
Science of Computer Programming 58 (2005) 141–178

www.elsevier.com/locate/scico

Static insertion of safe and effective memory reuse
commands into ML-like programs✩

Oukseh Leea,∗, Hongseok Yangb, Kwangkeun Yib

aDepartment of Computer Science & Engineering, Hanyang University, Ansan Gyeonggi 426-791,
Republic of Korea

bSchool of Computer Science & Engineering, Seoul National University, Sillim-9-dong Gwanak-gu,
Seoul 151-742, Republic of Korea

Received 23 October 2003; received in revised form 31 August 2004; accepted 17 February 2005
Available online 24 May 2005

Abstract

We present a static analysis that estimates reusable memory cells and a source-level
transformation that adds explicit memory reuse commands into the program text. For benchmark
ML programs, our analysis and transformation system achieves a memory reuse ratio from 5.2% to
91.3% and reduces the memory peak from 0.0% to 71.9%. The small-ratio cases are for programs
that have anumber of data structures that are shared. For other cases, our experimental results are
encouraging in terms of accuracy and cost. Major features of our analysis and transformation are: (1)
polyvariant analysis of functions by parameterization for the argument heap cells; (2) use of multiset
formulas in expressing the sharings and partitionings of heap cells; (3) deallocations conditioned
by dynamic flags that are passed as extra arguments to functions; (4) individual heap cells as the
granularity of explicit memory reuse. Our analysis and transformation system is fully automatic.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Program analysis; Program transformation; Type system; Compile-time garbage collection

✩ Lee and Yi were supported by the Brain Korea 21 (2003–2004)of Korean Ministry of Education and Human
Resource Development; Lee was supported by the research fund of Hanyang University (HY-2004-G); Yang was
supported by R08-2003-000-10370-0 from the Basic Research Program of the Korea Science and Engineering
Foundation; and Yi was supported by KoreaResearch Foundation KRF-2003-041-D00528.∗ Corresponding author.

E-mail addresses:oukseh@hanyang.ac.kr (O. Lee), hyang@ropas.snu.ac.kr (H. Yang),
kwang@cse.snu.ac.kr (K. Yi).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.02.007

http://www.elsevier.com/locate/scico

142 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

1. Overview

Our goal is to automatically insert explicit memory reuse commands into ML-like
programs so that they do not blindly request memory when constructing data. We
present a static analysis and a source-level transformation system that automatically adds
explicit memory reuse commands into the program text. The explicit memory reuse is
accomplished by inserting explicit memory-free commands right before data-construction
expressions. Because the unit for deallocation and allocation is an individual cell, such
deallocation and allocation sequences can beimplemented as memory reuses.1

Example 1. Function call “insert i l” returns a new list where integeri is inserted into
its position in the sorted listl.

fun insert i l =
case l of [] => i::[] (1)

| h::t => if i<h then i::l (2)
else h::(insert i t) (3)

Let us assume that the argument listl is not used after a call toinsert. If we program
in C, we can destructively add one node fori into l so that theinsert procedure should
consume only one cons-cell. Meanwhile, the ML program’s line(3) will allocate as many
new cons-cells as that of the recursive calls. Knowing that listl is not used any longer, we
can reuse the cons-cells froml:

fun insert i l =
case l of [] => i::[]

| h::t => if i<h then i::l
else let z = insert i t

in (free l; h::z) (4)

In line (4), “free l” will deallocate the single cons-cell pointed to byl. The very next
expression’s data construction “::” will reuse the freed cons-cell. �

1.1. Related works

The type systems [25,24,2] based on linear logic fail to achieve theExample 1case
because variablel is used twice.Kobayashi [10], and Aspinall and Hofmann [1] overcome
this shortcoming by using more fine-grained usage aspects, but their systems still reject
Example 1because variablesl andt are aliased at line(2)–(3). They cannot properly
handle aliasing: for “let x=y in e” where y points to a list, this list cannot in general
be reused ate in their systems. Moreover, Aspinall and Hofmann did not consider an
automatic transformation for reuse. Kobayashi provides an automatic transformation, but
he requires the memory system to manage a reference counter for every heap cell.

Deductive systems like separation logic [9,16,17] and the alias-type system [18,26] are
powerful enough to reason about shared mutable data structures, but they cannot be used

1 The drawback of this approach might be that the memory reuse “bandwidth” is limited by the data-
construction expressions in the program text. But our experimental results show that such a drawback is imaginary.

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 143

for our goal; they are not automatic. They need the programmer’s help as regards memory
invariants for loops or recursive functions.

The region-based memory managements [23,22,4,5,7] use a fixed partitioning strategy
for recursive data structures, which is either implied by the programmer’s region
declarations or hardwired inside the region-inference engine [20,21]. Since every heap
cell in a single region has the same lifetime, this “pre-determined” partitioning can be too
coarse; for example, transformations like the one inExample 1are impossible.

Blanchet’s escape analysis [3] andours are both relational, covering the same class of
relations (inclusion and sharing) among memoryobjects; the difference is in the relation’s
targets and the deallocation’s granularity. His relation is between memory objects linked
from program variables and their binding expression’s results. Ours is between memory
objects linked from any two program variables. His deallocation is at the end of a
let or function body. Transformations like the one inExample 1are impossible in his
system. Harrison’s [8] and Mohnen’s [14] escape analyses have a similar limitation: the
deallocation is at the end of the function body.

1.2. Our solution

The features of our analysis and transformation are:

• Partitioning of heap cells is pivoted by two axes: by structures (e.g. heads and tails
for lists, roots and subtrees for trees) and by set exclusions (e.g. cells A excluding B).
This double-axis partitioning is expressive enough to isolate proper reusable cells from
others.

• Sharing information among heap cells is maintained, in order to find the properties
of disjointness between two partitions of heap cells. An analysis result consists of
terms called “multiset formulas”. A multiset formula symbolically manifests an abstract
sharing relation between heap cells.

• The parameterized analysis result of a function is instantiated at each function call, in
order to finalize the disjointness properties for the function’s input and output. This
polyvariant analysis is done without re-analyzing a function body multiple times.

• Dynamic flags are inserted into functions in order to condition their memory-free
commands on their call sites. Dynamic flags are simple boolean expressions.

Our contribution is a cost-effective automatic analysis and transformation for fine-
grained memory reuses for recursive/algebraic data structures in ML-like programs. Our
experimental results show that for small to large ML benchmark programs the memory
reuse ratio ranges from 5.2% to 91.3%. The small-ratio cases expose that our analysis
and transformation system is weak for programs that have too prevalent sharings among
memory cells. Other than for those few cases,our experimental results are encouraging
in terms of accuracy and cost: the reuse ratio ranges from 10.6% to 91.3% and the
analysis cost ranges from about 400 to 4500 lines per second. The limitation is that we
only consider ML-like immutable recursive data and a first-order monomorphic language
without memory-free commands.

Section 1.3intuitively presents the features ofour method for an example program.
Section 2defines the core of the target language, which consists of the source language plus

144 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

explicit memory reuse commands.Section 3presents the key abstract domain (memory-
types) for our analysis.Section 4shows, for the same example as inSection 1.3, a more
detailed explanation on how our analysis and transformation system works.Section 5
proves our analysis and transformation correct.Section 6showsour experimental results
and concludes.

1.3. Exclusion among heap cells and dynamic flags

The accuracy of our algorithm depends on how precisely we can separate the two sets
of heap cells: cells that are safe to deallocate and others that are not. If the separation is
blurred, we find few deallocation opportunities.

For a precise separation of two such groups of heap cells, we have found that the
standard partitioning by structures (e.g. heads and tails for lists, roots and subtrees for trees)
is not enough. We need to refine the partitions using the notion of exclusion. Consider a
function that builds a tree from an input tree. Let us assume that the input tree is not used
after the call. In building the result tree, we want to reuse the nodes of the input tree.
However, we cannot free every node of the input if the output tree shares some of its parts
with the input tree. In that case, we can free only those nodes of the input that arenotparts
of the output. A concrete example is the followingcopyleft function. Both its input and
its output are trees. The output tree’s nodes along its leftmost path are separate copies from
the input tree and the rest are shared with the input tree.

fun copyleft t =
case t of

Leaf => Leaf
| Node (t1,t2) => Node (copyleft t1, t2)

TheLeaf andNode are the binary tree constructors.Node needs a heap cell that contains
two fields to store the locations for the left and right subtrees. The opportunity of memory
reuse is in thecase-expression’s second branch. When we construct the node after the
recursive call, we can reuse the pattern-matched node of the input tree, but only when the
node isnot included in the output tree. Our analysis maintains such a notion of exclusion.

Our transformation insertsfree commands that are conditioned on dynamic flags
passed as extra arguments to functions. These dynamic flags make different call sites to
the same function have different deallocation behaviors. By ourfree commands insertion,
the abovecopyleft function is transformed to

fun copyleft [β, βns] t =
case t of

Leaf => Leaf
| Node (t1,t2) => let p = copyleft [β ∧ βns, βns] t1

in (free t when β; Node (p,t2))

Flagβ is true when the argumentt to copyleft can be freed inside the function. Hence
thefree command is conditioned on it: “free t when β”. By the recursive calls, all the
nodes along the leftmost path of the input will be freed. The analysis with the notion of
exclusion informs us that, in order for thefree to be safe, the nodes must be excluded

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 145

SYNTAX

Type τ ::= tree | tree → tree
Boolean Expression b::= β | true| false| b ∨ b | b ∧ b | ¬b

Storable Value a ::= Leaf | l
Value v ::= a | x | fix x [β1, β2] λx.e

Expression e ::= v value
| Node (v, v) allocation
| free v when b deallocation
| case v (Node (x, y) => e1) (Leaf => e2) match
| v [b1, b2] v application
| let x = e in e binding

OPERATIONAL SEMANTICS

h ∈ Heaps �= Locations
fin→ {(a1, a2) | ai is a storable value}

f ∈ FreedLocations �= ℘(Locations)

k ∈ Continuations �= {(x1, e1) . . . (xn, en) | xi is a variable andei an expression}
(Node (a1, a2), h, f, k) � (l ,h ∪ {l �→ (a1, a2)}, f, k)

wherel does not occur in(Node (a1, a2), h, f, k)

(free l when b, h, f, k) � (Leaf, h, f ∪ {l } , k) if b⇔ true, l 	∈ f, andl ∈ dom(h)

(free l when b, h, f, k) � (Leaf, h, f, k) if b 	⇔ true
(case l (Node(x1, x2) => e1) (Leaf => e2), h, f, k) � (e1 {a1/x1, a2/x2} , h, f, k)

whereh(l) = (a1, a2) andl 	∈ f
(case Leaf (Node(x1, x2) => e1) (Leaf => e2), h, f, k) � (e2, h, f, k)

((fix y [β1, β2] λx.e) [b1, b2] v, h, f, k) �

(e{(fix y [β1, β2] λx.e)/y, b1/β1, b2/β2, v/x} , h, f, k)

(let x = e1 in e2, h, f, k)� (e1, h, f, (x, e2) · k)

(v, h, f, (x, e) · k) � (e{v/x} , h, f, k)

Fig. 1. The syntax and the semantics.

from the output. They are excluded if they are not reachable from the output. They are not
reachable from the output if the input tree has no sharing between its nodes, because some
parts (e.g.t2) of the input are included in the output. Hence the recursive call’s actual flag
for β is β ∧ βns, where flagβns is true when there is no sharing inside the input tree.

2. Language

Fig. 1 shows the syntax and semantics of the source language: a typed call-by-value
language with first-order recursive functions, data constructions (memory allocations), de-
constructions (case matches), and memory deallocations. All expressions are in theK -
normal form [20,10]: every non-value expression is bound to a variable bylet. Each
expression’s value is either a tree or a function.A tree is implemented as linked cells in the
heap memory. The heap consists of binary cells whose fields can store locations or aLeaf

146 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

value. For instance, a treeNode (Leaf, Node (Leaf, Leaf)) is implemented in the heap by
two binary cellsl andl ′ suchthatl containsLeaf andl ′, andl ′ containsLeaf andLeaf.

The language has three constructs for the heap:Node(v1, v2) allocates a node cell in the
heap, and sets its contents byv1 andv2; acase-expression reads the contents of a cell; and
free v when b deallocates a cellv if b holds. A function has two kinds of parameters: one
for boolean values and the other for an input tree. The boolean parameters are only used
for the guards forfree commands inside the function.

Throughout the paper, to simplify the presentation, we assume that all functions are
closed, and we consider only well-typed programs in the usual monomorphic type system,
with types being tree or tree→tree. In our implementation, we handle higher-order
functions, and arbitrary algebraic data types, not just binary trees. We explain more on
this in Section 6.

The algorithm in this paper takes a program that does not have locations,free
commands, or boolean expressions for the guards. Our analysis analyzes such programs,
then automatically inserts thefree commands and boolean parameters into the program.

3. Memory-types: an abstract domain for heap objects

Our analysis and transformation system use what we callmemory-typesto estimate
the heap objects for expression values. Memory-types are defined in terms of multiset
formulas.

3.1. Multiset formula

Multiset formulas are terms that allow us to abstractly reason about disjointness
and sharing among heap locations. We call them “multiset formulas” because, formally
speaking, their meanings (concretizations) are multisets of locations, where a shared
location occurs multiple times.

The multiset formulasL express sharing configuration inside heap objects via the
following grammar:

L ::= A | R | X | π.root | π.left | π.right | ∅ | L �̇ L | L ⊕̇ L | L\̇L

Symbols A, R, X andπ are just names for multisets of locations.A symbolically denotes
the heap cells in the input tree of a function,X the newly allocated heap cells,R the heap
cells in the result tree of a function, andπ the heap objects whose roots and left/right
subtrees are respectivelyπ.root, π.left, andπ.right. ∅ means the empty multiset, and the
symbol ⊕̇ constructs a term for a multiset-union. The “maximum” operator symbol�̇
constructs a term for the join of two multisets: termL �̇ L ′ means including two occur-
rences of a location just ifL or L ′ already means including two occurrences of the same
location. The termL\̇L ′ means multisetL excluding the locations included inL ′.

Fig. 2 shows theformal meaning ofL in terms of abstract multisets: a function from
locations to the lattice{0, 1,∞} ordered by0 � 1 � ∞. Note that we consider only good
instantiationsη of nameX, A, andπ in Fig. 2. Thepre-order forL is

L1 � L2 iff ∀η. goodEnv(η) �⇒ [[L1]]η � [[L2]]η.

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 147

SEMANTICS OF MULTISET FORMULAS

lattice Occurrences �= {0,1,∞}, ordered by0 � 1 � ∞
lattice MultiSets �= Locations → Occurrences, ordered pointwise

For allη mappingX, A, R, π.root,π.left, andπ.right toMultiSets,

[[∅]]η �= ⊥
[[V]]η �= η(V) (V is X, A, R, π.root,π.left, or π.right)

[[L1 �̇ L2]]η �= [[L1]]η � [[L2]]η
[[L1 ⊕̇ L2]]η �= [[L1]]η ⊕ [[L2]]η

[[L1\̇L2]]η �= [[L1]]η \ [[L2]]η
where

⊕ and\ : MultiSets × MultiSets → MultiSets

S1 ⊕ S2
�= λl . if S1(l)=S2(l)=1 then∞ elseS1(l) � S2(l)

S1 \ S2
�= λl . if S2(l) = 0 thenS1(l) else0

REQUIREMENTS ON GOOD ENVIRONMENTS

goodEnv(η)
�= for all different namesX andX′ and allA,

η(X) is asetdisjoint from bothη(X′) andη(A); and
for all π ,

η(π.root) is asetdisjoint from bothη(π.left) andη(π.right)

SEMANTICS OF MEMORY-TYPES FORTREES

[[〈L ,µ1,µ2〉]]treeη
�= {〈l ,h〉 | h(l) = (a1, a2) ∧ [[L]]η l � 1 ∧ 〈ai , h〉 ∈ [[µi]]treeη }

[[L]]treeη
�=


〈l ,h〉

∣∣∣∣∣∣∣
l ∈ dom(h)∧
∀l ′. let n = number of different paths froml to l ′ in h

in (n ≥ 1 ⇒ [[L]]η l ′ � 1) ∧ (n ≥ 2 ⇒ [[L]]η l ′ = ∞)




∪ {〈Leaf, h〉 | h is a heap}

Fig. 2. The semantics of multiset formulas and memory-types for trees.

3.2. Memory-types

Memory-types are given in terms of the multiset formulas. We define memory-typesµτ

for value-typeτ using multiset formulas:

µtree ::= 〈L, µtree, µtree〉 | L
µtree→tree ::= ∀A.A → ∃X.(L, L)

A memory-typeµtree for a tree-typed value abstracts a set of heap objects. A heap object
is a pair〈a, h〉 of a storable valuea and a heaph that contains all the reachable cells
froma. Intuitively, it represents a tree reachable froma in h whena is a location;otherwise,

148 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

it representsLeaf. A memory-type iseither in astructuredor collapsedform. A structured
memory-type is a triple〈L, µ1, µ2〉, and its meaning (concretization) is a set of heap
objects〈l , h〉 suchthat L, µ1, andµ2 abstract the locationl and the left and right subtrees
of 〈l , h〉, respectively. A collapsed memory-type is more abstract than a structured one. It
is simply a multiset formulaL, andits meaning (concretization) is a set of heap objects
〈a, h〉 suchthat L abstracts every reachablelocation and its sharing in〈a, h〉. The formal
meaning of memory-types is inFig. 2.

During our analysis, we switch between a structured memory-type and a collapsed
memory-type. We can collapse a structured one via thecollapse function:

collapse(〈L, µ1, µ2〉) �= L �̇ (collapse(µ1) ⊕̇ collapse(µ2))

collapse(µ)
�= µ (for collapsedµ)

Note that when combiningL andcollapse(µ1) ⊕̇ collapse(µ2), we use�̇ instead of⊕̇ :
this is because a root cell abstracted byL cannot be in the left or right subtree. We can also
reconstruct a structured memory-type from a collapsed one when given the splitting name
π :

reconstruct(L, π)
�= ({π �→ L} , 〈π.root, π.left, π.right〉)

reconstruct(µ, π)
�= (∅, µ) (for structuredµ)

The second component of the result ofreconstruct is a resulting structured memory-type
and the first one is a record thatL is a collection ofπ.root,π.left, andπ.right. The pre-order
�tree for memory-types for trees is

L � treeL ′ iff L � L ′
〈L, µ1, µ2〉 � tree

〈
L ′, µ′

1, µ
′
2

〉
iff L � L ′, µ1 � treeµ′

1, andµ2 � treeµ′
2〈L, µ1, µ2〉 � treeL ′ iff collapse(〈L, µ1, µ2〉) � treeL ′

Note that this order is sound with respect to the semantics: ifµ1 � treeµ2, then
∀η.goodEnv(η) �⇒ [[µ1]]treeη ⊆ [[µ2]]treeη. The join of two memory-types is done
by an operator� that returns an upper bound2 of two memory-types. The operator� is
defined using the functioncollapse:

L1 � L2
�= L1 �̇ L2

〈L, µ1, µ2〉 � 〈L ′, µ′
1, µ

′
2

〉 �= 〈
L �̇ L ′, µ1 � µ′

1, µ2 � µ′
2

〉
L � 〈L ′, µ1, µ2

〉 �= L �̇ collapse
(〈

L ′, µ1, µ2
〉)

For a function typetree → tree, a memory-type describes the behavior of functions. It
has the form of∀A.A → ∃X.(L1, L2), which intuitively says that when the input tree has
the memory-typeA, the function can only access locations inL2 and its result must have a
memory-typeL1. Note that the memory-type does not keep track of deallocated locations
because the input programs for our analysis are assumed to have nofree commands.

2 The domain of memory-types for trees is not a lattice:the least upper bound of two memory-types does not
exist in general.

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 149

The nameA denotes all the heap cells reachablefrom an argument location, andX denotes
all the heap cells newly allocated in a function. Since we assume that every function is
closed, the memory-type for functions is always closed. The pre-order for memory-types
for functions is the pointwise order of its result partL1 andL2.

4. The free-insertion algorithm

We explain our analysis and transformation using thecopyleft example inSection 1.3:

fun copyleft t =
case t of

Leaf => Leaf (1)
| Node (t1,t2) => let p = copyleft t1 (2)

in Node (p,t2) (3)

We first analyze the memory usage of all expressions in thecopyleft program; then,
using the analysis result, we insert safefree commands into the program.

4.1. Step one: The memory usage analysis

Our memory usage analysis (shown inFig. 3) computes memory-types for all
expressions incopyleft. In particular, it givesthe memory-type∀A.A → ∃X.(A �̇ X, A)

to copyleft itself. Intuitively, this memory-type says that whenA denotes all the cells in
the argument treet, the application “copyleft t” may create new cells, namedX in the
memory-type, and returns atree consisting of cells inA or X; but it uses only the cells inA.

This memory-type is obtained by a fixpoint iteration (U-FUN). We start from the least
memory-type∀A.A → ∃X.(∅,∅) for a function. Each iteration assumes that the recursive
function itself has the memory-type obtained in the previous step, and the argument to the
function has the (fixed) memory-typeA. Under this assumption, we calculate the memory-
type and the used cells for the function body. To guarantee the termination, the resulting
memory-type and the used cells are approximated by “widening” after each iteration.

We focus on the last iteration step. This analysis step proceeds with five parametersA,
X2, X3, X, andR, andwith a splitting nameπ : A denotes the cells in the input treet, X2
and X3 the newly allocated cells at lines(2) and(3), respectively, X the set of all the
newly allocated cells incopyleft, andR the cells in the tree returned from the recursive
call “copyleft t1” at line (2); the splitting nameπ is used for partitioning the input
treet to its root, left subtree, and right subtree. With these parameters, we analyze the
copyleft function once more, and its result becomes stable, equal to the previous result
∀A.A → ∃X.(A �̇ X, A):

• Line (1) of the example: TheLeaf-branch is executed only whent is Leaf whose
memory-type is∅. So, we assume thatt’s memory-type is∅ when analyzing theLeaf-
branch (U-CASE).

The memory-type forLeaf is ∅, which says thatthe result tree ofLeaf-branch is
empty (U-LEAF andU-VALUE).

• Line (2) of the example: TheNode-branch is executed only whent is anon-empty tree.
We exploit this fact to refine the memory-typeA of t. We partition A into three parts:

150 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

Environment � ∈ {x | x is a variable} fin→ {µ | µ is a memory-type}
Bound B ∈ {V | V is R or π } fin→ {L | L is a multiset formula}

Substitution S ⊆ {L/V | V is X or A, andL is a multiset formula}

� � e : B, µ, L
Given environment � and expressione, we compute e’s
memory-typeµ and usageL with a bound B for newly
introducedRs andπs.

� � v : µ

� � v : ∅, µ,∅ (U-VALUE)
� � v1 : µ1 � � v2 : µ2 (freshX)

� � Node (v1, v2) : ∅, 〈X,µ1, µ2〉,∅ (U-NODE)

� � e1 : B1, µ1, L1
� ∪ {x �→ µ1} � e2 : B2, µ2, L2

� � let x = e1 in e2 : B1 ∪ B2, µ2, L1 �̇ L2
(U-LET)

(
B,
〈
L , µ′

1, µ′
2

〉) �= reconstruct(µ, π) (freshπ)
� ∪ {x �→ 〈

L ,µ′
1, µ′

2

〉
, x1 �→ µ′

1, x2 �→ µ′
2

}
� e1 : B1, µ1, L1

� ∪ {x �→ ∅} � e2 : B2, µ2, L2

� ∪ {x �→ µ} � case x (Node (x1, x2) => e1) (Leaf => e2) :
B1 ∪ B2 ∪ B, µ1 � µ2, L1 �̇ L2 �̇ L

(U-CASE)

� � v1 : ∀A.A → ∃X.(L1, L2) � � v2 : µ2
S �= [collapse(µ2)/A][X′/X] (freshX′, R)

� � v1 v2 : {R �→ SL1} , R,SL2
(U-APP)

� � v : µ Given environment� and valuev, we computev’s memory-typeµ.

x ∈ dom(�)

� � x : �(x)
(U-VAR)

� � Leaf : ∅ (U-LEAF)

µlfp
�= fix

(
λµ. ∀A.A → ∃X.(widenB(collapse(µ′)), widenB(L))

where{ f �→ µ, x �→ A} � e : B, µ′, L

)

� � fix f λx.e : µlfp
(U-FUN)

Fig. 3. Step one: the memory usage analysis.

the root cell namedπ.root, the left subtree namedπ.left, and the right subtree named
π.right, and record that their collection isA: π.root�̇ (π.left ⊕̇ π.right) = A. Thent1
andt2 haveπ.left andπ.right, respectively (U-CASE).

The next step is to compute a memory-type of the recursive call “copyleft t1”.
In the previous iteration’s memory-type∀A. A → ∃X.(A �̇ X, A) of copyleft, we
instantiateA by the memory-typeπ.left of the argumentt1, and X by the nameX2
for the newly allocated cells at line(2). The instantiated memory-type π.left →
(π.left �̇ X2, π.left) says that when applied to the left subtreet1 of t, the function

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 151

returns a tree consisting of new cells or the cells already in the left subtreet1, butuses
only the cells in the left subtreet1. So, the function call’s result has the memory-type
π.left �̇ X2, anduses thecells inπ.left. However, we use nameR for the result of the
function call, and record thatR is included inπ.left �̇ X2 (U-APP).

• Line (3) of the example: While analyzing line(2), we have computed the memory-
types ofp andt2, that is,R andπ.right, respectively. Therefore, “Node (p,t2)” has
the memory-type〈X3, R, π.right〉 whereX3 is a name for the newly allocated root cell
at line(3), R for the left subtree, andπ.right for the right subtree (U-NODE).

After analyzing the branches separately, we join the results from the branches (U-CASE).
The memory-type for theLeaf-branch is∅, and the memory-type for theNode-branch
is 〈X3, R, π.right〉. We join these two memory-types by first collapsing〈X3, R, π.right〉
to get X3 �̇ (R ⊕̇ π.right), and then joining the two collapsed memory-types
X3 �̇ (R ⊕̇ π.right) and∅. So, the function body has the memory-typeX3 �̇ (R ⊕̇ π.right).

How about the cells used bycopyleft? In theNode-branch of the case-expression, the
root cellπ.root of the treet is pattern-matched, and at the function call in line(2), the
left subtree cellsπ.left are used. Therefore, we conclude thatcopyleft uses thecells in
π.root�̇ π.left.

The last step of each fixpoint iteration is widening: reducing all the multiset formulas
into simpler yet more approximate ones (U-FUN). We widen the result memory-type
X3 �̇ (R ⊕̇ π.right) and the used cellsπ.root�̇ π.left with the recordsB(R) = π.left �̇ X2
andB(π) = A. In the following, each widening step isannotated with the rule names of
Fig. 4:

X3 �̇ (R ⊕̇ π.right)
� X3 �̇ ((π.left �̇ X2) ⊕̇ π.right) (B(R) = π.left �̇ X2) (W6)
= X3 �̇ (π.left ⊕̇ π.right) �̇ (X2 ⊕̇ π.right) (⊕̇ distributesover �̇) (W9)
� X3 �̇ A �̇ (X2 ⊕̇ π.right) (B(π) = A thusπ.left ⊕̇ π.right � A) (W7)
� X3 �̇ A �̇ (X2 ⊕̇ A) (B(π) = A thusπ.right � A) (W8)
= X3 �̇ A �̇ X2 �̇ A (A andX2 are disjoint) (W5)

Finally, by replacing all thenewly introducedXi s by a fixed nameX (W1) and by removing
redundantA andX, weobtainA �̇ X. By rules (W4&W3) in Fig. 4, π.root�̇ π.left for the
used cells is reduced toA.

The widening step ensures the termination of fixpoint iterations. It produces a memory-
type all of whose multiset formulas are in a reduced form and can only have free names
A andX. Note that there are only finitely many such multiset formulas that do not have a
redundant sub-formula, such asA in A �̇ A. Consequently, after the widening step, only
finitely many memory-types can be given to a function.

Although information is lost during the widening step, important properties of a
function still remain. Suppose that the result of a function is given a multiset formulaL
after the widening step. IfL does not contain the nameA for the input tree, the result tree
of the function cannot overlap with the input.3 The presence of⊕̇ and A in L indicates
whether the result tree has a shared sub-part. If neither⊕̇ nor A is present inL, the result

3 This disjointness property of the input and the result is related to the usage aspects 2 and 3 of Aspinall and
Hofmann [1].

152 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

Reduced Form LR ::= V | V ⊕̇ V | ∅ | L R �̇ L R (V is A or X)

widenB(L)
gives a formula in a reduced form such that the formula only
has free namesA and X, and isgreater than or equal toL when
B holds.

widenB(L)
�= S(reduceB(L)) (W1)

(S = {
X/X′ ∣∣ X′ appears inreduceB(L)

}
for the fixedX)

wherereduceB(L) uses the first available rule in the following:

reduceB(R)
�= reduceB(B(R)) (W2)

reduceB(π.o)
�= reduceB(B(π)) (W3)

reduceB(L1 �̇ L2)
�= reduceB(L1) �̇ reduceB(L2) (W4)

reduceB(L1 ⊕̇ L2)
�= reduceB(L1) �̇ reduceB(L2) (W5)

(if disjointB(L1, L2) ⇔ true wheredisjoint is defined inFig. 6)

reduceB(R ⊕̇ L)
�= reduceB(B(R) ⊕̇ L) (W6)

reduceB(π.o1 ⊕̇ π.o2)
�=
{

reduceB(B(π) ⊕̇ B(π)), if o1 = o2
reduceB(B(π)), otherwise

(W7)

reduceB(π.o ⊕̇ L)
�= reduceB(B(π) ⊕̇ L) (W8)

reduceB((L1 �̇ L2) ⊕̇ L3)
�= reduceB(L1 ⊕̇ L3) �̇ reduceB(L2 ⊕̇ L3) (W9)

reduceB((L1⊕̇L2) ⊕̇L3)
�=

reduceB(L1⊕̇L2) �̇ reduceB(L2⊕̇L3) �̇ reduceB(L3⊕̇L1) (W10)

reduceB(L)
�= L (for all otherL) (W11)

Fig. 4. The widening process.

tree cannot have shared sub-parts, and ifA is present but⊕̇ is not, the result tree can have
a shared sub-part only when the input has.4

4.2. Step two:free commands insertion

Using the result from the memory usage analysis, our transformation algorithm (shown
in Fig. 5) insertsfree commands, and adds boolean parametersβ andβns (called dynamic
flags) to each function. The dynamic flagβ says that acell in the argument tree can be
safely deallocated, andβns that no sub-parts of the argument tree are shared. We have
designed the transformation algorithm on the basis of the following principles:

(1) We insertfree commands right before allocationsbecause we intend to deallocate a
heap cell only if it can be reused immediately after the deallocation.

(2) We do not deallocate the cells in the result.

4 This sharing information is reminiscent of the “polymorphic uniqueness” in the Clean system [2].

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 153

Preservation Constraints E ⊆ {b ↪→ L | b is aboolean expression}

� v
(�,µ)
1 ⇒ v2

takes v1 annotated with the analysis result (�,µ), and produces
free-insertedv2.

� x ⇒ x
(I -VAR)

� Leaf ⇒ Leaf
(I -LEAF)

B, {¬β↪→A} , true� e ⇒ e′ : E
� fix f λx.(e(·,B,·,·))
⇒ fix f [β, βns] : λx.e′

(I -FUN)

B, E1, b � e(�,B′,µ,L)
1 ⇒ e2 : E2

takes an expression e1 annotated with the analysis
result (�,B′, µ, L), a bound B for free names,
and b and E1 that prohibit certain cells from be-

ing freed: b says that the result ofe1 should not be freed, and eachb′ ↪→ L ′ in E1
says that L ′ should not be freed whenb′ holds. The algorithm returns afree-
insertede2 andE2 whoseb′ ↪→ L ′ expresses thatL ′ is freed ine2 whenb′ holds.

� v ⇒ v′

B, C, b � v ⇒ v′: ∅ (I -VALUE)

¬∃x.�(x)=〈L , µ1, µ2〉 � v1 ⇒ v′
1 � v2 ⇒ v′

2

B, C, b � (Node(v1, v2))(�,·,·,·) ⇒ Node(v′
1, v′

2) :∅ (I -NOF)

∃x.�(x) = 〈L ,µ1, µ2〉 � v1 ⇒ v′
1 � v2 ⇒ v′

2

E ′ �= E ∪ {b ↪→ collapse(µ)} b′ �= freeCondB,E ′ (L)

B, E ,b � (Node(v1, v2))(�,·,µ,·)
⇒ (free x when b′; Node(v′

1, v′
2)) : {b′ ↪→ L

} (I -FREE)

B, C, b � e1 ⇒ e′
1 : E1 B, C, b � e2 ⇒ e′

2 : E2

B, E , b � case x (Node (x1, x2) => e1) (Leaf => e2)

⇒ case x (Node (x1, x2) => e′
1) (Leaf => e′

2) : E1 ∪ E2

(I -CASE)

B, E ∪ {true↪→ L , b ↪→ collapse(µ)} , false� e1 ⇒ e′
1 : E1

B, E ∪ E1, b � e2 ⇒ e′
2 : E2

B, C, b � let x = e1 in (e(·,·,µ,L)
2) ⇒ let x = e′

1 in e′
2 : E1 ∪ E2

(I -LET)

� v ⇒ v′ L
�= collapse(µ) b

�= freeCondB,E (L \̇R) bns
�= noSharingB(L)

B, E ,b′ � (x (v(�,µ)))(·,·,R,·) ⇒ x [b, bns] v′ : {b ↪→ L \̇R
} (I -APP)

freeCondB,E (L)
calculates a safe condition to freeL from the boundB for free
names and the constraintE that says when certain cells should
not be freed.

freeCondB,E (L)
�=
∧{¬b ∨ disjointB(L , L ′)

∣∣ (b ↪→ L ′) ∈ E
}

Fig. 5. Step two: the algorithm for insertingfree commands.

154 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

Our algorithm transforms thecopyleft function as follows:

fun copyleft [β, βns] t =
case t of Leaf => Leaf (1)

| Node (t1,t2) => let p = copyleft [β ∧ βns, βns] t1 (2)
in (free t when β; Node (p,t2)) (3)

Note that “e1; e2” is an abbreviation of “let x = e1 in e2” when x does not appear ine2.
The algorithm decides to passβ ∧ βns andβns in the recursive call(2) (rule I-APP).

To find the first parameter, we collect constraints about conditions for which heap cells
we should not free (E in I-APP). Then, the candidate heap cells to deallocate must be
disjoint from the cells to preserve. We derive such a disjointness condition, expressed by
a simple boolean expression (freeCondB,E (L\̇R) in I-APP). A preservation constraint has
the conditional form b ↪→ L: when b holds, we should not free the cells in multisetL
because, for instance, they have already been freed, or will be used later. For the first
parameter, we get two constraints “¬β ↪→ A” and “true↪→ X3 �̇ (R ⊕̇ π.right)” from the
algorithm in Fig. 5 (rules I-FUN and I-LET). The first constraint means that we should
not free the cells in the argument treet if β is false, and the second that we should not
free the cellsin the result tree of thecopyleft function. Now the candidate heap cells
to deallocate inside the recursive call’s body areπ.left\̇R (the heap cells fort1 excluding
those in the result of the recursive call). For each constraintb ↪→ L, the algorithm finds a
boolean expression which guarantees thatL andπ.left\̇R are disjoint ifb is true; then, it
takes the conjunction of all the boolean expressions found.

• For “¬β ↪→ A”, the algorithm in Fig. 6 returns false for the condition thatA and
π.left\̇R are disjoint:

disjointB(A, π.left\̇R)

= disjointB′(A, π.left) (excludingR) (D5)
= disjointB′(A, A) (π.root�̇ (π.left ⊕̇ π.right) = A) (D9)
= false (A = A) (D10)

where B = {
R �→ π.left �̇ X2, π �→ A

}
and B′ = {R �→ ∅, π �→ A}. We take

¬(¬β) ∨ false,equivalently,β.
• For “true↪→ X3 �̇ (R ⊕ π.right)”, the algorithm inFig. 6finds out thatβns ensures the

disjointness requirement:

disjointB(X3 �̇ (R ⊕̇ π.right), π.left\̇R)

= disjointB′ (X3 �̇ (R ⊕̇ π.right), π.left) (D5)
= disjointB′ (X3, π.left) ∧ disjointB′ (R, π.left) ∧ disjointB′ (π.right, π.left)

(D7&D8)
= disjointB′ (X3, A) ∧ disjointB′ (∅, π.left) ∧ noSharingB′ (A) (D9&D6&D4)
= true∧ true∧ βns (D1&D1&D11)

Thus the conjunctionβ ∧ βns becomes the condition for the recursive call body to free a
cell in its argumentt1.

For the second boolean flag in the recursive call(2), we find a boolean expression
that ensures no sharing of a sub-part inside the left subtreet1 (noSharingB(L) in I-APP).
We use the memory-typeπ.left of t1, and find a boolean expression that guarantees no

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 155

disjointB(L1, L2)
gives a condition that L1 and L2 are disjoint underB.
We apply the first available rule in the following:

disjointB(A, X)
�= true, anddisjointB(∅, L)

�= true (D1)

disjointB(X1, X2)
�= true (whenX1 	= X2) (D2)

disjointB(π.root, π.o)
�= true (wheno = left or right) (D3)

disjointB(π.left, π.right)
�= noSharingB(B(π)) (D4)

disjointB∪{R�→L}(L1\̇R, L2)
�= disjointB∪{R�→∅}(L1, L2) (D5)

disjointB(R, L)
�= disjointB(B(R), L) (D6)

disjointB(L1 �̇ L2, L3)
�= disjointB(L1, L3) ∧ disjointB(L2, L3) (D7)

disjointB(L1 ⊕̇ L2, L3)
�= disjointB(L1, L3) ∧ disjointB(L2, L3) (D8)

disjointB(π.o, L)
�= disjointB(B(π), L) (D9)

disjointB(L1, L2)
�= false (for otherL1 andL2) (D10)

noSharingB(L) gives acondition that L is asetunderB:

noSharingB(A)
�= βns (D11)

(whereβns is the second dynamic flag of the enclosing function)

noSharingB(L)
�= true (whenL = X, π.root, or∅) (D12)

noSharingB(π.o)
�= noSharingB(B(π)) (wheno = left or right) (D13)

noSharingB(R)
�= noSharingB(B(R)) (D14)

noSharingB(L1 �̇ L2)
�= noSharingB(L1) ∧ noSharingB(L2) (D15)

noSharingB(L1 ⊕̇ L2)
�=

noSharingB(L1) ∧ noSharingB(L2) ∧ disjointB(L1, L2) (D16)

noSharingB(L \̇R)
�= noSharingB(L) (D17)

Fig. 6. The algorithm for finding a condition for the disjointness.

sharing inside the multisetπ.left; βns becomes such an expression:noSharingB(π.left) =
noSharingB(A) = βns (D13 & D11).

The algorithm inserts afree command right before “Node (p,t2)” at line (3), which
deallocates the root cell of the treet (I-FREE). But thefree command is safe only in
certain circumstances: the cell should not already have been freed by the recursive call(2),
and the cell is neither freed nor used after the return of the current call. Our algorithm shows
that we can meet all these requirements if the dynamic flagβ is true; so, the algorithm picks
β as a guard for the insertedfree command. The process for findingβ is similar to the
one for the first parameter of the call(2). We first collect constraints about conditions for
which heap cells we should not free:

• we should not free cells that can be freed before (β ∧ βns ↪→ π.left\̇R),

156 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

SEMANTICS OF SAFETY CONSTRAINTS: η |� C

η |� SET(L) iff [[L]]η � λl .1
η |� L1#L2 iff ([[L1]]η) � ([[L2]]η) = ⊥
η |� L1 �set L2iff ([[L1]]η) � λl .1 � [[L2]]η
η |� L1 � L2 iff [[L1]]η � [[L2]]η
η |� E1 � E2 iff η |� L1 �set L2 whereLi = �̇ {L | (b ↪→ L) ∈ Ei , b 	⇔ false}
η |� true always
η |� b ⇒ C iff (b ⇔ false) ∨ (η |� C)

η |� C1 ∧ C2 iff (η |� C1) ∧ (η |� C2)

Fig. 7. The semantics of the safety constraints.

• we should not free the input cells whenβ is false (¬β ↪→ A), and
• we should not free cells that are included in the function’s result (true↪→ X3

�̇ (R ⊕̇ π.right)).

These three constraints are generated by rulesI-APP, I-FUN and I-FREE in Fig. 5,
respectively. From these constraints, we find a condition that the cellπ.root to free is
disjoint from those cells we should not free. We use the same process as was used for
finding the first dynamic flag of the call(2). The result isβ.

5. Algorithm correctness

The correctness of our analysis and transformation is proved via a type system for
safe memory deallocations. InSection 5.1, we introduce a memory-type system, and in
Section 5.2, we prove that our memory-type system is sound: every well-typed program
in the system does not access any deallocated heap cells. Then inSection 5.3, we
prove that programs resulting from our analysis and transformation are always well-
typed in the memory-type system. Since our transformation only insertsfree commands,
a transformed program’s computational behavior modulo the memory-free operations
remains intact.

5.1. The memory-type system

We use a safety constraint in our type system for the memory safety of programs. For
instance, consider that a function takes a tree as its input, deallocates all of its right subtree,
and then accesses its left subtree. For such a function, our type system deduces that its
input tree must have no shared sub-parts between its left and right subtrees. This judgment
is expressed by the following safety constraint:

p ::= SET(L) | L#L | L �set L | L � L | E � E
C ::= p | b ⇒ C | C ∧ C | true| false

The exact semantic definition ofC is in Fig. 7, andthe definition of the multiset formula
L is in Section 3.1. PredicateSET(L) means that a multiset formulaL is indeed a set

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 157

SYNTACTIC SUGARS

π � L
�= π.root �̇ (π.left ⊕̇ π.right) � L

PRECISE(〈L , µ1, µ2〉) �= SET(L) ∧ (L#collapse(µ1)) ∧ (L#collapse(µ2))

PRECISE(L)
�= true

E#L = L#E �= ∧{
b ⇒ L#L ′ ∣∣ (b ↪→ L ′) ∈ E

}
E1#E2

�= ∧{
b1 ∧ b2 ⇒ L1#L2

∣∣∣∣∣ (b1 ↪→ L1) ∈ E1,

(b2 ↪→ L2) ∈ E2

}

B �= ∧ {V � B(V) | V ∈ dom(B) }

L �tree L ′ �= L � L ′

〈L1, µ1, µ2〉 �tree
〈
L2, µ

′
1, µ′

2

〉 �= (L1 � L2) ∧ (µ1 �tree µ2) ∧ (µ′
1 �tree µ′

2)

〈L , µ1, µ2〉 �tree L ′ �= collapse(〈L , µ1, µ2〉) � L ′

L ′ �tree 〈L , µ1, µ2〉 �= false

µ � tree→treeµ′ �=
{

true, if they areα-equivalent,
false, otherwise.

µ � µ′ �=
{

µ �tree µ′, for memory-types for trees,
µ � tree→treeµ′, for memory-types for functions.

Fig. 8. The syntactic sugars of the safety constraints.

(i.e., a tree inL has no shared sub-part),L1#L2 means thatL1 andL2 are disjoint,L1 � L2
means that multisetL2 includes multisetL1, L1 �set L2 means that if we interpret them as
sets,L1 is a subset ofL2, i.e., every location inL1 is also inL2, andE1 � E2 means thatE2
says more deallocations thanE1 does. ConstraintC holdsif and only if for any substitution
S for the boolean variables,

∀η.goodEnv(η) �⇒ (η |� SC).

ConstraintC1 is stronger than constraintC2 (C1 ⇒ C2) if andonly if, for any substitutionS
for the boolean variables,

∀η.goodEnv(η) ∧ (η |� SC1) �⇒ (η |� SC2).

In Fig. 8, we define some notation and make it clear that the boundB (a map from names
to a multiset formula,Fig. 3) and the pre-order relation� tree (in Section 3.2) of memory-
types for trees are expressed in our constraints.

By using a safety constraint, we define the memory-types for functions as

µtree→tree ::= λβ.λβns.λA.∃V . (B, µtree, L, E) & C.

A function takes two boolean parametersβ and βns and onetree-typed value named
A. When constraintC is satisfied, the function can access only the heap cells inL, can

158 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

SUBSTITUTION

S ⊆ {L/V | V is A, X, R, π.root,π.left, or π.right, L is a multiset formula} ∪
{b/β | β is a boolean variable,b is aboolean expression}

where

supp(S) = {V | (L/V) ∈ S, V is A, X, or R} ∪
{π | (L/π.root), (L/π.left), or (L/π.right) ∈ S } ∪
{β | (b/β) ∈ S }

APPLYING A SUBSTITUTION

Sµtree =
{
SL , if µtree = L
〈SL ,Sµ1,Sµ2〉, if µtree = 〈L , µ1, µ2〉

Sµtree→tree = µtree→tree
S� = {id �→ Sµ | (id �→ µ) ∈ � }
SB =

{
{V �→ SL | (V �→ L) ∈ B } , if supp(S) ∩ dom(B) = ∅
S(∧V∈dom(B)V � B(V)), otherwise

SE = {Sb ↪→ SL | (b ↪→ L) ∈ E }

SC =




SET(SL), if C = SET(L)

(SL1) op(SL2), if C = L1 op L2 whereop = #, �set , or �
Sb ⇒ SC′, if C = b ⇒ C′
(SC1) ∧ (SC2), if C = C1 ∧ C2
C, if C = trueor false

Fig. 9. Substitution.

deallocate only those inE , and returns a result that has memory-typeµtree. SetV is the set
of new names that appear in the type, andB imposes conditions on those names. Since we
assume that every function is closed, we consider only closed memory-types: every name
or boolean variable is eitherβ, βns, A, or thenames inV .

We have a mapping from the memory-types in the algorithm to those in the memory-
type system:

T (µtree) = µtree
T (∀A.A → ∃X.(L1, L2)) = λβ.λβns.λA.∃ {X, R} .({R �→ L1} , R, L2,

{
β ↪→ A\̇R, true↪→ X\̇R

})
&(βns ⇒ SET(A))

T (�) = {x �→ T (�(x)) | x ∈ dom(�) }
Our plan of program transformation is manifest in this translation: (1) we do not deallocate
the heap cells in the result (A\̇R and X\̇R); (2) only whenβ is true we deallocate the
input tree (β ↪→ A\̇R); and (3)βns should indicate that the input has no shared sub-part
(βns ⇒ SET(A)).

The memory-type system is defined inFigs. 11–13. In the definition, we use
substitutions (Fig. 9) and the function “free” in Fig. 10 which gives a set of free names

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 159

FREE NAMES

free(L)=




{L} , if L = A, X, or R
{π} , if L = π.root, π.left, or π.right
free(L1) ∪ free(L2), if L = L1 �̇ L2, L1 ⊕̇ L2, or L1\̇L2
∅, if L = ∅

free(µtree) =
{

free(L), if µtree = L
free(L) ∪ free(µ1) ∪ free(µ2), if µtree = 〈L ,µ1, µ2〉

free(µtree→tree) =∅
free(�) =⋃ {free(µ) | (id �→ µ) ∈ � }
free(B) =⋃ {free(L) ∪ {V} | (V �→ L) ∈ B }
free(E)=⋃ {free(L) | (b ↪→ L) ∈ E }

free(C)=




free(L), if C = SET(L)

free(L1) ∪ free(L2), if C = L1 op L2 for op = #, �set , or �
free(C′), if C = b ⇒ C′
free(C1) ∪ free(C2), if C = C1 ∧ C2
∅, if C = trueor false

free(A1, . . . , An) =⋃i free(Ai)

Fig. 10. Free names.

in the arguments. Typing judgment “� � v : µ & C” for a valuev (in Fig. 11) means
that for a given memory-type environment�, valuev has memory-typeµ under constraint
C. A Leaf-value has a memory-type equal to or greater than∅ (LEAF). An identifier id (a
variable or a location) has a memory-type equal to or greater than�(id) (ID). The memory-
type of a function value follows the result of its function body (FUN).

Typing judgment “� � e : ∃V . (B, µ, L, E) & C” for an expressione (in Fig. 11) means
that for a given memory-type environment�, if constraintC is satisfied and the heap cells
in L andE are available, programe is safely evaluated to a result of memory-typeµ.
During the execution, the program may access the heap cells inL and may deallocate
those inE . A setV of new names is introduced in the derivation and satisfies constraintB.
“free v when b” has memory-type∅ and deallocatesv’s root cell whenb is true (FREE).
A Node-expression introduces a new nameX for its new heap cell, and has a memory-
type whose root isX (NODE). For “case v (Node (x1, x2) => e1) (Leaf => e2)”, when v

has memory-type∅ which means thatv is aLeaf-value, the result ofcase-expression is
the same as that of itsLeaf-branche2 (LCASE), and whenv has a structured memory-type
which means thatv is not aLeaf-value, the result ofcase-expression is the same as that
of its Node-branche1 (NCASE). A function application has the result of its function body
by replacing the formal parameterA, β, andβns by the actual argumentL, b, andbns,
respectively (APP). For an expression “let x = e1 in e2”, its memory-type is that ofe2,
it uses whate1 or e2 uses, it deallocates whate1 or e2 deallocates, and its constraint is, in
addition to those ofe1 ande2, that the heap cells freed bye1 do not overlap with those used
or freed bye2 (LET).

160 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

� � v : µ & C

C ⇒ ∅ � µ

� � Leaf : µ & C
(LEAF)

id = x or l id ∈ dom(�)

C ⇒ �(id) � µ

� � id : µ & C
(ID)

C ⇒ (λβ.λβns.λA.∃V. σ & C) � µ

{y �→ µ, x �→ A} � e : ∃V. σ & C

� � fix y [β, βns] λx.e : µ & C′ (FUN)

� � e : ∃V. σ & C whereσ = (B, µ, L , E)
Every bound name is fresh:
V ∩ free(�) = ∅.

� � v : 〈L , µ1, µ2〉 & C

� � free v when b :
∃∅. (∅,∅,∅, {b ↪→ L}) & C

(FREE)

� � vi : µi & C

� � Node (v1, v2) :
∃{X}. (∅, 〈X,µ1, µ2〉,∅,∅) & C

(NODE)

� � v : ∅ & C
� � e2 : ∃V. σ & C

� � case v

(Node (x1, x2) => e1)

(Leaf => e2) : ∃V. σ & C

(LCASE)

� � v : µ & C

� � v : ∃∅. (∅, µ,∅,∅) & C
(VALUE)

� � v1 : (λβ.λβns.λA.∃V. σ & C) & C′
� � v2 : L & C′ free(L) ∩ V = ∅
S �= {L/A, b/β, bns/βns}

� � v1 [b, bns] v2 : ∃V.Sσ & (SC ∧ C′)
(APP)

� � e1 : ∃V1. σ1 & C1
whereσ1 = (B, µ, L , E)

� ∪ {x �→ µ} � e2 : ∃V2. σ2 & C2
V1 ∩ V2 = ∅
� � let x = e1 in e2 :
∃V1 ∪ V2.((σ1 & C1); (σ2 & C2))

(LET)

� � v : 〈L ′, µ1, µ2
〉
& C

� ∪ {xi �→ µi } � e1 : ∃V. (B, µ, L ,E) & C

� � case v (Node (x1, x2) => e1)(Leaf => e2) : ∃V. (B, µ, L �̇ L ′, E)& C
(NCASE)

where
(σ1 & C1); (σ2 & C2)

�=
(B1 ∪ B2, µ2, L1 �̇ L2, E1 ∪ E2) & (C1 ∧ C2 ∧ (E1#L2) ∧ (E1#E2))

whenσi = (Bi , µi , Li , Ei).

Fig. 11. The memory-type system.

The memory-type system has five structural rules inFig. 12. We can conclude with
a greater result (WEAK). We can merge severalXi s into one nameX (MERGE). We
can introduce new nameπ by replacingL1, L2, and L3 by π.root, π.left, andπ.right,
respectively, and recording that the collection of π.root, π.left, andπ.right is equal to or
smaller than the collection ofL1, L2, andL3 (π INT). We can introduce new nameR by
replacingL by R in the judgment and recording thatR is equal to or smaller thanL (RINT).
We can analyze a program by separating two cases of a variable in the environment. The

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 161

� � e : ∃V. σ & C whereσ = (B, µ, L , E) Every bound name is fresh:
V ∩ free(�) = ∅.

� � e : ∃V ′. σ ′ & C′
V ′ ∩ free(C, σ) ⊆ V
(∃V ′. σ ′ & C′) � (∃V. σ & C)

� � e : ∃V. σ & C
(WEAK)

� � e : ∃V ∪ {Xi }.Sσ & SC
S �= {

(�̇i Xi)/X
}

Xi 	∈ free(σ, C) X, Xi 	∈ V

� � e : ∃V ∪ {X}. σ & C
(MERGE)

� � e : ∃V.Sσ & SC π 	∈ V
µ

�= 〈L1, L2, L3〉 PRECISE(µ)

S �= {L1/π.root, L2/π.left, L3/π.right}
� � e : ∃V ∪ {π}. (σ ∪ {π �→ collapse(µ)}) & C

(π INT)

� � e : ∃V.Sσ & SC S �= {L/R} R 	∈ V

� � e : ∃V ∪ {R}. (σ ∪ {R �→ L}) & C
(RINT)

� ∪ {x �→ 〈π.root, π.left, π.right〉} � e : ∃V. σ & C
� ∪ {x �→ ∅} � e : ∃V. σ & C π 	∈ V

� ∪ {x �→ µtree} � e : ∃V ∪ {π}. (σ ∪ {π �→ collapse(µtree)}) & C
(PRUNE)

where
σ1 ∪ B �= (B1 ∪ B, µ1, L1, E1)

(∃V1. σ1 & C1) � (∃V2. σ2 & C2) iff
V1 ⊇ V2, B1 ⇒ B2, andB1 ∧ C2 ⇒ C1 ∧ (µ1 � µ2) ∧ (L1 �set L2) ∧ (E1 � E2)

whenσi = (Bi , µi , Li , Ei).

Fig. 12. The structural rules of the memory-type system.

separation is when the variable has aLeaf-value or not. The result is the one where both
cases agree (PRUNE).

The memory-type system for a state is defined inFig. 13. A state(e, h, f, k) is well-
typed when each component is well-typed, the constraints (C1 ∧ C2) of expressione and
continuationk are satisfied, and it is safe to sequentially evaluatee andk when the heap
cells of locationsf are freed (STATE). Note that the side conditions make sure that the
freed heap cells of locationsf should be neither used nor freed bye or k (C(0,1) ∧ C(0,2))
and the heap cells freed bye should be neither used nor freed byk (C(1,2)). In rules (NIL)
and (CONT), we use a special identifier• for the argument of a continuation.

5.2. The memory-type system is sound

Weprove the soundness of the memory-type system by the syntactic approach [27]. The
key propositions are, as usual:

162 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

� � k : ∃V. σ & C whereσ = (B, µ, L ,E)
Every bound name is fresh:
V ∩ free(�) = ∅.

� ∪ {• �→ µ} � ε :
∃∅. (∅,∅,∅,∅)& C

(NIL)

� ∪ {x �→ µ} � e : ∃V1. σ1 & C1
whereσ1 = (B, µ1, L , E)

� ∪ {• �→ µ1} � k : ∃V2. σ2 & C2
V1 ∩ V2 = ∅

� ∪ {• �→ µ} � (x, e) · k :
∃V1 ∪ V2.((σ1 & C1); (σ2 & C2))

(CONT)

� h : � �
�= {

l1 �→ 〈
X1, µ(1,1), µ(1,2)

〉
, . . . , ln �→ 〈

Xn, µ(n,1), µ(n,2)

〉}
∀i 	= j . Xi 	= X j ∀i, j . µ(i, j)

�=
{

�(l), whena(i, j) = l
∅, whena(i, j) = Leaf

� {l1 �→ (a(1,1), a(1,2)), . . . , ln �→ (a(n,1), a(n,2))
} : �

(HEAP)

� � f : E ∀l i ∈ f.�(l i) = 〈
Xi , µi , µ

′
i

〉
� � f : {true↪→ Xi | l i ∈ f } (FREED)

� (e, h, f, k)

� h : � � � f : E0
� � e : ∃V1. σ1 & C1 whereσ1 = (B1, µ1, L1, E1)

� ∪ {• �→ µ1} � k : ∃V2. σ2 & C2 whereσ2 = (B2, µ2, L2, E2)

V1 ∩ V2 = ∅
B1 ∧ B2 ⇒ C1 ∧ C2 ∧ C(0,1) ∧ C(1,2) ∧ C(0,2) whereC(i, j) = Ei #L j ∧ Ei #E j

� (e, h, f, k)
(STATE)

where (σ1 & C1); (σ2 & C2)
�= (B1 ∪ B2, µ2, L1 �̇ L2, E1 ∪ E2)

& (C1 ∧ C2 ∧ (E1#L2) ∧ (E1#E2))

whenσi = (Bi , µi , Li , Ei).

Fig. 13. The memory-type system for states.

• subject reduction: if a well-typed state has a transition, the next state is also well-typed
(Proposition 1); and

• progress: there exists a transition from the well-typed state, or the well-typed state is
final (Proposition 2).

In order to achieve the above two key propositions, we need to establish several
lemmas:

• we can rename the names in our judgments (Lemma 1);
• we can substitute multiset formulas for free names, or boolean expressions for free

boolean variables in our judgments (Lemma 2);

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 163

• we can substitute values for program variables in our judgments when their memory-
types are the same (Lemma 3); and

• our typing derivation is monotonic (Lemma 4).

Lemma 1 (Fresh Names). For a memory-type environment�, an expression e, a setV
of names, a resultσ , and a constraintC, if � � e : ∃V . σ & C, then for a substitution
S = {

V ′/V
}

with V′ being a fresh name of the same kind as V ,S� � e :
∃{SV | V ∈ V }.Sσ & SC.

Proof. By structural induction on the derivation trees.�

We can apply a substitution to judgments only when the substitution respects the
conditions of good environments. Note that a substitution can violate the good environment
conditions; for instance,π.root andπ.left are disjoint in a good environment whereas
S(π.root) andS(π.left) can overlap each other whenS = {X/π.root, X/π.left}. Theside
conditions of substitution (b)–(d) inLemma 2are for preserving the conditions of good
environments.

Lemma 2 (Type Replacement). For constraintsC1, C2, andC, a memory-type environment
�, a valuev, an expression e, a memory-typeµ, a setV of names, and a resultσ , the
following are true:

(1) if C1 ⇒ C2, thenSC1 ⇒ SC2;
(2) if � � v : µ & C, thenS� � v : Sµ & SC; and
(3) if � � e : ∃V . σ & C holds andV ∩ free(S) = ∅, thenS� � Se : ∃V .Sσ & SC holds

with the same size of derivation tree; and the same lemma holds for continuation k,

whenS is either

(a) {L/R};
(b) {L1/π.root, L2/π.left, L3/π.right} wherePRECISE(〈L1, L2, L3〉) holds;
(c) {L/X} where L consists of fresh Xi sandSET(L) holds;
(d) {L/A} where L consists of fresh Xi s and Ai s; or
(e) {b1/β1, . . . , bn/βn}.
Proof. The proof is in [11]. �

We can replace a variable in judgments by a value when the variable and the value have
the same memory-type. The exception is that the memory-type is notprecise: a memory-
typeµ is not precise if and only ifµ is structured and its root and left/right sub-tree can be
overlapped; for instance,〈X1, X1, X2〉 is not precise because the root partX1 and the left
sub-treeX1 are overlapped. This exception is because we only have a pruning rulePRUNE

restricted for a variable: after replacing a variable by a value, since we cannot apply rule
PRUNEin the same way, we may not derive the same judgment.

Lemma 3 (Term Replacement). For a memory-type environment�, a variable x, values
v andv′, an expression e, memory-typesµ andµ′, a constraintC, a setV of names, and a
resultσ , the following are true:

(1) If � ∪ {x �→ µ} � v′ : µ′ & C and� � v : µ & C, then� � v′ {v/x} : µ′ & C.

164 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

(2) If � ∪ {x �→ µ} � e : ∃V . σ & C and� � v : µ & C, then� � e{v/x} : ∃V . σ & C
unlessv is a tree-typed identifier andPRECISE(µ) does not hold.

Proof. The proof is in [11]. �

Our typing derivation is monotonic. When a judgment holds with a memory-type
environment�, by using a stronger one than�, we can derive another judgment whose
result is stronger than the original one.

Lemma 4 (Monotonicity). For a memory-type environment�, a valuev, an expression e,
a memory-typeµ, a constraintC, a setV of names, and a resultσ , the following are true:

(1) If � � v : µ & C and C ⇒ �′ � �, there exists a memory-typeµ′ such that
�′ � v : µ′ & C andC ⇒ µ′ � µ.

(2) If
(a) C ⇒ �′ � �,
(b) � � e : ∃V . σ & C, and
(c) V ∩ free(�′) = ∅,
then there exist a resultσ ′ and a constraintC ′ suchthat �′ � e : ∃V . σ ′ & C ′ and
(∃V . σ ′ & C ′) � (∃V . σ & C). Moreover, the same lemma holds for continuation k,

whereC ⇒ �′ � � if and only if dom(�′) ⊇ dom(�) and for all id ∈ dom(�),
C ⇒ �′(id) � �(id).

Proof. The proof is in [11]. �

Proposition 1 (Subject Reduction). For states (e, h, f, k) and (e′, h′, f ′, k′), if �
(e, h, f, k) and(e, h, f, k) � (e′, h′, f ′, k′), wehave� (e′, h′, f ′, k′).

Proof. For each transition(e, h, f, k) � (e′, h′, f ′, k′) in Fig. 1, we derive �
(e′, h′, f ′, k′) from � (e, h, f, k). By (STATE),

� h : �, (1)

� � f : E0, (2)

V1 ∩ V2 = ∅, (3)

� � e : ∃V1. σ1 & C1 whereσ1 = (B1, µ1, L1, E1), (4)

� ∪ {• �→ µ1} � k : ∃V2. σ2 & C2 whereσ2 = (B2, µ2, L2, E2), and (5)

(B1 ∧ B2) ⇒ C1 ∧ C2 ∧ C(0,1) ∧ C(1,2) ∧ C(0,2) (6)

whereC(i, j) = Ei #L j ∧ Ei #E j . In order to avoid thecase that (4) ends withthe structural
rules (WEAK), (MERGE), (RINT), (π INT), and (PRUNE), we first prove that there is another
derivation tree for� (e, h, f, k) where (4) does not end with the structural rules. We prove
it by induction on the size of the derivation tree of (4):

• case (WEAK): : The assumption is that (4) is derived by (WEAK); thatis, there existV ′
1,

C ′
1, andσ ′

1 suchthat

� � e : ∃V ′
1. (B′

1, µ
′
1, L ′

1, E ′
1) & C ′

1, (7)

V ′
1 ∩ free(σ1, C1) ⊆ V1, (8)

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 165

V1 ⊆ V ′
1, (9)

B′
1 ⇒ B1, and (10)

B′
1 ∧ C1 ⇒ C ′

1 ∧ (µ′
1 � µ1) ∧ (L ′

1 �set L1) ∧ (E ′
1 � E1). (11)

We can assume thatV ′
1 \ V1 are fresh byLemma 1and (8). Then (3) and (9) imply that

V ′
1 ∩ V2 = ∅. (12)

(5) implies that

� ∪ {• �→ µ1} � k : ∃V2. σ2 & (C2 ∧ B′
1 ∧ B2). (13)

because
· whenk = ε, � ∪ {• �→ µ1} � ε : ∃∅. (∅,∅,∅,∅) & C for anyC, and
· whenk = (x, e) · k′, (5) has sub-judgment� ∪ {x �→ µ1} � e : ∃V . σ & C for some
V , σ andC. By (WEAK), � ∪ {x �→ µ1} � e : ∃V . σ & (C ∧ B′

1 ∧ B2). Then by
(CONT), we achieve (13).

(6), (10) and (11) imply that B′
1 ∧ B2 ⇒ µ′

1 � µ1. ThenB′
1 ∧ B2 ∧ C2 ⇒ � ∪{• �→ µ′

1

} � � ∪ {• �→ µ1}. (12) implies that free(µ′
1) ∩ V2 = ∅ because free(µ′

1) ⊆
V ′

1. Then byLemma 4, (13) implies that there existB′
2, µ′

2, L ′
2, E ′

2, andC ′
2 suchthat

� ∪ {• �→ µ′
1

} � k : ∃V2. (B′
2, µ

′
2, L ′

2, E ′
2) & C ′

2, (14)

B′
2 ⇒ B2, and (15)

B′
1 ∧ B2 ∧ C2 ⇒ C ′

2 ∧ (µ′
2 � µ2) ∧ (L ′

2 �set L2) ∧ (E ′
2 � E2). (16)

(6), (10), and (15) imply that

B′
1 ∧ B′

2 ⇒ B1 ∧ B2 ∧ C1 ∧ C2. (17)

(11), (16), and (17) imply that

B′
1 ∧ B′

2 ⇒
C ′

1 ∧ C ′
2 ∧ (L ′

1 �set L1) ∧ (E ′
1 � E1) ∧ (L ′

2 �set L2) ∧ (E ′
2 � E2). (18)

(6) and (17) imply that

B′
1 ∧ B′

2 ⇒ E0#L1 ∧ E0#E1 ∧ E0#L2 ∧ E0#E2 ∧ E1#L2 ∧ E1#E2. (19)

(18) and (19) imply that

B′
1 ∧ B′

2 ⇒ E0#L ′
1 ∧ E0#E ′

1 ∧ E0#L ′
2 ∧ E0#E ′

2 ∧ E ′
1#L ′

2 ∧ E ′
1#E ′

2. (20)

By (STATE), (1), (2), (7), (12), (14), (18), and (20) imply that� (e, h, f, k).
• case (RINT): The assumption is that (4) is derived by (RINT); thatis, whenS = {L/R},
V1 = V ′

1 ∪ {R}, andσ1 = σ ′
1 ∪ {R �→ L},

� � e : ∃V ′
1.Sσ ′

1 & SC1. (21)

By Lemma 2, wecan applyS to (5) and (6):

S� ∪ {• �→ Sµ1} � k : ∃V2.Sσ2 & SC2, and (22)

(SB1 ∧ SB2) ⇒ SC1 ∧ SC2 ∧ SC(0,1) ∧ SC(1,2) ∧ SC(0,2). (23)

166 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

Note that sinceR does not appear in� and E0, S� = � and SE0 = E0, that
is, SC(0,i) = E0#SLi ∧ E0#SEi . Then by (STATE), (1)–(3) and (21)–(23) imply that
� (e, h, f, k).

• case (π INT) and (MERGE): These cases are proved similarly to the case (RINT).
• case (PRUNE): (4) cannot be derived by (PRUNE) because dom(�) has only locations.

We prove by case analysis with the assumption that (4) does not end with the structural
rules.

• case (free l when b, h, f, k) � (Leaf, h, f ∪ {l } , k) whenl ∈ dom(h), l 	∈ f , and
b ⇔ true.: In this case, (4) is

� � free l when b : ∃∅. (∅,∅,∅, {true↪→ L}) & C1.

By (FREE), � � l : 〈L, µ1, µ2〉 & C1 for someµ1 and µ2. By (HEAP), �(l) =〈
X, µ′

1, µ
′
2

〉
for someX, µ′

1, andµ′
2, andby (ID), C1 ⇒ X � L. Since (6) implies

that∅ ⇒ C1, we haveX � L. By (FREED), (2) implies that

� � f ∪ {l } : E0 ∪ {true↪→ X} . (24)

By (LEAF) and (VALUE),

� � Leaf : ∃∅. (∅,∅,∅,∅) & C1. (25)

SinceE0 ∪ {true↪→ X} � E0 ∪ E1, (6) implies that

B1 ∧ B2 ⇒ (E0 ∪ {true↪→ X})#L2 ∧ (E0 ∪ {true↪→ X})#E2. (26)

Therefore by (STATE), (1), (3), (5), (6), and (24)–(26) imply that

� (Leaf, h, f ∪ {l } , k).

• case (e, h, f, k) � (e1 {a1/x1, a2/x2} , h, f, k) when h(l) = (a1, a2), l 	∈ f , and
e = case l (Node (x1, x2) => e1) (Leaf => e2): (4) is

� � e : ∃V1. (B1, µ1, L1, E1) & C1. (27)

By (HEAP), �(l) = 〈X, µ1, µ2〉 for some X, and preciseµ1 and µ2. Since it is
impossible to haveC ⇒ �(l) � ∅ for anyC, (27) is derived by (NCASE); thatis,

� ∪ {xi �→ µ′
i

} � e1 : ∃V1. (B1, µ1, L ′
1, E1) & C1, and (28)

� � l : 〈L, µ′
1, µ

′
2

〉
& C1, (29)

where L ′
1 �̇ L = L1. Since�(l) = 〈X, µ1, µ2〉, by (ID), (29) implies thatC1 ⇒

µi � µ′
1. By Lemma 4, (28) implies that

� ∪ {xi �→ µi } � e1 : ∃V1. (B1, µ1, L ′
1, E1) & C1. (30)

By (HEAP), (ID), and (LEAF), � � ai : µi & C1. Then byLemma 3, (30) implies that
� � e1 {a1/x1, a2/x2} : ∃V1. (B1, µ1, L ′

1, E1) & C1. By (WEAK),

� � e1 {a1/x1, a2/x2} : ∃V1. (B1, µ1, L1, E1) & C1. (31)

Then by (STATE), (1)–(3), (5), (6), and (30) imply that

� (e1 {a1/x1, a2/x2} , h, f, k).

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 167

• case (F [b, bns] v, h, f, k) � (e{b/β, bns/βns} {F/y} {v/x} , h, f, k) where F =
fix y [β1, β2] λx.e.: (4) is

� � F [b, bns] v : ∃V .Sσ & (SC ∧ C ′).

By (APP), whenS = {L/A, b/β, bns/βns},
� � fix y [β1, β2] λx.e : µ & C ′ whereµ = λβ.λβns.λA.∃V . σ & C, (32)

� � v : L & C ′, and (33)

free(L) ∩ V = ∅. (34)

By (FUN), (32) implies that{y �→ µ, x �→ A} � e : ∃V . σ & C. By (34) andLemma 2,
applyingS to the judgment,

{y �→ µ, x �→ L} � e{b/β, bns/βns} : ∃V .Sσ & SC.

By Lemma 4,

� ∪ {y �→ µ, x �→ L} � e{b/β, bns/βns} : ∃V .Sσ & SC.

By (32), (33), andLemma 3,

� � e{b1/β1, b2/β2} {F/y} {v/x} : ∃V .Sσ & (SC ∧ C ′). (35)

By (STATE), (1)–(3), (5), (6), and (35) imply that

� (e{b1/β1, b2/β2} {F/y} {v/x} , h, f, k).

The proofs for other cases are in [11]. �

Proposition 2 (Progress). If a state (e, h, f, k) is well-typed (i.e.,� (e, h, f, k)), then
(e, h, f, k) is final (i.e., e is a value and k is an empty continuationε), or there exists
a transition (e, h, f, k) � (e′, h′, f ′, k′) for some(e′, h′, f ′, k′).

Proof. We consider only the cases of memory errors; non-closed or ill-typed states in the
ordinary type system are straightforwardly rejected by our memory-type system.

• case (free l when b, h, f, k) whenb ⇔ true, l ∈ f , andl ∈ dom(h): Assume for a
contradiction that� (free l when b, h, f, k). By (STATE),

� h : �, (36)

� � f : E0, (37)

� � free l when b : ∃V . σ & C whereσ = (B, µ, L, E), and (38)

B ⇒ C ∧ (E0#E). (39)

As we did when we provedProposition 1, we can assume that (38) does not end with
the structural rules; that is, by (FREE), B = ∅, E = {

b ↪→ L ′}, and

� � l : 〈L ′, µ1, µ2
〉
& C

for someµ1 andµ2. By (ID), C ⇒ �(l) � 〈
L ′, µ1, µ2

〉
. By (HEAP) and (36), �(l) =〈

X, µ′
1, µ

′
2

〉
for some X, µ′

1, and µ′
2. SinceB = ∅, B ⇒ C, C ⇒ X � L ′, and

E = {
b ↪→ L ′}, andb ⇔ true, we can conclude that (39) implies thatE0#{true↪→ X}

168 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

holds. By (FREED) and (37), E0 has {true↪→ X}. Then our conclusion becomes
{true↪→ X}#{true↪→ X} whichdoes not hold.

• case (case l (Node (x1, x2) => e1) (Leaf => e2), h, f, k) when l ∈ f : Assume for a
contradiction that� (case l (Node (x1, x2) => e1) (Leaf => e2), h, f, k). By (STATE),

� h : �, (40)

� � f : E0, (41)

� � case l (Node (x1, x2) => e1) (Leaf => e2) : ∃V .(B, µ, L, E) & C, (42)

B ⇒ C ∧ (E0#{true↪→ L}). (43)

We can assume that (42) is derived by (NCASE); thatis,

� � l : 〈L, µ1, µ2〉
for some µ1 and µ2. By (ID), C ⇒ �(l) � 〈L, µ1, µ2〉. By (HEAP) and (40),
�(l) = 〈

X, µ′
1, µ

′
2

〉
for some X, µ′

1, and µ′
2. Since B ⇒ C and C ⇒

X � L, we can conclude that (43) implies thatB ⇒ E0#{true↪→ X}. By (FREED)
and (41), E0 has {true↪→ X}. Then our conclusion becomesB ⇒ {true↪→ X}#
{true↪→ X}; that is,B ⇒ X#X whichdoes not hold. �

Theorem 1 (Memory-Type Soundness). If a state(e, h, f, k) is well-typed in the memory-
type system (i.e.,� (e, h, f, k)), then (e, h, f, k) does not go to a stuck state:
(e, h, f, k) �∗ (v, h′, f ′, ε) for somev, h′, and f′, or a transition from(e, h, f, k) does
not terminate.

Proof. Assume for a contradiction that(e0, h0, f0, k0) is well-typed in the memory-type
system but it causes a memory error. Then we can prove that a faulty state can be well-
typed, which conflicts withProposition 2. Suppose a transition from(e0, h0, f0, k0) to a
faulty state(en, hn, fn, kn):

(e, h, f, k) � (e1, h1, f1, k1) � · · · � (en, hn, fn, kn).

We can prove that every(ei , hi , fi , ki) is well- typed by induction oni .

• casei = 0: The assumption is that� (e0, h0, f0, k0).
• casei > 0: By induction hypothesis,� (ei−1, hi−1, fi−1, ki−1). Sincethere exists a

transition(ei−1, hi−1, fi−1, ki−1) � (ei , hi , fi , ki), byProposition 1, � (ei , hi , fi , ki).

Therefore a well-typed state does not go to a stuck state.�

5.3. Transformed programs are well-typed

Now we prove that programs transformed by our algorithm do not cause any memory
error. There are two key propositions.

• Transformed expressions respect preservation constraints: our algorithm does not insert
any memory-free command that violates preservation constraints (Proposition 3).

• Transformed expressions are well-typed: for each transformed expression, there is a
corresponding judgment in the memory-type system which is based on the result of our
analysis and transformation (Proposition 4).

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 169

In order to achieve the above two key propositions, we first prove for two sub-routines of
the algorithm.

• One is freeCond in Fig. 5 which takes a boundB, a preservation constraintE , and
a multiset formulaL, and gives asafe condition for deallocating the heap cells inL
without violating preservation constraintE under boundB (Lemma 5).

• The other isreduce which takes a boundB and a multiset formulaL and gives a
multiset formula which is greater than or equal toL under boundB (Lemma 6).

Lemma 5. For a boundB, a preservation constraintE , andmultiset formulas L, L1, and
L2, whenCns = (βns ⇒ SET(A)), the following are true:

(1) (B ∧ Cns) ⇒ (noSharingB(L) ⇒ SET(L));
(2) (B ∧ Cns) ⇒ (disjointB(L1, L2) ⇒ L1#L2); and
(3) (B ∧ Cns) ⇒ ({

freeCondB,E (L) ↪→ L
}

#E
)
.

Proof. The proof is in [11]. �

Lemma 6. For a boundB and a multiset formula L,reduceB(L) gives a multiset formula
L R in a reduced form such thatB ⇒ L � L R.

Proof. The proof is in [11]. �

Proposition 3 (Transformed Expressions Respect Constraints). For a boundB, a preser-
vation constraintE , a boolean value b, and an expression e, if e is transformed to e′ by
the algorithm (i.e.,B, E, b � e(�,B′,µ,L) ⇒ e′ : E ′), then(B ∧ Cns) ⇒ E ′#E holds where
Cns = βns ⇒ SET(A).

Proof. We prove it by induction on the number of calls:

• case (I-VALUE andI-NOF): E ′ = ∅.
• case (I-FREE): Sinceb′ = freeCondB,E ′′(L) whereE ′′ = E ∪ {b ↪→ collapse(µ)}, by

Lemma 5, B ∧ Cns ⇒ {
b′ ↪→ L

}
#E ′′. ThereforeB ∧ Cns ⇒ {

b′ ↪→ L
}

#E also holds.
• case (I-CASE): By induction hypothesis,B ∧ Cns ⇒ Ei #E for i = 1 or 2. Then by

definition,B ∧ Cns ⇒ (E1 ∪ E2)#E also holds.
• case (I-LET): By induction,B ∧ Cns ⇒ E1#(E ∪ {true↪→ L, b ↪→ collapse(µ)}) and
B ∧ Cns ⇒ E2#(E ∪ E1); that is,B ∧ Cns ⇒ Ei #E for i = 1 or 2. Then by definition,
B ∧ Cns ⇒ (E1 ∪ E2)#E holds.

• case (I-APP): By Lemma 5, B ∧ Cns ⇒ {
b′ ↪→ L\̇R

}
#E . �

Our analysis and transformation system always gives well-typed programs in our
memory-type system. That is, for each transformed expression, there is a corresponding
judgment in the memory-type system which is based on the result of our analysis and
transformation.

Proposition 4 (Transformed Expressions are Well-Typed). The following are true:

(1) For a valuev, if the algorithm transformv to v′ (i.e.,�v(�,µ) ⇒ v′), then� � v :
µ & true holds.

170 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

(2) For a boundB0, a preservation constraintE0, a boolean value b, and an expression e,
if the algorithm transform e to e′ (i.e.,B0, E0, b � e(�,B,µ,L) ⇒ e′ : E), whenV is a
set of freshnames introduced during the analysis phase (i.e.,� � e : B, µ, L),
(a) when b= false, thereexistsC suchthat (B0 ∧ Cns) ⇒ C and

T (�) � e′ : ∃V . (B,T (µ), L, E) & C; and

(b) when b= true, there exists fresh R andC suchthat (B0 ∧ Cns) ⇒ C and

T (�) � e′ : ∃V .
(
B ∪ {R �→ collapse(µ)} , R, L, E ′)& C

where E ′ = (E\R) ∪ {true↪→ (�̇X∈V X)\̇R
}

and E\R
�= {

b ↪→ L\̇R | (b ↪→ L) ∈ E
}
.

Proof. In proof, we do notexplicitly put the translation functionT because it is clear from
the context whereT should appear.

• case (I-FUN/U-FUN): The assumption is that�(fix y λx.e)(�,µ) ⇒ (fix y λx.e′) is
derived by (I-FUN) and the last step of (U-FUN); thatis,

µ = ∀A.A → ∃X.(L1, L2) and (44)

B, {¬β ↪→ A} , true� e({ f �→µ,x �→A},B,µ′,L) ⇒ e′ : E (45)

where L ′ = collapse(µ′), L1 = S(reduceB(L ′)), L2 = S(reduceB(L)), S =
{X/X1, . . . , X/Xn}, andXi s are newXs in V . By induction hypothesis, (45) implies
that there existsC suchthat

{ f �→ µ, x �→ A} � e′ : ∃V ∪ {R} .(
B ∪ {R �→ L ′} , R, L, (E\R) ∪ {true↪→ (�̇i Xi)\̇R

})
&C (46)

B ∧ Cns ⇒ C. (47)

By Lemma 6,

B ⇒ (L ′ � reduceB(L ′)) ∧ (L � reduceB(L)). (48)

Note that these reduced forms consist of onlyA and Xi s in V . For a reduced
form L, when S ′ = {

(�̇i Xi)/X
}
, we have L � S ′(SL) becauseS ′S ={

(�̇i Xi)/X1, . . . , (�̇i Xi)/Xn
}
. Then (48) implies that

B ⇒ (L ′ � S ′L1) ∧ (L � S ′L2). (49)

By Proposition 3, (45) implies thatB ∧ Cns ⇒ E# {¬β ↪→ A}, and

E# {¬β ↪→ A} ⇒ E � (E\A) ∪ {β ↪→ A}
because
· whenβ = false,E# {A} ⇒ E = E\A, and
· whenβ = true, true⇒ E � (E\A) ∪ {true↪→ A}.

Then

E\R � ((E\A)\R) ∪ {β ↪→ A\̇R
}
. (50)

Moreover,E � {
true↪→ �̇ free(E)

}
and byLemma 6,

B ⇒ �̇ free(E) �set reduceB(�̇ free(E)).

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 171

Since the reduced form consists ofA or newXi s inV ,

reduceB(�̇ free(E)) �set A �̇ (�̇ Xi ∈V Xi).

Then (50) implies that

B ⇒ E\R � {
true↪→ ((A �̇ (�̇ Xi ∈V Xi))\̇A)\̇R, β ↪→ A\̇R

}
= S ′ {true↪→ X\̇R, β ↪→ A\̇R

}
(51)

becauseA#Xi . Then by (WEAK), (46), (47), (49), and (51) imply that

{ f �→ µ, x �→ A} � e′ : ∃V ∪ {R}.(
B ∪ {R �→ S ′L1

}
, R,S ′L2,S ′ {true↪→ X\̇R, β ↪→ A\̇R

})
& Cns.

By (MERGE),

{ f �→ µ, x �→ A} � e′ : ∃dom(B) ∪ {X, R}.(
B ∪ {R � L1} , R, L2,

{
true↪→ X\̇R, β ↪→ A\̇R

})
& Cns.

Since the result part has only free namesA, X, andR, by (WEAK),

{ f �→ µ, x �→ A} � e′ :
∃{X, R}. ({R �→ L1} , R, L2,

{
true↪→ X\̇R, β ↪→ A\̇R

})
& Cns.

By (FUN) and the definition ofT in Section 5.1, � � fix f λx.e′ : T (µ).
• case (I-FREE/U-NODE): The assumption is that whene = free x when b′;

Node(v′
1, v

′
2) which islet y = free x when b′ in Node(v′

1, v
′
2) for some freshy,

B0, E0, b � Node(v1, v2)
(�,∅,µ,∅) ⇒ e : {b′ ↪→ L

}
whereµ = 〈X, µ1, µ2〉 is derived by (I-FREE) and (U-NODE); thatis,

b′ = freeCondB0,E ′
0
(L), (52)

E ′
0 = E0 ∪ {b ↪→ collapse(µ)} , (53)

�(x) = 〈
L, µ′

1, µ
′
2

〉
for someµ′

1 andµ′
2, and (54)

�v
(�,µi)
i ⇒ v′

i . (55)

By induction hypothesis, (55) implies that� � v′
i : µi & true. By (NODE),

� � Node(v′
1, v

′
2) : ∃{X}. (∅, µ,∅,∅) & true.

Sincey is fresh, byLemma 4,

� ∪ {y �→ ∅} � Node(v′
1, v

′
2) : ∃{X}. (∅, µ,∅,∅) & true. (56)

Since�(x) = 〈
L, µ′

1, µ
′
2

〉
, by (ID), � � x : 〈L, µ′

1, µ
′
2

〉
& true. By (FREE),

� � free x when b′ : ∃∅. (∅,∅,∅,
{
b′ ↪→ L

}
) & true. (57)

By (LET), (56) and (57) imply that

� � e : ∃{X}. (∅, µ,∅,
{
b′ ↪→ L

}
) & true (58)

which proves forb = false.

172 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

Now we prove for b = true with C = (b′ ⇒ L#collapse(µ)). Since
C ⇒ {

b′ ↪→ L
} �set

{
b′ ↪→ L\̇collapse(µ)

}
andµ � collapse(µ), by (WEAK), (58)

implies that

� � e : ∃{X}. (∅, collapse(µ),∅,
{
b′ ↪→ L\̇collapse(µ)

)}
& C.

By (RINT),

� � e : ∃{X, R}. ({R �→ collapse(µ)} , R,∅,
{
b′ ↪→ L\̇R

})
& C.

By Lemma 5, (52) implies that B0 ∧ Cns ⇒ {
b′ ↪→ L

}
#E ′

0. Since E ′
0 includes

(b ↪→ collapse(µ)) andb = true,B0 ∧ Cns ⇒ C.

The proofs of other cases are in [11]. �

Theorem 2 (Algorithm Correctness). For every well-typed closed expression e, when e is
transformed to e′ by the memory usage analysis(∅ � e : B, µ, L) and thefree-insertion
algorithm(B,∅, false� e(∅,B,µ,L) ⇒ e′ : E), then expression e′ does not cause a memory
error.

Proof. By Proposition 4, ∅ � e′ : ∃V . (B, µ, L, E) & Cns for someV . By Lemma 2, we
can apply substitutionS = {∅/A} to the judgment. As a result,

∅ � e′ : ∃V . (SB,Sµ,SL,SE) & true.

By (HEAP), � ∅ : ∅. By (FREED), ∅ � ∅ : ∅. By (NIL), {• �→ µ} �
ε : ∃∅.(∅,∅,∅,∅) & true. Therefore by (STATE), � (e′,∅,∅, ε). Then byTheorem 1,
(e′,∅,∅, ε) does not go to a stuck state.�

6. Experiments

We experimented with the insertion algorithm with ML benchmark programs which use
various data types such as lists, trees, and abstract syntax trees:

program lines description

sieve 18 prime number computation (size=10000)

qsort 24 quick sort(size=10000)

merge 30 merging two ordered integer lists (size=10000)

msort 61 merge sort (size=10000)

queens 66 solving eight queen problem

mirage 141 an interpreter for a tiny non-deterministic programming language

life 169 “ life” from the SML/NJ [19] benchmark suite (loop=50)

kb 557 “knuth-bendix” from the SML/NJ [19] benchmarksuite

k-eval 645 an interpreter for a tiny imperative programming language

nucleic 3230 “nucleic” from the SML/NJ [19] benchmarksuite

We first pre-processed benchmark programs to monomorphic and closure-converted [13]
programs, and then applied the algorithm to the pre-processed programs.

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 173

program lines (1) totala (2) reusea (2)/(1) cost(sb)

sieve 18 161112 131040 81.3% 0.004
qsort 24 675925 617412 91.3% 0.007
merge 30 120012 59997 50.0% 0.007
msort 61 440433 390429 88.7% 0.019
queens 66 118224 6168 5.2% 0.017
mirage 141 208914 176214 84.4% 0.114
life 169 84483 8961 10.6% 0.113
kb 557 2747397 235596 8.6% 0.850
k-eval 645 271591 161607 59.5% 1.564
nucleic 3230 1616487 294067 18.2% 3.893

awords: the amount of total allocated heap cellsand reused heap cells by our transformation
b seconds: our analysis and transformation system is compiled by the Objective Caml 3.04 native

compiler [12], and executed in Sun Sparc 400 MHz, Solaris 2.7

Fig. 14. Analysis cost and reuse ratio.

We extended the presented algorithm to analyze and transform programs with more
features. (1) Our implementation supports more data constructors than justLeaf and
Node. It analyzes heap cells with different constructors separately, and it inserts twice as
many dynamic flags as the number of constructors for each parameter. (2) For functions
with several parameters, we made the dynamic flagβ also keep the alias information
of function parameters so that if two parameters share some heap cells, both of their
dynamic flagsβ are turned off. (3) For higher-order cases, we simply assumed the worst
memory-types for the argument functions. For instance, we just assumed that an argument
function, whose type istree → tree, has memory-type ∀A.A → ∃X.(L, L) where
L = (A ⊕̇ A) �̇ (X ⊕̇ X). (4) When we have multiple candidate cells for deallocation, we
choose one whose guard is weaker than the others. For incomparable guards, we choose
one arbitrarily.

The experimental results are shown inFig. 14. Our analysis and transformation system
achieves the memory reuse ratio (the fifth column) of 5.2% to 91.3%. In the table ofFig. 14,
the second column is the number of lines, the third column is the amount of heap cells
allocated during the execution of the original programs, the fourth the amount of heap
cells reused during the execution of the transformed programs, the fifth its ratio, and the
sixth the cost of our analysis and transformation. For the two cases whose reuse ratio is low
(queens andkb), we found that they have a number of data structures that are shared. The
kb program heavily uses a term-substitution function that can return a shared structure,
where the number of shares depends on an argument value (e.g. a substitution iteme/x has
everyx in the target term sharee). Other than for such cases, our experimental results are
encouraging in terms of accuracy and cost. The graph inFig. 14 indicates that the analysis
and transformation cost can be less than square in the program size in practice although
the worst-case complexity is exponential.

174 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

program reuse (A) memory (B) reduced (A − B)/A
ratio peaka peak

sieve (size=1000) 56.0% 690 300 56.5%
qsort (size=100) 81.0% 1189 334 71.9%
merge (size=500) 49.4% 1197 606 49.4%
msort (size=100) 82.5% 714 321 55.0%
queens (n=5) 8.3% 255 255 0.0%
mirage 84.4% 1398 1361 2.6%
life (loop=5) 10.6% 2346 1746 25.6%
kb (group rule) 12.7% 27125 26501 2.3%
k-eval 59.5% 1044 944 9.6%
nucleic 18.2% 103677 89352 13.8%

awords: the maximum number of live cells. It is profiled byour interpreter which has the same memory
layout as that of Objective Caml 3.04 compiler [12]. (A) is for the original program and(B) is for the
program transformed by our algorithm.

Fig. 15. The memory peak is reduced.

Our transformation reduces the memory peak from 0.0% to 71.9% (Figs. 15–17). The
memory peak is the maximum number of live cells during the program execution. In
Fig. 15, the second columnis the reuse ratio, the third is the memory peak of the original
programs, the fourth the memory peak of the transformed programs, and the fifth how much
the memory peak is reduced byour transformation. Forsieve, merge, qsort, andmsort,
both reuse ratios and peak reductions are high. Forqueens andkb, both reuse ratios and
peak reductions are low. But forlife andmirage, reuse ratios and peakreductions do
not match. Formirage, its reuse ratio is high(84.4%) whereas its peak reduction is low
(2.6%). This is because, as seen in the graph (f) ofFig. 16, the transformedmirage fails
to reduce several peaks in the second phase. Forlife, the situation is reversed. This is
because, as seen in the graph (e) ofFig. 16, it always reuses only those cells that contribute
to the memory peak.

7. Conclusion and future work

We havepresented a static analysis and a source-level transformation system that add
explicit memory reuse commands into the program text, and we have shown that they
effectively find memory reuse points.

We are currently implementing the analysis and transformation system inside our nML
compiler [15] to have it used in daily programming. The main issues in the implementation
are to reduce the runtime overhead of the dynamic flags and to extend our method to handle
polymorphism and mutable data structures. The runtime overhead of dynamic flags can be
substantial because, for instance, if a function takesn parameters and each parameter’s
type hask data constructors, thefunction hasto take 2× n × k dynamic flags according
to the current scheme. We are considering reducing this overhead by doing a constant

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 175

Fig. 16. The numbers of live memory cells from start to the end. The upper dotted lines are the original program’s
and the lower solid lines are those of the programs transformed by our algorithm.

propagation for dynamic flags;omitting some unnecessary flags; associating a single flag
with several data constructors of the same size; implementing flags via bit-vectors; and
duplicating a functionaccording to the different values of flags.

To extend our method for polymorphism, we need a sophisticated mechanism for
dynamic flags. For instance, a polymorphic function of type∀α. α → α can take a value

176 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

Fig. 17. The numbers of live memory cells from start to the end. The upper dotted lines are the original program’s
and the lower solid lines are those of the programs transformed by our algorithm.

with two constructors or one with three constructors. So, this polymorphic input parameter
does not fit in the current method because currently we insert twice as many dynamic flags
as the number of constructors for each parameter. Our tentative solution is to assign only
two flags to the input parameter of typeα and to take conjunctions of flags in a call site:
when a function is called with an input value with two constructors, instead of passing the
four dynamic flagsβ, βns, β ′, andβ ′

ns, we passβ ∧ β ′ andβns ∧ β ′
ns. For mutable data

structures, we plan to take a conservative approach similar to that of Gheorghioiu et al. [6]:
heap cells possibly reachable from modifiable cells cannot be reused.

Acknowledgments

Wethank anonymous referees and colleagues for comments and suggestions that helped
to improveour paper.

References

[1] D. Aspinall, M. Hofmann, Another type systemfor in-place update, in: Proceedings of the European
Symposium on Programming, in: Lecture Notes in Computer Science, vol. 2305, 2002, pp. 36–52.

O. Lee et al. / Science of Computer Programming 58 (2005) 141–178 177

[2] E. Barendsen, S. Smetsers, Uniqueness typing for functional languages with graph rewriting semantics,
Mathematical Structures inComputer Science 6 (1995) 579–612.

[3] B. Blanchet, Escape analysis: Correctness proof, implementation and experimental results, in: Proceedings
of the ACM Symposium on Principles of Programming Languages, 1998, pp. 25–37.

[4] K. Crary, D. Walker, G. Morrisett, Typed memory management in acalculus of capabilities, in: Proceedings
of the ACM Symposium on Principles of Programming Languages, 1999, pp. 262–275.

[5] D. Gay, A. Aiken, Language support for regions, in: Proceedings of the ACM Conference on Programming
Language Design and Implementation, 2001, pp. 70–80.

[6] O. Gheorghioiu, A. S̆alcianu, M. Rinard, Interprocedural compatibility analysis for static object
preallocation, in: Proceedings of the ACM Symposium on Principles of Programming Languages, 2003,
pp. 273–284.

[7] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, J. Cheney, Region-based memory management in
Cyclone, in: Proceedings of the ACM Conference onProgramming Language Design and Implementation,
2002, pp. 282–293.

[8] W.L. Harrison III, The interprocedural analysis and automatic parallelization of scheme programs, Lisp and
Symbolic Computation 2 (3–4) (1989) 179–396.

[9] S. Ishtiaq, P. O’Hearn, BI as an assertion language for mutable data structures, in: Proceedings of the ACM
Symposium on Principles of Programming Languages, 2001.

[10] N. Kobayashi, Quasi-linear types, in: Proceedings of the ACM Symposium on Principles of Programming
Languages, 1999, pp. 29–42.

[11] O. Lee, H. Yang, K. Yi, Correctness proof on an algorithm to insert memory reuse commands into ML-
like programs, Technical Memorandum ROPAS-2003-19, Programming Research Laboratory, School of
Computer Science & Engineering, Seoul National University.http://ropas.snu.ac.kr/memo, November 2003.

[12] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, J. Vouillon, The Objective Caml system release 3.06, Institut
National de Recherche en Informatique et en Automatique.http://caml.inria.fr, August 2002.

[13] Y. Minamide, G. Morrisett, R. Harper, Typed closure conversion, in: Proceedings of the ACM Symposium
on Principles of Programming Languages, 1996, pp. 271–283.

[14] M. Mohnen, Efficient compile-time garbage collection for arbitrary data structures, in: Proceedings of
Programming Languages: Implementations, Logics and Programs, in: Lecture Notes in Computer Science,
vol. 982, Springer-Verlag, 1995, pp. 241–258.

[15] nML programming language system, version 0.92b, Research On Program Analysis System, Seoul National
University. http://ropas.snu.ac.kr/n, April 2004.

[16] P. O’Hearn, J.C. Reynolds, H. Yang, Local reasoning about programs that alter data structures, in:
Proceedings of the Annual Conference of the EuropeanAssociation for Computer Science Logic, 2001,
pp. 1–19.

[17] J.C. Reynolds, Separation logic: A logic for sharedmutable data structures, in: Proceedings of the IEEE
Symposium on Logic in Computer Science, 2002.

[18] F. Smith, D. Walker, G. Morrisett, Alias types, in: Proceedings of the European Symposium on
Programming, in: Lecture Notes in Computer Science, vol. 1782, 2000, pp. 366–382.

[19] The Standard ML of New Jersey, version 110.0.7, Bell Laboratories, Lucent Technologies.
http://cm.bell-labs.com/cm/cs/what/smlnj, October 2000.

[20] M. Tofte, L. Birkedal, A region inference algorithm, ACM Transactions on Programming Languages and
Systems 20 (4) (1998) 734–767.

[21] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T.H. Olesen, P. Sestoft, Programming with regions in the
ML Kit (for version 4), IT University of Copenhagen.http://www.it-c.dk/research/mlkit, April 2002.

[22] M. Tofte, J.-P. Talpin, Region-based memory management, Information and Computation 132 (2) (1997)
109–176.

[23] M. Tofte, J.-P. Talpin, Implementation of the typed call-by-valueλ-calculus using a stack of regions, in:
Proceedings of the ACM Symposium on Principles of Programming Languages, 1994, pp. 188–201.

[24] D.N. Turner, P. Wadler, C. Mossin, Once upon a type, in: Proceedings of the International Conference on
Functional Programming and Computer Architecture, 1995, pp. 25–28.

[25] P. Wadler, Linear types can change the world!, in: M. Broy, C. Jones (Eds.), Programming Concepts and
Methods, North-Holland, Sea of Galilee, Israel, 1990.

http://ropas.snu.ac.kr/memo
http://caml.inria.fr
http://ropas.snu.ac.kr/n
http://cm.bell-labs.com/cm/cs/what/smlnj
http://www.it-c.dk/research/mlkit

178 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

[26] D. Walker, G. Morrisett, Alias types for recursive data structures, in: Proceedings of the Workshop on Types
in Compilation, in: Lecture Notes in Computer Science, vol. 2071, 2000, pp. 177–206.

[27] A. K. Wright, M. Felleisen, A syntactic approachto type soundness, Information and Computation 115 (1)
(1994) 38–94.

	Static insertion of safe and effective memory reuse commands into ML-like programs
	Overview
	Related works
	Our solution
	Exclusion among heap cells and dynamic flags

	Language
	Memory-types: an abstract domain for heap objects
	Multiset formula
	Memory-types

	The free-insertion algorithm
	Step one: The memory usage analysis
	Step two: free commands insertion

	Algorithm correctness
	The memory-type system
	The memory-type system is sound
	Transformed programs are well-typed

	Experiments
	Conclusion and future work
	Acknowledgments
	References

