’s control
4ow and exception 4ow are in general mutually dependent, analyzing the two 4ows are safely
decoupled. Program’s control 4ow is 7rstly estimated by simple case analysis of call expressions.
Using this call-graph information, program’s exception 4ow is derived as set constraints, whose
least model is our analysis result. Both of these two analyses are proven safe and the reasons
behind each design decision are discussed.

Our implementation of this analysis has been applied to realistic SML programs and shows a
promising cost-accuracy performance. For the ML-Lex program, for example, the analysis takes
1.36 s and it reports 3 may-uncaught exceptions, which are exactly the exceptions that can really
escape. Our 7nal goal is to make the analysis overhead less than 10% of the compilation time
(compiling the ML-Lex takes 6–7 s) and to analyze modules in isolation. c© 2002 Elsevier
Science B.V. All rights reserved.

1. Introduction

Exception handling facilities in Standard ML [13] allow the programmer to de7ne,
raise and handle exceptional conditions. Exceptional conditions are brought (by a raise
expression) to the attention of another expression where the raised exceptions may be
handled.

� This work is supported in part by KOSEF Grant 95-0100-54-3, by Korea Ministry of Information and
Communication Grant 96151-IT2-12, by Korea Ministry of Science and Technology, by Samsung Electronics
Corp., by LG Information and Communications, and by Creative Research Initiatives of the Korean Ministry
of Science and Technology. [A preliminary version of this paper appeared in the proceedings of the 4th
International Static Analysis Symposium.]

∗ Corresponding author. Tel.: +82-42-869-3536; fax: +82-42-869-3510.
E-mail addresses: kwang@cs.kaist.ac.kr (K. Yi), puppy@cs.kaist.ac.kr (S. Ryu).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00317 -0

186 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

Use of the exception facilities is not necessarily limited to deal with errors. The
programmer can use exceptions as a “control diverter” to escape any control structure
to a point where the corresponding exception is handled. Also, using the exceptions, the
programmer can tailor an operation’s results to particular purposes in a wider variety
of contexts than would otherwise be the case.

The exception facilities, however, can provide a hole for program safety. SML pro-
grams can abruptly halt when an exception is raised and never handled. This is the only
one “safety hole” in well-typed SML programs. Uncaught exceptions are sometimes
disastrous [2].

In this paper, we present a static analysis that detects exceptions that may cause this
abrupt halt of SML programs. Our goal is to develop an e!ective such analysis that
has less than 10% overhead of the total compilation time.

1.1. Exception mechanism in Standard ML

In SML, exceptions are treated just like any other values (until they are raised). They
can be passed as function arguments, returned as the results of function applications,
bound to identi7ers, stored in locations, etc.

An exception consists of an exception name possibly paired with some argument
values. For example,

Error(“at line 10”)

constructs the Error exception with the string argument. (In what follows, an exception
name such as Error is called an “exception constructor”.) The exception constructor
Error must be declared beforehand:

exception Error of string

An exception is raised by

raise e

where the expression e must evaluate to an exception. For example, raise !x, where
x is dereferenced for an exception value. A raised exception is particularly called
an exception packet. In this paper, however, when the context is clear we will use
exception, exception value, and exception packet interchangeably.

Once an exception is raised, a handler is located by dynamic means: by going up the
current evaluation chain to 7nd potential handlers. During this process, one or more
levels of the currently active call chain are aborted, up to the function containing the
handler.

In SML, the syntax for an exception handler is

e handle p1 ⇒ e1 | · · · | pn ⇒ en

Patterns pi’s are compared with a raised exception from the computation of e. When the
exception’s name (constructor) matches with pattern pk , the corresponding expression

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 187

ek is evaluated. If the match fails, the raised exception continues to propagate back
along the evaluation chain until it meets another handler, and so on.

1.2. Analysis problems

• SML exceptions are 7rst-class objects. Consider

fun f(x) = · · · raise !x · · ·
Function f raises an exception !x in a location x passed to f.

• Precise exception analysis needs a precise call-graph estimation. Consider

fun f(g) = · · · g(x) handle E ⇒· · ·
In order to estimate the uncaught exceptions from g(x), we must analyze which
functions are bound to g when f is called.

• Conversely, precise call-graph estimation needs a precise exception analysis. Con-
sider:

fun f(x) = · · ·e handle E(g) ⇒ g(x) · · · (∗)
In order to decide which functions are called at g(x), we must decide whether the
e’s uncaught exceptions include E and, if so, which functions are carried by it.

1.3. Caveat

One subtlety of the SML’s exception declaration is that it is generative. (This is
also true for the datatype declarations.) Each evaluation of an exception declaration
binds a new, unique name to the exception constructor. An exception handler looks
up this internal name to determine a match. For example, in the following incorrect
de7nition of the factorial function, each recursive call to fact generates a new instance
of exception ZERO (line (1)). Thus, the handler in line (3), which can only handle
exceptions declared in its lexical scope, cannot handle another instance of ZERO that
is declared and raised inside the recursive call fact(n-1). Hence this fact function
always stops with an uncaught exception ZERO.

fun fact(n) =
let exception ZERO (1)
in if n ⇐ 0 then raise ZERO (2)

else n ∗ fact(n− 1) handle ZERO ⇒ 1 (3)
end

Our analysis cannot correctly analyze programs that utilize such generative nature
of the exception (and the datatype) declarations. This limitation is not severe; excep-
tions (and datatypes) are largely declared at the global scope or at a module level, or
we can move existing local declarations out to the global level without a!ecting the
“observational” behavior of the programs. Programs where this hoisting is impossible
cannot be analyzed correctly by our analysis.

188 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

program exnsa w=argsb arg typesc ftn argd

Knuth-Bendix.sml 1 1 string 0
ml-lex.sml 8 1 int list * string 0
SML=NJ 109 339 34 string, string*int, 1 (the

int list, intmap, Found

System.Unsafe. exception
object list, in debug/

symbol list, run.sml)
exn, unit→unit

HOL 60 18 string, int, record 0
of string=int

anumber of exception declarations (static count).
bnumber of exceptions with arguments (static count).
cargument types: basic building blocks after chasing type
abbreviations and datatype arguments.
dnumber of exceptions whose argument has a function
(static count).

Fig. 1. Exception use statistics in SML programs.

We consider only exceptions that appear in the program’s text (including library
sources). This limitation can easily be lifted if our analysis starts with a table of
primitive operators and their exceptions.

1.4. Our approach

In the earlier work [20], all the above problems were tackled by a monolithic abstract
interpreter. Functions, exceptions, and other data values were parts of the abstract
values. The analysis was a collecting analysis that computed stable program states at
each expression point of the input program. This monolithic approach was appealing
because the analysis design and its correctness proof was done at once by a sound
abstraction of the SML’s concrete semantics. The collecting analyzer was, however,
too expensive. It took about 1 h to analyze the ML-Lex program, for example.

For a better cost-e!ective analysis, we surveyed SML codes and found that such a
full-4edged analysis may be an overkill in almost all cases. In particular, we found that
such case as (∗) almost never happened (Fig. 1). 1 This suggests that, in most cases,
the call-graph estimation can be done independent of the exception analysis. Preparing
for the rare case that exceptions carry functions would not pay-o! in practice.

This does not mean that we do not guarantee the safety of our call-graph estimation.
For such cases when functions to call are brought by uncaught exceptions, we choose
to do a crude approximation, believing that this “large” approximation would be rarely

1 At least for hand-written codes. Situation may be di!erent in automatically generated programs.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 189

detrimental to the call-graph accuracy. Please note that we cannot use standard tech-
niques for closure analysis [16, 7, 14, 10] because their correctness does not consider
languages with function-carrying exceptions.

Program’s call-graph is estimated by a set of call-graph rules. For example, “x(0)”
calls functions that are bound to x when �x.e is called, “(f 0) 1” calls functions
(f 0) that the f’s body (a function expression) represents. The crude approximation
happens when an exception’s argument is the function to call. In this case we collect
functions whose types unify with the call expression’s function type. This simple call-
graph estimation, which enables us to separate the control 4ow analysis from the
exception 4ow, substantially reduces the total analysis cost and the consequent loss in
accuracy of our exception analysis is not high because exceptions (or datatypes) rarely
carry functions. The exact de7nition and its correctness proof are in Proposition 4.

This call-graph information is then used in exception analysis. For each function f,
we express its exception 4ow as two classes of set constraints:
• One class is for set Pf of f’s uncaught exceptions. 2 For example, Pf of the following

function

fun f(x) =e(0) + 1

includes the sum
⋃

g Pg of Pg’s for g that may be called at “e(0).” In some cases,
Pf is also composed of the set of exceptions that are available in f. For example,
Pf of the following function:

fun f(x) = raise x

includes the set of exceptions passed to f.
• The other class of constraints is for set Xf of exception values that are available

during f’s application. In the previous example function f; Xf includes the sum⋃
g Xg of Xg’s for g that may call f, because the caller g may pass its available

exceptions to f through x.
Our exception analysis is to build the set of constraints (for Pf and Xf) and to

compute its least solution (model). After the analysis, two things are reported to the
programmer:
1. The solution of Pf for each top-level function f. The existence of such exceptions

indicates that the program may terminate abnormally.
2. Uncaught exceptions from each handle expression. From this information the pro-

grammer can check the completeness of the handler patterns.

2. Language L

For presentation brevity, we present our analysis for an imaginary language L. The
language is a monomorphically typed, call-by-value, higher-order language. The lan-

2 In SML, uncaught exceptions are called exception packets. Hence “Pf”.

190 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

Abstract syntax
e ::= x variable
| �x�:e function
| e1 e2 application
| exn � e exception construction
| decon e deconstruction
| case e1 � e2 e3 switch
| fix f �x�:e1 in e2 recursive function binding
| raise e exception raise
| +raise e � exception raise-only
| -raise e �1 · · · �n exception raise-except
| handle e1 �x�:e2 exception handler
| 1 constant

Type
� ::= � exn exception type with argument type �
| � → � function type
| � constant type

Type rules

� ∈ Var
7n→Type ArgType(�) = exception �’s argument type

[ABS]
�[x �→ �]� e: �′

� � �x�:e: � → �′
[VAR]

�(x) = �
� � x: �

[FIX]
�[f �→ �1]� �x�:e1: �1 �[f �→ �1]� e2: �2

� � fix f �x�:e1 in e2: �2
[EXN]

� � e: � ArgType(�) = �
� � exn � e: � exn

[DCON]
� � e: � exn

� � decon e: �
[APP]

� � e1: � → �′ � � e2: �
� � e1e2: �′

[CASE]

� � e1: �
′ exn

� � e2: �
� � e3: �

� � case e1 � e2 e3: �
[RS]

� � e1: � exn
� � raise e: �′

[-RS]
� � e: � exn

� � -raise e �+: �′
[+RS]

� � e: � exn
� � +raise e �: �′

[HNDL]
� � e1: �′ �[x �→ �]� e2: �′ � = �′′ exn

� � handle e1 �x�:e2: �′
[C] � � 1: �

Fig. 2. L’s abstract syntax and type rules.

guage L’s abstract syntax and the usual monomorphic type rules are shown in Fig. 2.

We use the usual notation that for a 7nite function f∈A 7n→B; f[a
→ b] denotes the
new function which maps a into b and all other a′ ∈ dom(f) into f(a′).

For brevity, we have omitted datatype values, numbers, strings, primitive operators,
and memory operations (assignment, reference, and dereference). In reality, we work
on the SML source level. 3

3 The absyn level of SML=NJ, which is after the input program is type-inferenced.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 191

Values in L are either exceptions or functions. An exception value is constructed by
“exn � e” where � is an exception name and expression e is for its argument value.
The argument of an exception is recovered by “decon e”. “fix f �x�:e1 in e2” binds
recursive function f = �x�:e1 in e2. The case expression “case e1 � e2 e3” branches to
e2 if the value of e1 is constructed with �, otherwise, to e3. “raise e” raises exception
e. The +raise and -raise expressions are used in limited contexts, which we will
discuss in the next section. The handle expression “handle e1 �x�:e2”, where e2 is
typically a case expression on x, evaluates e1 7rst. If e1’s result is a raised exception
whose type is �, the exception is bound to x inside e2. If e1’s result is a normal value,
then the value is returned. Note that this handle expression can handle only one type
of exceptions.

The function “�x�:e2” in a handle expression “handle e1 �x�:e2” is called a handler
function, the expression “e1” a handlee expression, and the argument “x” of the handler
function a handle variable.

The operational semantics of L is in Fig. 3. Relation �� e⇒ v (resp. �� e⇒ � v) is
read: expression e evaluates into value v (resp. raises exception � v). Note that except
for the handle rule every rule

�1 � e1 ⇒ v1
...

�n � en ⇒ vn

� � e ⇒ v

represents the following n more extra rules for propagating a raised exception:

�1 � e1 ⇒ v1
...

�1 � e1 ⇒ v �n−1 � en−1 ⇒ vn−1
�1 � e1 ⇒ � v
� � e ⇒ � v

�2 � e2 ⇒ � v
� � e ⇒ � v

: : :
�n � en ⇒ � v
� � e ⇒ � v

This indicates that evaluation of expressions ei in the hypothesis stops with the 7rst
raised exception, and this is the result of the expression e in the conclusion.

De�nition 1 (type̋ (e)). For an L program ˝ (a closed expression) of type �0, we
write type̋ (e) for the type � of its sub-expression e i! � � e: � is a sub-deduction of
�˝: �0. We simply write type(e) when it is clear from the context which program ˝
the expression e belongs to.

Note that the type type̋ (e) is uniquely de7ned. The typing rules for raise expressions
([RS], [−RS], and [+RS]), which can assign “arbitrary” types, will assign unique ones
when the type �0 of the program ˝ is 7xed.

De�nition 2 (Typeful program). An L program ˝ is typeful i! during the execution
of ˝; (1) its every sub-expression e evaluates into a value of type(e) and (2) for each
handler function �x�:e in ˝ only the exceptions of type � are bound to x.

192 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

� ∈ Env = Var 7n→Val environments
v ∈ Val = Closure + Exn + {1} values

Closure = Expr × Env lambda exprs in in program ˝
and environments

� v ∈ Exn = Con × Val exceptions
Con = {�1; : : : ; �N} exception names in program ˝

� v ∈ Packet = Exn raised exceptions

� � 1⇒ 1 � � �x�:e⇒〈�x�:e; �〉

�(x) = v
� � x⇒ v

�[f
→ 〈fix f �x�:e1; �〉]� e2 ⇒ v
� � fix f �x�:e1 in e2 ⇒ v

� � e⇒ v
� � exn � e⇒ � v

� � e⇒ � v
� � decon e⇒ v

� � e1 ⇒〈�x�:e′; �′〉
� � e2 ⇒ v2

�′[x
→ v2]� e′ ⇒ v

� � e1 e2 ⇒ v

� � e1 ⇒ � v
� � e2 ⇒ v

� � case e1 � e2 e3 ⇒ v

� � e1 ⇒〈fix f �x�:e′; �′〉
� � e2 ⇒ v2

�′[f
→ 〈fix f �x�:e′; �′〉][x
→ v2]� e′ ⇒ v

� � e1 e2 ⇒ v

� � e1 ⇒ �′v �′ �= �
� � e3 ⇒ v

� � case e1 � e2 e3 ⇒ v

� � e⇒ � v
� � raise e⇒ � v

� � e⇒ � v ∀i ∈ {1; : : : ; n}:�i �= �
� � -raise e �1 · · · �n ⇒ � v

� � e⇒ � v
� � +raise e �⇒ � v

� � e1 ⇒ v �[x
→ v]� e2 ⇒
� � handle e1 �x�:e2 ⇒ v

Fig. 3. L’s operational semantics.

The second condition requires that the exceptions that are raised and thrown to a
handler should have the same type as the handler function’s argument type.

Proposition 1. Every typeful SML program can be written in a typeful L program.

Proof. Note that the typefulness of L requires the raised exceptions, as well as ex-
pression’s values, to be typeful (the second condition of De7nition 2).

It is well known that any polymorphically type-checked SML program can be trans-
lated into a monomorphic program by the let-inlining. Making raised exceptions to

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 193

be typeful in L is also straightforward, if L’s handle expression could have multiple
handler functions. Let {�1; : : : ; �n} be the set of exception types in an SML program.
Every SML handle expression is translated into an L handler:

handle e �x�1e1 | · · · |�x�nen

The semantics is that if an uncaught exception from e is of type �i then it is bound
to x�i inside ei. The SML’s handling expressions for exception patterns of type �i are
translated into ei. If the SML handler patterns do not completely cover an exception
type �i, then the corresponding ei is made just to re-raise the x. Then, clearly, such L
program is typeful.

Throughout this paper, we assume, for presentation brevity, that L’s handle ex-
pression has only one handler function, and consider only typeful L programs whose
variables are uniquely named (alpha-converted).

2.1. SML programs in L

We assume that SML programs in L satisfy the following noteworthy things. It
is straightforward to 7nd such L program that corresponds to a given SML program.
(Note that, in this section, some examples in L are not supported by the abstract syntax
of Fig. 2. For convenience we use numbers and multiple branches with the wild-card
pattern, for example.)
• –raise The handler patterns are always augmented with an extra raise (–raise)

expression, in order to re-raise exceptions that are not caught:

handle e � xexn:
e handle case x

ERROR ⇒ 1
is⇒ ERROR 1

| FAIL ⇒ 2 FAIL 2

–raise x ERROR FAIL

“-raise x ERROR FAIL” indicates that the re-raised exceptions are those bound to
x excluding ERROR and FAIL.

• +raise If a handler’s pattern for exception’s argument part is not complete, the
exception is explicitly re-raised by +raise:

handle e � x(�list)exn:
case x

exception E of int list E (� y�list :

· · · is⇒ case y
e handle E nil ⇒ 1 NIL 1

+raise x E) (decon x)
−raise x E

194 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

The above program’s handler can handle exception E only with nil list. Program
in L makes this situation explicit by re-raising the E exceptions if their arguments
are non-empty list. “+raise x E” indicates the re-raised exception shall only be the
E exceptions.

• Exception constructors that need arguments are translated into a function, which is
(-reduced whenever appropriate. For example,

exception E of int

· · · E; · · · is⇒ · · · (� x�:(exn E x)); · · ·
• All functor applications are in-lined. That is, functor de7nitions and applications

disappear and are replaced by in-lined structures. 4

3. Set-constraint systems

Our exception analysis is presented in the set-constraint framework [6, 1]. We use this
formalism not because we will use its computation method (transforming set constraints
into a regular tree grammar) but because the rule-based constraint formalism makes
our presentation convenient. Our exception analysis is computed by the conventional
iterative 7xpoint method because our solution space is 7nite: exception names in the
program. Correctness proofs are done by the 7xpoint induction [17] over the continuous
functions that are derived [4] from our constraint systems.

We present three set-constraint systems: .1; .2, and .3. Our analysis is the last one
.3. The other two constraint systems are stepping stones to prove .3’s safety. Note
that (1) our analysis decouples control-4ow analysis from exception analysis and (2)
our interest is in uncaught exceptions from functions. These two things are done by .2

and .3 in order. .2 (Section 3.3) decouples control-4ow analysis (Section 3.2) from
exception analysis. .3 (Section 3.4) increases the constraint granularity to the function
level. Because exception-related expressions are sparse in programs, it is wasteful to
generate constraints for every expression of the input program as in .2. .3 is proven
consistent with .2; .2 with .1, and .1 (Section 3.1) is assumed correct with respect
to the standard semantics of L.

To review some notions of set constraint formalism, an interpretation I (a map from
set expressions to sets) is a model (a solution) of a conjunction C of constraints if, for
each constraint X⊇ se (set variable X and set expression se) in C;I(se) is de7ned
and I(X)⊇I(se). We write lm(C) for the least model of C. All our constraint
systems (.1; .2; .3) guarantee the existence of the least model because every operator
is monotonic (in terms of set-inclusion) and each constraint’s left-hand-side is a single
variable [6].

4 In SML, parameterized modules are called functors. A functor is a function that, given an argument
structure, returns a new structure. A structure is a named collection of declarations.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 195

3.1. Concrete constraint construction .1

Every expression e of the input program has two set constraints: Ve ⊇ se and Pe ⊇ se.
The set variable (the unknown) Ve is for e’s values, Pe is for the uncaught exceptions
(packets) during e’s evaluation. A constraint Ve ⊇ se(Pe ⊇ se) may be read as “expres-
sion e evaluates into a set of values (has uncaught exceptions) including those of se”.

In Fig. 4 we index V and P sometimes with expressions, sometimes with numbers.
For example, in

[RS.1]
.1 e1: C1

.1 raise e1: {Pe ⊇V1} ∪ C1

the C1 has constraints, among others, for e1. The set variable for e1 is simply written
as “V1”. The subscript “e” of set variables “Ve” and “Pe” denotes the current expression
(raise e1) to which the above rule applies. Note that, in L programs, raise expres-
sion’s argument expression does not raise exceptions (Section 2.1), hence Pe does not
include P1.

Note that var(x) indicates the values bound to variable x when the function with
argument x is called:

I(var(x)) = {v | “e1 e2” ∈ e; �x�:e ∈ I(V1); v ∈ I(V2)}
and appV (V1) the values returned from functions V1:

I(appV (V1)) = {v | �x�:e ∈ I(V1); v ∈ I(Ve)}:
Similarly, appP(V1) (with subscript P) indicates the uncaught exceptions from function
calls.

Consider the rule for the handle expression:

[HNDL.1]

.1 e1: C1 .1 e2: C2

.1 handle e1 �x�:e2: { Ve ⊇ appV (�x�:e2) ∪ V1;
Pe ⊇ appP(�x�:e2); Vx ⊇P1

} ∪C1 ∪ C2

The 7rst constraint

Ve ⊇ appV (�x�:e2) ∪ V1

indicates that the handle expression’s values Ve are either the values V1 of the handlee
expression e1 or the values returned from the handler function. Note that the Vx ⊇P1

indicates that the argument to the handler function “�x�:e2” is the uncaught exceptions
P1 from the handlee expression e1. The second constraint

Pe ⊇ appP(�x�:e2)

indicates that uncaught exceptions of the handle expression include those from the
handler function. Recall that in L uncaught exceptions from a handle expression are
explicitly reraised from the handler function.

196 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

v ∈ val = Closure + Exn + {1} values
�x�:e ∈ Closure = Expr lambda exprs in program ˝
� v ∈ Exn = Con × Val exceptions

� ∈ Con = {�1; : : : ; �N} exception names in program ˝
� v ∈ Packet = Exn raised exceptions

I(Ve) ⊆ Val I(Pe) ⊆ Packet
I(�x�:e) = {�x�:e} I(1) = {1} I(se ∪ se′) = I(se) ∪I(se′)
I(exn(�; V1)) = {� v | v ∈ I(V1)} I(decon(V1)) = {v | � v ∈ I(V1)}

I(var(x)) = {v | e1 e2 ∈ ˝; �x�:e ∈ I(V1); v ∈ I(V2)}
I(appV (V1)) = {v | �x�:e ∈ I(V1); v ∈ I(Ve)}
I(appP(V1)) = {� v | �x�:e ∈ I(V1); � v ∈ I(Pe)}
I(case(V1; �; V2; V3)) = {v | ∈ I(V2); � v′ ∈ I(V1)} ∪ {v | v ∈ I(V3); �′v′ ∈ I(V1); �′ 	= �}
I(−raise(V1; �1; : : : ; �n)) = {�′ v | �′ v ∈ I(V1); ∀i:�i 	= �′}
I(+raise(V1; �)) = {� v | � v ∈ I(V1)}

[VAR.1] .1 x: {Vx ⊇ var(x)} [C.1] .1 1: {Ve ⊇ 1} [ABS.1]
.1e1: C1

.1�x�:e1: {Ve ⊇ �x�:e1} ∪ C1

[FIX.1]
.1 e1: C1 .1 e2: C2

.1 fix f �x�:e1 in e2: {Ve ⊇V2; Pe ⊇V2; Vf ⊇ �x�:e1} ∪ C1 ∪ C2

[EXN.1]
.1 e1: C1

.1 exn � e1: {Ve ⊇ exn(�; V1); Pe ⊇P1} ∪ C1

[DCON.1]
.1 e1: C1

.1 decon e1: {Ve ⊇ decon(V1); Pe ⊇P1} ∪ C1

[APP.1]
.1 e1: C1 .1 e2: C2

.1 e1 e2: {Ve ⊇ appV (V1); Pe ⊇ appP(V1) ∪ P1 ∪ P2} ∪ C1 ∪ C2

[CASE.1]
.1 e1: C1 .1 e2: C2 .1 e3: C3

.1 case e1 � e2 e3: {Ve ⊇ case(V1; �; V2; V3); Pe ⊇P1 ∪P2 ∪P3}∪C1 ∪C2 ∪C3

[RS.1]
.1 e1: C1

.1 raise e1: {Pe ⊇V1}∪C1

[− RS.1]
.1 e1: C1

.1 -raise e1 �1 · · · �n: {Pe ⊇−raise(V1; �1; : : : ; �n)}∪C1

[+ RS.1]
.1 e1: C1

.1 +raise e1 �: {Pe ⊇+raise(V1; �)}∪C1

[HNDL.1]
.1 e1: C1 .1 e2: C2

.1 handle e1 �x�:e2: { Ve ⊇ appV (�x�:e2)∪V1;

Pe ⊇ appP(�x�:e2); Vx ⊇P1

} ∪C1 ∪C2

Fig. 4. Constructing concrete constraints: .1.

We could have used Heintze’s method [7, 8] to compute the constraint solution. How-
ever, it is wasteful to consider all expressions and their values because exception-related
expressions are sparse in programs and function values (for control-4ow analysis) can
be separately estimated. These two observations are re4ected in the forthcoming con-
straint systems, .2 and .3

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 197

Proposition 2 (Correctness of .1). For a program (a closed expression) ˝; let .1˝:
C1 and let lm(C1) be the least model of C1. Then for every sub-expression e of
˝; lm(C1)(Ve) (respectively lm(C1)(Pe)) includes all the values that results from e
(respectively all the exceptions that escapes from e) during the execution of ˝.

Proof Sketch. This correctness can be proved by following the steps outlined in [7, 6].
The key idea is to de7ne a “set-based operational semantics” that is de7ned over a
7xed set environment (a map from variables to the sets of values). A set environment
is de7ned to be safe if the environment includes all the values that are bound to
each variable during the program’s standard execution (Fig. 3). Among the safe set
environments, there exists the least safe set environment. Our least model lm(C1) is
proved to be equivalent to the least safe set environment: lm(C1(Ve) (resp. lm(C1)(Pe))
is exactly the set of values (resp. the set of escaping exceptions) that are derived for
e by the set-based operational semantics with the least safe set environment.

Not only is .1 correct but typeful. The following typefulness is important for the
consistency of the forthcoming constraint system .2.

Proposition 3 (Typefulness of .1). For a program (a closed expression) ˝; let .1˝:
C1. Then its least model lm(C1) preserves types: ∀e∈˝: lm(C1)(Ve)⊆Valtype(e) (the
set of values of type(e)).

Proof. The least model lm(C1) is equivalent to the ⊆-least 7xpoint 7xF1 of the fol-
lowing continuous function F1 derived from C1 as follows [4]:

V = {Ve | e ∈ ˝} ∪ {Pe | e ∈ ˝} the set of constraint variables for program ˝

2Val = the powerset of Val; ordered by⊆
F1 : (V → 2Val) → (V → 2Val)

F1(*)(Ve)

=




{1} if e = 1
{�x�:e′} if e = f(function var) where fix f �x�:e′ ∈ ˝
*(P1) if e = x(handle var) where handle e1 �x�:e2 ∈ ˝
{v | e1 e2 ∈ ˝; �x�:e′ ∈ *(V1); v ∈ *(V2)} if e = x(normal var)
{�x�:e′} if e = �x�:e′

*(V2) if e = fixf �x�:e1 in e2

{� v | v ∈ *(V1)} if e = exn � e1

{v | � v ∈ *(V1)} if e = decon e1

{v | �x�:e′ ∈ *(V1); v ∈ *(Ve′)} if e = e1 e2

{v | v ∈ *(V2); � v′ ∈ *(V1)} ∪ {v | v ∈ *(V3); �′v′ ∈ *(V1); �′ �= �}
if e = case e1 � e2 e3

*(V1) ∪ *(V2) if e = handle e1 �x�:e2

∅ otherwise

198 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

F1(*)(Pe) =




*(P1) if e = exn � e1

*(P1) if e = decon e1

{� v | �x�:e′ ∈ *(V1); � v ∈ *(Pe′)} ∪ *(P1) ∪ *(P2)
if e = e1 e2

*(P1) ∪ *(P2) ∪ *(P3) if e = case e1 � e2 e3

*(P2) if e = fix f �x�:e1 in e2

*(V1) if e = raise e1

{�′ v | �′ v ∈ *(V1);∀i:�i �= �′} if e = −raise e1 �1 · · · �n

{� v | � v ∈ *(V1)} if e = +raise e1 �
*(P2) if e = handle e1�x�:e2

∅ otherwise

It is straightforward to derive this function because the .1 generates at most one con-
straint per Ve and Pe. That is, every ⊇ in constraints is =.

We prove typeful(7xF1) by the 7xpoint induction, where the assertion typeful(*)
for a program ˝ is

typeful(*)

= ∀e ∈ ˝:




*(Ve)⊆Valtype(e)

∧ e’s exn value is raised and bound to a handle var x�

⇒ *(Ve)⊆Val�

∧ e’s uncaught exn is bound to a handle var x�⇒*(Pe)⊆Val�

Base typeful(∅) is trivially true. We will show that typeful(F1(*)) holds given the
induction hypothesis (IH) typeful(*).

First, the cases for F1(*)(Ve).

[C] e = 1: F1(*)(Ve) = {1}⊆Val�.

[VAR] e = f (function variable) where fix f �x�:e′ ∈˝.

F1(*)(Vf) = {�x�:e′} by de7nition. Because the program ˝ is typeful, the function
�x�:e′ is in Valtype(�x�:e′), which is equal to Valtype(f) because of L’s type rules.

[VAR] e = x (handle variable) where handle e1 �x�:e2 ∈ ˝:

F1(*)(Vx) = *(P1) by de7nition. Because the program ˝ is typeful, the e1’s
uncaught exn is bound to x�. Thus by IH *(P1)⊆Val�.

[VAR] e = x (normal var):

F1(*)(Vx) = {v | e1 e2 ∈ ˝; �x�:e′ ∈ *(V1); v∈ *(V2)} by de7nition. If �x�:e′ ∈ *(V1)
then by IH �x�:e′ ∈Valtype(e1). Thus, because the program ˝ is typeful, type(e1) =
� →− and type(e2) = �. Therefore, by IH, value v in *(V2) is in Val�.

Other cases are similarly proved.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 199

�x:e → �x:e

fix f �x:e1 ∈ ˝
f → �x:e1

e2 → �y:e
fix f �x:e1 in e2 → �y:e

e1 e2 ∈ ˝; e1 → �x:e′1; e2 → �y:e
x → �y:e

e1 → �x:e′1; e′1 → �y:e
e1 e2 → �y:e

type(e1) = type(decon e); e1 → �x:e′

decon e → �x:e′

e2 → �x:e
case e1 � e2 e3 → �x:e

e3 → �x:e
case e1 � e2 e3 → �x:e

e1 → �y:e
handle e1 �x:e2 → �y:e

e2 → �y:e
handle e1 �x:e2 → �y:e

Fig. 5. Call-graph estimation rules.

Now, the cases for F1(*)(Pe): assuming that e’s uncaught exception is bound to a
handle var x�, we prove F1(*)(Pe)⊆Val�.

[EXN] e = exn � e1

F1(*)(Pe) = *(P1) by de7nition. The assumption implies that e1’s uncaught ex-
ception is bound to x�. Thus by IH *(P1)⊆Val�.

[RS] e = raise e1

F1(*)(Pe) = *(V1) by de7nition. The assumption implies that e1’s value is bound
to the x�. Thus by IH *(V1)⊆Val�.

Other cases are similarly proved.

3.2. Separate call-graph estimation

Call-graph estimation methods [9, 10, 14, 16, 18] in the literature cannot be directly
used in our exception analysis, because their high-order source languages do not have
exceptions, not to mention the function-carrying exceptions.

Fig. 5 shows our rules to estimate the call graph of a program ˝. An edge e → �x:e′

indicates that during the execution of ˝ the e may evaluate into a closure of the lambda
�x:e′.

One noticeable rule is the decon case where an exception’s argument is a function

type(e1) = type(decon e); e1 → �x:e′

decon e → �x:e′

200 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

We estimate that an exception’s argument functions are those whose types are equal
to the type of the current decon expression. 5

This crude approximation is inevitable in order to separate the control 4ow analysis
from the exception 4ow analysis. This simple call-graph analysis substantially reduces
the total analysis cost and the consequent loss in accuracy of our exception analysis is
not high because exceptions (or datatypes) rarely carry functions.

Proposition 4 (A safe call table Lam). Given a program ˝; let FtnExpr and 2Lambda;
respectively; be the set of function-typed expressions and the powerset of lambda
expressions in ˝. De8ne Lam : FtnExpr → 2Lambda to be

Lam(e) = {�x�:e′ | e → �x�:e′ is deducible by the rules in Fig: 5}:
Then Lam is safe: .1˝ :C → ∀e∈FtnExpr:Lam(e)⊇ lm(C)(Ve).

Proof. Note that the Lam is equivalent to the ⊆-least 7xpoint of the following con-
tinuous function L [4]:

L : (FtnExpr → 2Lambda) → (FtnExpr → 2Lambda)

L(‘)(e) =




{�x�:e1} if e = �x�:e1

{�x�:e1 | fix f �x�:e1 ∈ ˝} if e = f⋃
{‘(e2) | e1 e2 ∈ ˝; �x�:e′ ∈ ‘(e1)} if e = x⋃
{‘(e′) | �x:e′ ∈ ‘(e1)} if e = e1 e2

‘(e2) if e = fix f �x�e1 in e2

‘(e2) ∪ ‘(e3) if e = case e1 � e2 e3

‘(e1) ∪ ‘(e2) if e = handle e1 ��:e2⋃
{‘(e′) | type(e′) = type(decon e)} if e = decon e

We use the 7xpoint induction. The assertion Q(‘; *) that we will prove is

∀e ∈ FtnExpr:‘(e)⊇ *(Ve) ∧ typeful(*):

Note that we include the typeful(*) assertion that we used in the proof of Proposition 3.
This typefulness of * is necessary in proving the decon case.

Base case Q(∅; ∅) trivially holds. We now prove that Q(‘; *) implies Q(L(‘);F1(*)).
Case e of a normal variable x:

L(‘)(x) =
⋃

{‘(e2) | e1 e2 ∈ ˝; �x:e ∈ ‘(e1)} by de7nition

⊇
⋃

{‘(e1) | e1 e2 ∈ ˝; �x:e ∈ *(Ve1)} by IH

⊇
⋃

{*(Ve1) | e1 e2 ∈ ˝; �x:e ∈ *(Ve1)} by IH

= F1(*)(Vx) by de7nition:

5 Note that the L language is monomorphic. In SML, the “is equal to” most be “uni7es with”.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 201

Other cases are done similarly, except for the case e of decon e1:

L(‘)(e) =
⋃

{�x:e′ | �x:e′ ∈ ˝; type(e) = type(�x:e′)} by de7nition

= Valtype(e); the set of lambdas of type(e) in ˝ by de7nition

⊇ F1(*)(Ve) by that typeful(*) ⇒ typeful(F1(*));which is

proven in Proposition 3:

3.3. Exception constraint construction .2

We now consider a new system .2 (Fig. 6) where only exceptions are consid-
ered. Constraints for function (non-exception) values are removed and instead, a pre-
computed, safe call-graph table Lam (Proposition 4) is used.

Every expression e has two set constraints: Xe ⊇ se and Pe ⊇ se. Xe is for exceptions
and Pe for uncaught exceptions. For solutions of Xe and Pe we will consider only
exception names. That is, Xe is for the set |I(Ve)| of exception names in e’s values
I(Ve):

I(Xe)⊇ |I(Ve)|

De�nition 3. |I(V)|= {� | � v∈V}∪ |{v | � v∈I(V)}|.

The use of set expression app(e1) for function calls is similar to that in .1, except
that we use the call-graph table Lam : FtnExpr→Lambdas (Proposition 4).

Set variable’s indexing convention is the same as in the previous section (.1).
Consider the rule for -raise expression:

[−RS.2]
.2 e1: C1

.2 −raise e1 �1 · · · �n: {Pe ⊇(X1\e1{�1; : : : ; �n})} ∪ C1

The constraint Pe ⊇X1\e{�1; : : : ; �n} collects raised exceptions excluding the �i’s. Note
the meaning of \e:

I(X1\e{�1; : : : ; �n}) =
{
I(X1) if type(e) = �′exn ∧ isExn(�′)
I(X1)\{�1; : : : ; �n} otherwise

If an exception can have other exceptions as its arguments then the exclusion \e has
no e!ect. If blindly excluded, exceptions that are hidden as arguments of the escaping
exception are considered caught. This would make the analysis unsafe. Consider a
-raise expression whose argument e is an exception that hides another exception in
its argument:

−raise �1(�2(1))︸ ︷︷ ︸
e

�2

The expression raises the exception �1(�2(1)) unless its constructor �1 is equal to �2

(which is false). Hence, the exception �1(�2) is raised. If we removed �2 from the set

202 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

�∈Exn = {�1; : : : ; �N} exception names in program ˝

�∈Packet = Exn raised exceptions

I(Xe)⊆Exn I(Pe)⊆Packet

I(var(x)) = {� | e1 e2 ∈˝; �x�:e∈ Lam(e1); �∈I(X2)}
I(appX (e1)) = {� | �x�:e∈ Lam(e1); �∈I(Xe)}
I(appP(e1)) = {� | �x�:e∈ Lam(e1); �∈I(Pe)}
isExn(�) = true i! �= �′ exn

I(X1\e{�1; : : : ; �n}) =

{
I(X1) if type(e) = �′ exn ∧ isExn(�′)
I(X1)\{�1; : : : ; �n} otherwise

I(X1 ∩e {�}) =

{
I(X1) if type(e) = �′ exn∧ isExn(�′)
I(X1)∩{�} otherwise

I(�) = {�}

I(�x�:e) and I(se∪ se) are the same as in .1 (Fig. 4, p. 12).

[VAR.2] .2 x: {Xx ⊇ var(x)} [C.2] .2 1: ∅

[ABS.2]
.2 e1: C1

.2 �x�:e1: C1
[FIX.2]

.2 e1: C1 .2 e2: C2

.2 fix f �x�:e1 in e2: {Xe ⊇X2; Pe ⊇P2}∪C1 ∪C2

[DCON.2]
.2 e1:C1

.2 decon e1: {Xe ⊇X1; Pe ⊇P1}∪C1

[EXN.2]
.2 e1: C1

.2 exn � e1: {Xe ⊇ �∪X1; Pe ⊇P1}∪C1

[APP.2]
.2 e1:C1 .2 e2: C2

.2 e1 e2: {Xe ⊇ appX (e1); Pe ⊇ appP(e1)∪P1 ∪P2}∪C1 ∪C2

[CASE.2]
.2 e1: C1 .2 e2: C2 .2 e3: C3

.2 case e1 � e2 e3: {Xe ⊇X2 ∪X3; Pe ⊇P1 ∪P2 ∪P3}∪C1 ∪C2 ∪C3

[RS.2]
.2 e1: C1

.2 raise e1: {Pe ⊇X1}∪C1

[− RS.2]
.2 e1: C1

.2 -raise e1 �1 · · · �n: {Pe ⊇ (X1\e1{�1; : : : ; �n})}∪C1

[+ RS.2]
.2 e1: C1

.2 +raise e1 �: {Pe ⊇ (X1 ∩e1 {�})}∪C1

[HNDL.2]
.2 e1: C1 .2 e2: C2

.2 handle e1 �x�:e2: { Xe ⊇ appX (�x�:e2)∪X1;

Pe ⊇ appP(�x�:e2); Xx ⊇P1

} ∪C1 ∪C2

Fig. 6. Constructing exception constraints: .2.

Xe = {�1; �2} then the exception �2 that can be available when the exception packet
is later caught and deconstructed is considered missing thereafter. Therefore, the set-
minus operator \e is e!ective only when the exception values of e cannot have other
exceptions hidden in its argument. (The same reason is for the de7nition of ∩e.)

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 203

� ∈ Exn = {�1; : : : ; �N} exception names in program ˝
� ∈ Packet = Exn raised exceptions

I(Xf)⊆Exn I(Pf)⊆Packet X ::= Xf |Pf
Owner(x) = f where �fx�:e (f′ parameter is x)
I(var(x)) = I(XOwner(x))
I(appX (e1;X)) = {� | �gx�:e∈ Lam(e1); � ∈ I(Xg); I(Xg)⊇I(X)}
I(appP(e1;X)) = {� | �gx�:e∈ Lam(e1); � ∈ I(Pg); I(Xg)⊇I(X)}
I(Xf\e{�1; : : : ; �n});I(Xf ∩e {�});I(�); and I(�x�:e) are the same
as in .2 (Fig: 6; p: 18):

[VAR.3] f .3 x: {Xf ⊇ var(x)} [C.3] f .3 1: ∅

[ABS.3]
g .3 e1: C1

f .3 �gx�:e1: C1
[FIX.3]

g .3 e1: C1 f .3 e2: C2

f .3 fix g�gx�:e1in e2: C1 ∪ C2

[DCON.3]
f .3 e1: C1

f .3 decon e1: C1
[EXN.3]

f .3 e1: C1

f .3 exn � e1: {Xf ⊇ �} ∪ C1

[APP.3]
f .3 e1: C1 f .3 e2: C2

f .3 e1 e2: {Xf ⊇ appX (e1; Xf); Pf ⊇ appP(e1; Xf)} ∪ C1 ∪ C2

[CASE.3]
f .3 e1: C1 f .3 e2: C2 f .3 e3: C3

f .3 case e1 � e2 e3: C1 ∪ C2 ∪ C3

[RS.3]
f .3 e1: C1

f .3 raise e1: {Pf ⊇Xf} ∪ C1

[−RS.3]
f .3 e1: C1

f .3 -raise e1 �1 · · · �n: {Pf ⊇Xf\e1{�1; : : : ; �n}} ∪ C1

[+RS.3]
f .3 e1: C1

f .3 +raise e1 �: {Pf ⊇Xf ∩e1 {�}} ∪ C1

[HNDL.3]

g .3 eg: C1 h .3 e2: C2

f .3 handle eg �hx�:e2: { Xf ⊇ appX (�hx�:e2; Pg) ∪ Xg;
Pf ⊇ appP(�hx�:e2; Pg)

} ∪C1 ∪ C2

Fig. 7. Constructing function’s exception constraints: .3.

The constraint-construction rule .2 is a safe approximation of .1:

Proposition 5 (Correctness of .2). For a program ˝; let .1˝: C1 and .2˝: C2 with
their least models; I1 = lm(C1) and I2 = lm(C2). If Lam is safe with respect to .1;

204 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

then for every sub-expression e∈˝:

I2(Xe)⊇ |I1(Ve)| and I2(Pe)⊇ |I1(Pe)|:

Proof. The least models I1 and I2 are equivalent to the ⊆-least 7xpoints 7xF1 and
7xF2, respectively [4]. The F1 is de7ned in the proof of Proposition 3. The continuous
function F2 is derived from C2 as follows:

3 = {Xe | e ∈ ˝} ∪ {Pe | e ∈ ˝} the set of constraint variables for a program ˝

2Exn = the powerset of Exn; ordered by ⊆
F2 : (3 → 2Exn) → (3 → 2Exn)

F2(’)(Xe) =


’(P1) if e = x(handle var) where handle e1 �x�:e2 ∈ ˝
{� | e1 e2 ∈ ˝; �x�:e′ ∈ Lam(e1); � ∈ ’(X2)} if e = x(normal var)
{�} ∪ ’(X1) if e = exn � e1

’(X1) if e = decon e1

{� | �x�:e′ ∈ Lam(e1); � ∈ ’(Xe′)} if e = e1 e2

’(X2) ∪ ’(X3) if e = case e1 � e2 e3

’(X1) ∪ ’(X2) if e = handle e1 �x�:e2

’(X2) if e = fix f �x�:e1 in e2

∅ otherwise

F2(’)(Pe) =


’(P1) if e = exn � e1

’(P1) if e = decon e1

{� | �x�:e′ ∈ Lam(e1); � ∈ ’(Pe′)} ∪ ’(P1) ∪ ’(P2) if e = e1 e2

’(P1) ∪ ’(P2) ∪ ’(P3) if e = case e1 � e2 e3

’(X1) if e = raise e1

’(X1) if e = −raise e1 �1 · · · �n and type(e1) = �′ exn ∧ isExn(�′)
(’(X1)\{�1; : : : ; �n})

if e = −raise e1 �1 · · · �n and type(e1) = �′ exn ∧ ¬isExn(�′)
(’(X1) if e = +raise e1 � and type(e1) = �′ exn ∧ ¬isExn(�′)
(’(X1) ∩ {�})

if e = +raise e1 � and type(e1) = �′ exn ∧ ¬isExn(�′)
’(P2) if e = handle e1 �x�:e2

’(P2) if e = fix f �x�:e1 in e2

∅ otherwise:

It is straightforward to derive this function because the .2 generates at most one con-
straint per Xi and Pi. That is, each ⊇ in constraints is =.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 205

We prove Q(7xF2; 7xF1) by the 7xpoint induction, where the assertion Q(’; *) for
a program ˝ is

∀e ∈ ˝:’(Xe)⊇ |*(Ve)| ∧ ’(Pe)⊇ |*(Pe)| ∧ typeful(*):

Note that we include the typeful(*) assertion that we used in the proof of
Proposition 3. This typefulness of * is necessary in proofs for the -raise and +raise

cases.
Base case Q(∅; ∅) is trivially true. We prove that Q(F2(’);F1(*)) holds given the

induction hypothesis Q(’; *). That is, we need to show F2(’)(Xe)⊇ |F1(*)(Ve)| and
F2(’)(Pe)⊇ |F1(*)(Pe)|.

[VAR] e = x(handle variable) where handle e1 �x�:e2 ∈ ˝.

F2(’)(Xx) = ’(P1) (by de7nition)

⊇ |*(P1)| (by IH)

= |F1(*)(Vx)| (by de7nition):

[VAR] e = x(normal variable).

F2(’)(Xx) = {� | e1 e2 ∈ ˝; �x�:e′ ∈ Lam(e1); � ∈ ’(X2)} (by de7nition)

⊇ {v | e1 e2 ∈ ˝; �x�:e′ ∈ *(V1); v ∈ | *(V2)|}
(by Proposition 2 and IH)

= |F1(*)(Vx)|:

[EXN] e = exn � e1.

F2(’)(Xe) = {�} ∪ ’(X1) (by de7nition)

⊇ {�} ∪ |*(V1)| (by IH)

By de7nition, |F1(*)(Ve)| = |{� v | v ∈ *(V1)}| = {�} ∪ |*(V1)|.
Therefore, F2(’)(Xe)⊇ |F1(*)(Ve)|.

F2(’)(Pe) = ’(P1) (by de7nition)

⊇ |*(P1)| (by IH)

= |F1(*)(Pe)| (by de7nition):

[DCON] e = decon e1.

F2(’)(Xe) = ’(X1) (by de7nition)

⊇ |*(V1)| (by IH)

⊇ |F1(*)(Ve)| (by de7nition):

206 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

F2(’)(Pe) = ’(P1) (by de7nition)

⊇ |*(P1)| (by IH)

= |F1(*)(Pe)| (by de7nition):

[APP] e = e1 e2.

F2(’)(Xe) = {� | �x�:e′ ∈ Lam(e1); � ∈ ’(Xe′)} (by de7nition)

⊇ {v | �x�:e′ ∈ *(V1); v ∈ | *(Ve′) | } (by Proposition 2 and IH)

= |F1(*)(Ve) | (by de7nition):

F2(’)(Pe) = {� | �x�:e′ ∈ Lam(e1); � ∈ ’(Pe′)} ∪ ’(P1) ∪ ’(P2)

(by de7nition)

⊇ {v | �x�:e′ ∈ *(V1); v ∈ | *(Pe′)|} ∪ |*(P1)| ∪ |*(P2)|
(by Proposition 2 and IH)

= |F1(*)(Pe)| (by de7nition):

[CASE] e = case e1 � e2 e3.

F2(’)(Xe) = ’(X2) ∪ ’(X3) (by de7nition)

⊇ {v | v ∈ | *(V2)|; � v′ ∈ *(V1)}
∪{v|v ∈ | *(V3)|; �′v′ ∈ *(V1); �′ �= �} (by IH)

= |F1(*)(Ve)| (by de7nition):

F2(’)(Pe) = ’(P1) ∪ ’(P2) ∪ ’(P3) (by de7nition)

⊇ |*(P1)| ∪ |*(P2)| ∪ |*(P3)| (by IH)

= |F1(*)(Pe)| (by de7nition):

[RS] e = raise e1.

F2(’)(Pe) = ’(X1) (by de7nition)

⊇ |*(V1)| (by IH)

= |F1(*)(Pe)| (by de7nition):

[−RS] e = -raise e1 �1 · · · �n where type (e1) = �′ exn ∧ isExn(�′).

F2(’)(Pe) = ’(X1) (by de7nition)

⊇ |*(V1)| (by IH)

⊇ |F1(*)(Pe)| (by de7nition):

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 207

[−RS] e = -raise e1 �1 · · · �n where type (e1) = �′ exn ∧ ¬isExn(�′).

F2(’)(Pe) = ’(X1)\{�1; : : : ; �n} (by de7nition)

⊇ |*(V1)|\{�1; : : : ; �n} (by IH)

|F1(*)(Pe)|= |{�′v | �′v ∈ *(V1);∀i:�i �= �′}| (by de7nition)

= {�′ | �′v ∈ *(V1);∀i:�i �= �′}

∪|{v | �′v ∈ *(V1);∀i:�i �= �′}| (by de7nition of)

Note that the set |{v | �′v ∈ *(V1);∀i:�i �= �′}| is empty

because ¬isExn(�′) and the IH typeful(*)(V1): Thus;

= {�′ | �′v ∈ *(V1);∀i:�i �= �′}

⊆ |*(V1)|\{�1; : : : ; �n} (by de7nition):

Therefore, F2(’)(Pe)⊇ |F1(*)(Pe)|.
[+RS] e = +raise e1 � where type (e1) = �′ exn ∧ isExn(�′).

F2(’)(Pe) = ’(X1) (by de7nition)

⊇ |*(V1)| (by IH)

⊇ |F1(*)(Pe)| (by de7nition):

[+RS] e = +raise e1 � where type (e1) = �′ exn ∧ ¬isExn(�′).

F2(’)(Pe) = ’(X1) ∩ {�} (by de7nition)

⊇ |*(V1)| ∩ {�} (by IH)

|F1(*)(Pe)|= |{� v | � v ∈ *(V1)}| (by de7nition)

= {� | � v ∈ *(V1)} ∪ | {v | � v ∈ *(V1)}| (by de7nition)

Note that the set |{v | � v ∈ *(V1)}| is empty

because ¬isExn(�′) and IH typeful(*)(V1): Thus;

= {� | � v ∈ *(V1)}

⊆ |*(V1)| ∩ {�} (by de7nition):

208 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

Therefore, F2(’)(Pe)⊇ |F1(*)(Pe)|.
[HNDL] e = handle e1�x�:e2:

F2(’)(Xe) = ’(X2) ∪ ’(X1) (by de7nition)

⊇ |*(V2)| ∪ |*(V1)| (by IH)

= |F1(*)(Ve)| (by de7nition):

F2(’)(Pe) = ’(P2) (by de7nition)

⊇ |*(P2)| (by IH)

= |F1(*)(Pe)| (by de7nition):

3.4. Function’s exception constraint construction .3

It is wasteful to compute uncaught exceptions from every expression because
exception-related expressions are sparse in a program. We need to sparsely gener-
ate constraints. Using the .2 as our stepping stone, we arrive at our constraint system
.3 that generates constraints only for functions. The number of unknowns thus becomes
proportional to the number of functions, not to the number of expressions. The least
model of .3-constraints for an input program is our analysis result: uncaught exceptions
from each function.

In .3; set variables are indexed by the lambdas and handlee expressions of the input
program. We assume that all lambdas and handlee expressions are uniquely named as
f; g; h; etc. We subscript the lambda with its name: “�fx�:e”. Similarly for handlee
expression such as “eg” in “handle eg�hx�:e2”.

Every function (or handlee expression) f of the input program has two set con-
straints: Xf ⊇ se and Pf ⊇ se. The set variable Xf is for exceptions that are “available”
at f; and Pf is for uncaught exceptions during the call to f.

Consider the rule for application expression:

[APP.3]
f .3 e1: C1 f .3 e2: C2

f .3 e1 e2: {Xf ⊇ appX (e1; Xf); Pf ⊇ appP(e1; Xf)} ∪ C1 ∪ C2

The left-hand side f of “f .3 e” indicates that the expression e appears in f. Thus, if f
has a call e1 e2; available exceptions Xf in f must include the exceptions appX (e1; Xf)
returned from the call. The uncaught exceptions Pf in f must include the exceptions
appP(e1; Xf) uncaught during the call.

One noticeable rule is [VAR.3]. Because the constraint granularity is a function,
constraints for a variable x must be expressed in terms of two functions: function f
that variable x provides with exceptions and another function g that provides x with
exceptions. The f is the function that appears in the left-hand side of “.3 x” and the
g is the function (Owner(x)) that has x as its argument. Therefore,

[VAR.3] f .3 x: {Xf ⊇XOwner(x)}:

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 209

One missing constraint is for the e!ect of passing exceptions through x when its

owner Owner(x)(let= g) is called. This is expressed as appX (e1; Xf)’s third condition
I(Xg)⊇I(Xf) (in terms of caller f and callee g):

I(appX (e1; Xf)) = {� | �gx�:e ∈ Lam(e1); � ∈ I(Xg);I(Xg)⊇I(Xf)}:

The function-level exception constraint rule .3 is a safe approximation of .2:

Proposition 6 (Correctness of .3). For a closed term e; let .2 e: C2 and main .3 e: C3

with their least models; I2 = lm(C2) and I3 = lm(C3). Then; if g .3 e′: C′ occurs
during main .3 e: C3 then

I3(Xg)⊇I2(Xe′) and I3(Pg)⊇I2(Pe′):

Proof. We will prove that for any model I of C3, the above holds. Note that the least
model I2 is equivalent to the ⊆-least 7xpoints 7xF2. The F2 is de7ned in the proof
of Proposition 5.

We prove Q(7xF2) by the 7xpoint induction, where the assertion Q(’) for a pro-
gram ˝ is

∀ model I of C3:“f .3 e:C′′ occurs during (main .3 ˝: C3)

⇒ I(Xf)⊇’(Xe) ∧I(Pf)⊇’(Pe):

Base case Q(∅) trivially holds. We prove that Q(F2(’)) holds given the induction
hypothesis Q(’).

In the following proof, for each case f .3 expr we abbreviate the expr by e.
[VAR] f .3 x (handle variable) where handle eg �hx�:e2 ∈˝.

I(Xf) ⊇ I(XOwner(x)) = I(Xh) (by [VAR.3])

⊇ I(Pg) (by [HNDL.3])

⊇ ’(Pg) (because “g .3 eg” occurs and by IH)

= F2(’)(Xx) (by de7nition)

[VAR] f .3 x(normal variable).
By [VAR.3], I(Xf)⊇I(XOwner(x)). Let a function g be the owner of x: �gx�:e′.
For each “k .3 e1 e2” that occurs at the Owner(x)’s call site, “k .3 e2” occurs.
Thus by IH,

’(X2)⊆I(Xk)

⊆I(Xg) (by [APP.3])

210 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

Therefore, I(Xf)⊇{� | e1 e2 ∈˝; �x�:e′ ∈Lam(e1); �∈’(X2)}=F2(’)(Xx).
[EXN] f .3 exn � e1.

I(Xf) ⊇ {�} (by [EXN.3])

I(Xf) ⊇ ’(X1) (because “f .3 e1
′′ occurs and by IH)

Therefore; I(Xf) ⊇ {�} ∪ ’(X1)

= F2(’)(Xe) (by de7nition)

[APP] e =f .3 e1 e2.

I(Xf)⊇ {� | �gx�:e′ ∈ Lam(e1); � ∈ I(Xg);I(Xg)⊇I(Xf)} (by [APP.3])

⊇ {� | �gx�:e′ ∈ Lam(e1); � ∈ ’(Xe′)}
(because “g .3 e′” occurs and by IH)

=F2(’)(Xe) (by de7nition):

I(Pf)⊇ {� | �gx�:e′ ∈ Lam(e1); � ∈ I(Pg);I(Xg)⊇I(Xf)} (by [APP.3])

⊇ {� | �gx�:e′ ∈ Lam(e1); � ∈ ’(Pe′)}
(because “g .3 e′” occurs and by IH)

I(Pf)⊇’(P1) (because “f .3 e1” occurs and by IH)

I(Pf)⊇’(P2) (because “f .3 e2” occurs and by IH)

Therefore,

I(Pf)⊇ {� | �gx�:e′ ∈ Lam(e1); � ∈ ’(Pe′)} ∪ ’(P1) ∩ ’(P2)

=F2(’)(Pe) (by de7nition):

[RS] e =f .3 raise e1.

I(Pf) ⊇ I(Xf) (by [RS.3])

⊇ ’(X1) (because “f .3 e1” occurs and by IH)

= F2(’)(Pe) (by de7nition):

[−RS] e = -raise e1 �1 · · · �n where type(e1) = �′ exn∧ isExn(�′).

I(Pf) ⊇ I(Xf\e1{�1; : : : ; �n}) (by [−RS.3])

= I(Xf) (by de7nition of \e1)

⊇ ’(X1) (because “f .3 e1” occurs and by IH)

= F2(’)(Pe) (by de7nition):

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 211

[−RS] e = -raise e1 �1 · · · �n where type(e1) = �′ exn∧¬isExn(�′).

I(Pf) ⊇ I(Xf\e1{�1; : : : ; �n}) (by [−RS.3])

= I(Xf)\{�1; : : : ; �n} (by de7nition of \e1)

⊇ ’(X1)\{�1; : : : ; �n} (because “f .3 e1” occurs and by IH)

= F2(’)(Pe) (by de7nition):

[+RS] e = +raise e1 � where type(e1) = �′exn∧ isExn(�′).

I(Pf) ⊇ I(Xf ∩e1 {�}) (by [+RS.3])

= I(Xf) (by de7nition of ∩e1)

⊇ ’(X1) (because “f .3 e1” occurs and by IH)

= F2(’)(Pe) (by de7nition):

[+RS] e = +raise e1 �1 · · · �n where type(e1) = �′ exn∧¬isExn(�′).

I(Pf) ⊇ I(Xf ∩e1 {�}) (by [+RS.3])

= I(Xf) ∩ {�} (by de7nition of ∩e1)

⊇ ’(X1) ∩ {�} (because “f .3 e1” occurs and by IH)

= F2(’)(Pe) (by de7nition):

[HNDL] e =f .3 handle eg�hx�:e2.

I(Xf)⊇ {� | � ∈ I(Xh);I(Xh)⊇I(Pg)} ∩I(Xg) (by [HNDL.3])

=I(Xh) ∪I(Xg)

(because any model I of C3 satis7es I(Xh)⊇I(Pg))

⊇’(X2) ∪I(Xg) (because “h .3 e2” occurs and by IH)

⊇’(X2) ∪ ’(Xg) (because “g .3 eg” occurs and by IH)

=F2(’)(Xe) (by de7nition):

I(Pf)⊇ {� | � ∈ I(Ph);I(Xh)⊇I(Pg)} (by [HNDL.3])

=I(Ph) (because any model I of C3 satis7es I(Xh)⊇I(Pg))

⊇’(P2) (because “h .3 e2” occurs and by IH)

=F2(’)(Pe) (by de7nition):

Example 1. As an analysis example, consider the following program:
(1) fun m() = f(exn � 1)
(2) fun f(x) = handle g(x) �h y:1 (in SML g(x) handle ⇒ 1)
(3) fun g(x) = raise x

212 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

From line (1),

Xm ⊇ �

Xf ⊇Xm; Xm ⊇Xf (from Xm ⊇ appX (f; Xm))

Pm ⊇Pf (from Pm ⊇ appP(f; Xm))

From line (2)

Xg ⊇Xf; Xf ⊇Xg (from Xf ⊇ appX (g; Xf))

Pf ⊇Ph; Xh ⊇Pg (from Pf ⊇ appP(h; Pg))

From line (3)

Pg ⊇Xg

The least model of the above 9 constraints is the least solution of the equations:

Xm = {�}; Xf = Xm ∪ Xg; Xg = Xf; Xh = Pg;

Pm = Pf; Pf = Ph; Pg = Xg:

The least solution is

Xm = {�}; Xf = {�}; Xg = {�};
Pm = ∅; Pf = ∅; Pg = {�}:

3.5. Typeful constraints for improved accuracy

Some constraint rules of .3 can be safely sharpened using types. Our actual analysis
uses this sharpened .3 rules: (1) a function f has exceptions through a variable x only
when the x is of an exception type and (2) exceptions Xf in f are returned only when
f’s return type is an exception type:

I(appX (e1;X)) = {� | �fx�:e ∈ Lam(e1); � ∈ I(Xf | isExn(type(e)));

I(Xf)⊇I(X|isExn(�))}

I(appP(e1;X))={� | �fx�:e∈Lam(e1); �∈I(Pf); I(Xf)⊇I(X | isExn(�))}

I(var(x)) = I(XOwner(x)|isExn(type(x)))

Xf ⊇ appX (· · ·) ∪ (Xg|isExn(type(eg))) in [HNDL.3]

where I(X|cond) = I(X) if the cond true, ∅ otherwise.
The correctness of this new .3 can be proved with respect to a typeful version of

.2. The least solution of typeful .2-constraints maps non-exception-typed expressions

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 213

to the empty set. The typeful .2 is consistent with .1 because .1 is already typeful.
The .2 becomes typeful by the new [DCON.2] rule:

[DCON.2]
.2e1: C1

.2 decon e1: {Xe ⊇(X1|isExn(type(e))); Pe ⊇P1} ∪ C1

Example 2. Consider the following program:
(1) fun f(x) = · · · (exn �1 1) · · · g(1) · · ·
(2) fun g(x) = raise (exn �2 x)

Note that g raises only �2. If our constraints are un-typed, we generate constraints that
passes f’s exception �1 to g because of the call g(1). This will not happen in our
new rules, because g’s argument type is not exception. From line (1),

Xf ⊇ �1; Xf ⊇ appX (g; Xf); Pf ⊇ appP(g; Xf)

From line (2),

Xg ⊇ �2; Pg ⊇ �2; Pg ⊇Xg

The Xf ⊇ appX (g; Xf) implies Xg ⊇∅ because g’s argument type is int. The least
solution hence maps Pg to {�2}. Meanwhile, untypeful de7nition of Xf ⊇ appX (g; Xf)
generates Xg ⊇Xf and the least solution becomes to map Xg to {�1; �2}, concluding
that Pg may raise all these exceptions.

Similar techniques of type-directed improvement of analyses have been reported: ac-
curacy improvement of control 4ow analysis [11] and strati7cation of alias
analysis [15].

3.6. Handling of exception’s arguments

Because the analysis does not recognize exception’s arguments unless the arguments
were exceptions, it may lead into a too conservative result for some programs.

Example 3. Consider the following program that has no uncaught exception:

exception Fail of int

(1) fun f() = g() handle Fail(1) ⇒ 1

fun g() = raise (exn Fail 1)

Because the handler pattern “Fail(1)” is not exhaustive for the argument part, the
handler is annotated with “+raise x Fail” expression. This +raise expression makes
our analysis conclude that f has an escaping exception Fail.

Resolving this problem by adding constraints for non-exception values and risking the
subsequent increase of the analysis cost is not appealing for two reasons. Incomplete
handler patterns for exception’s argument (like the above example) is rare, and the

214 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

existing pattern compiler 6 already can warn of incomplete patterns for exception’s
arguments unless the argument type is an exception.

Our analysis reports the pair of an exception name � and the index of the expression
(exn � e) where the exception is made. 7 Given a pair of exception name and its birth
place information, the programmer can decide which may-uncaught exceptions are real,
assuming that the birth place expression has the argument data explicit in the text. In the
above example, the programmer safely decides the may-uncaught exception Fail is not
real because its birth place is “(exn Fail 1)” hence the handler pattern “Fail(1)”
is exhaustive enough.

This can be achieved by a slight change to .3. The exception space becomes the set
of tuples:

Exn = {�1; : : : ; �N} × Expr

The rule for exn expression becomes

[EXN.3]
f .3 e1: C1

f .3 exn � e1: {Xf ⊇〈�; e〉} ∪ C1
where e = exn � e1

And

X1\e{�1; : : : ; �n} and X1 ∩e {�}
removes (resp. selects) tuples headed by �i’s (resp. by �).

3.7. Adapting .3 to Standard ML

Because of SML’s polymorphic types,
• isExn needs to be conservative. The new de7nition is:

isExn(� ∨ � → �′) = false constant or function
type

isExn(5 ∨ � exn) = true generic type var
or exn type

isExn(� ref) = isExn(�) reference type
isExn(�1 × �2) = isExn(�1) or isExn(�2) record type
isExn(u) = ∃� ∈ Con(u):isExn(ArgType(�)) user-de7ned

datatype u

The last case is for when a datatype u’s constructor � ∈ Con(u) receives exceptions
as its argument.

6 An SML’s datatype has a 7xed number of ways to construct its values, and patterns are combinations
of such constructors.

7 This can be understood as abstracting the expression values, by the expression index. A similar technique
has been widely used in abstracting memory locations: each malloc expression is an abstract location,
representing all the locations allocated at that point during execution.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 215

program lines cfa + setup(sec)a solve(sec)b analysis result

Knuth-Bendix.sml 519 0.54c 0.07d 1 (1x,1r,10h)e

ml-lex.sml 1204 0.89 0.47 3 (10x,19r,10h)
instantiate.sml 1384 2.74 0.04 2 (7x,8r,18h)
typecheck.sml 648 6.07 0.03 0 (1x,2r,17h)
moduleutil.sml 847 4.37 0.08 3 (3x,25r,23h)
pathname.sml 426 0.09 0.01 4 (4x,6r,3h)
string-cvt.sml 454 0.13 0.03 1 (1x,10r,4h)
class compiler 3511 3.65 0.10 3 (11x,34r,4h)

a Control-4ow analysis and constraints set-up: in SML, run on DEC Alpha
Server1000(4=200), compiled by SML=NJ 108.13
b Solving constraints: in SML, run on DEC Alpha Server1000(4=200), compiled
by SML=NJ 108.13
c SML user+system+gc time
d C user+system time
e I may un-caught exceptions from top-level functions among 1 exns(1x), 1 raise
exprs(1r), and 10 handlers(10h).

Fig. 8. Experimental results.

• Lam’s last case must test for type uni7ability (≈) instead of type equality: In this
case, type̋ (e) – for an expression e of a program ˝ – indicates the SML type of
the expression, determined by the let-polymorphic-type inference system [12, 13, 19].

4. Experimental results

A prototype’s preliminary performance is shown in Fig. 8.
Currently, the analysis speed ranges from 110 to 4000 SML-lines=s ([20] ran at 0.2

SML-lines=s and [5] at about 10 SML-lines=s). We still expect some improvements in
the analysis speed as we better implement the control 4ow analysis part. In particular,
a performance bottleneck is in computing the table that partitions user functions into
uni7able ones. This process’ cost is proportional to the “size” of function types in the
program. This is why the control-4ow analysis speed is not proportional to the program
size.

Computing the Lam uses the 7xpoint iteration of cubic complexity. Computing the
constraints’ least solution also uses the conventional 7xpoint iteration 8 of cubic com-
plexity.

8 The iterative method is possible because the set domain is 7nite (the set of exception names in the input
program) and all set operators (set union “∪”, “Xf ∩{�}”, “Xf\{�1 · · · �n}”, etc.) are monotonic.

216 K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217

The analysis accuracy is satisfying. We manually checked the above test programs
and found that the reported exceptions for Knuth-Bendix.sml, pathname.sml, string-
cvt.sml, and compiler.sml can actually be uncaught. For ml-lex.sml, the 3 may-uncaught
exceptions are exactly those that can really escape.

5. Conclusion

We found that even though the exception 4ow and control 4ow are in general
intertwined in SML programs, the two analyses could be safely and cost-e!ectively
decoupled. For cases where exceptions carry functions (i.e., where control 4ow analysis
needs exception analysis) our control 4ow analysis uses a crude approximation to assure
its safety against the decoupling. Our early experimental evidence suggests that this
separation is not detrimental to the accuracy of the exception analysis, while it makes
the analysis signi7cantly faster than the earlier methods. We are optimistic that we are
near to a right balance of the cost-accuracy performance.

We showed the safety of our exception analysis (constraint system .3) in two steps,
using two intermediate systems (.1 and .2). This safety proofs were done by showing
the consistencies between the three constraint systems. We used the 7xpoint induction
for continuous functions that were derived from the constraint rules [4]. Our method
may be seen as a kind of abstract interpretation [3]. This paper’s technique for enlarging
the constraint granularity and proving its consistency with smaller-grained constraint
systems can be applied to other analysis problems where the data to analyze are sparse
in programs.

We are currently working on analyzing SML modules in isolation, which will be
the last thing to make the analysis realistic.

Acknowledgements

We thank Dave MacQueen for his encouragement and keen interest in this work.

References

[1] A. Aiken, N. Heintze, Constraint-based program analysis, Tutorial ACM Symp. on Principles of
Programming Languages, January 1995.

[2] Ariane 5: Flight 501 Failure. http:==www.esrin.esa.it=htdocs=tidc=Press=Press96=ariane5rep.html, July
1996.

[3] P. Cousot, R. Cousot, Abstract interpretation: a uni7ed lattice model for static analysis of programs
by construction or approximation of 7xpoints, ACM Symp. on Principles of Programming Languages,
1977, pp. 238–252.

[4] P. Cousot, R. Cousot, Compositional and inductive semantic de7nitions in 7xpoint, equational, constraint,
closure-condition, rule-based and game-theoretic form, Proc. 7th Internat. Conf. on Computer-Aided
Veri7cation, Lecture Notes in Computer Science, Vol. 939, Springer, Berlin, 1995, pp. 293–308.

[5] M. Fahndrich, A. Aiken, Making set-constraint program analyses scale, Workshop on Set Constraints,
August 1996.

K. Yi, S. Ryu / Theoretical Computer Science 277 (2002) 185–217 217

[6] N. Heintze, Set based program analysis, Ph.D. Thesis, Carnegie Mellon University, October 1992.
[7] N. Heintze, Set based analysis of ML programs, Tech. Report CMU-CS-93-193, Carnegie Mellon

University, July 1993.
[8] N. Heintze, J. Ja!ar, A decision procedure for a class of set constraints, Tech. Report CMU-CS-91-110,

Carnegie-Mellon University, February 1991.
[9] N. Heintze, D. McAllester, Linear-time subtransitive control 4ow analysis, Proc. SIGPLAN Conf. on

Programming Language Design and Implementation, June 1997, pp. 261–272.
[10] S. Jagannathan, A. Wright, Flow-directed inlining, Proc. SIGPLAN Conf. on Programming Language

Design and Implementation, May 1996, pp. 193–205.
[11] S. Jagannathan, S. Weeks, A. Wright, Type-directed 4ow analysis for typed intermediate languages,

Proc. 4th Internat. Static Analysis Symp., Lecture Notes in Computer Science, Vol. 1302, Springer,
Berlin, 1997, pp. 232–249.

[12] R. Milner, A theory of type polymorphism in programming, J. Comput. System Sci. 17 (1978) 348–375.
[13] R. Milner, M. Tofte, R. Harper, D. MacQueen, The De7ntion of Standard ML (Revised), MIT Press,

Cambridge, MA, 1997.
[14] J. Palsberg, M.I. Schwartzbach, Safety analysis versus type inference, Inform. and Comput. 118 (1)

(1992) 128–141.
[15] E. Ruf, Partitioning data4ow analyses using types, ACM Symp. on Principles of Programming

Languages, January 1997, pp. 15–26.
[16] O. Shivers, Control-4ow analysis of higher-order languages, Ph.D. Thesis, Carnegie Mellon University,

May 1991, Tech. Report CMU-CS-91-145.
[17] J.E. Stoy, Denotational Semantics: the Scott-Strachey Approach to Programming Language Theory, MIT

Press, Cambridge, MA, 1977.
[18] Y.M. Tang, P. Jouvelot, Separate abstract interpretation for control-4ow analysis, Proc. Theoretical

Aspect Comput. Sci., Lecture Notes in Computer Science, Vol. 789, Springer, Berlin, 1994,
pp. 224–243.

[19] M. Tofte, Type inference for polymorphic references, Inform. and Comput. 89 (1990) 1–34.
[20] K. Yi, Compile-time detection of uncaught exceptions for Standard ML programs, Proc. 1st Internat.

Static Analysis Symp., Lecture Notes in Computer Science, Vol. 864, Springer, Berlin, 1994,
pp. 238–254.

