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Abstract

We preent a static analysis that estimates reusable memory cells and a source-level
transformation thiaadds explicit memory reuse commands into the program text. For benchmark
ML programs, our analysis and transformation system achieves a memory reuse ratio from 5.2% to
91.3% and reduces the memory peak from 0.0% to 71.9%. The small-ratio cases are for programs
that have anumber of data structures that are shared. For other cases, our experimental results are
encouraging in terms of accuracy and cost. Majonfest of our analysis and transformation are: (1)
polyvariant analysis of functions by parameterization for the argument heap cells; (2) use of multiset
formulas in expressing the dfiregs and partitionings of heap cellg3) deallocations conditioned
by dynamic flags that are passed as extra arguments to functions; (4) individual heap cells as the
granularity of explicit memory reuse. Our anablysind trangirmation sysem is fully automatic.
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1. Overview

Our goal is to automatically insert explicit memory reuse commands into ML-like
programs so that they do not blindly request memory when constructing data. We
present a static analysis and a source-level transformation system that automatically adds
explicit memory reuse commands into the program text. The explicit memory reuse is
accomplished by inserting explicit memory4€reommands right before data-construction
expressions. Because the unit for deallocaténd allocation is an individual cell, such
deallocgion and allocation sequences canito@lemented as memory reusks.

Example 1. Function call “insert i 1”returnsa new list whee integeri is inserted into
its position in the sorted list.

fun insert i 1 =

case 1 of [] => 1i::[] @D)
| h::t => if i<h then i::1 (2)
else h::(insert i t) (3)

Let us assume that the argumentliss not used after a call tbnsert. If we program
in C, we can destructively add one node fointo 1 so that theinsert procedure should
consume only one cons-cell. Meanwhile, the ML program’s [ig will allocate as many
new cons-cells as that of the resive cdls. Knowing that list1 is not used any longer, we
can reuse the cons-cells fram

fun insert i 1 =
case 1 of [] => i::[]
| h::t => if i<h then i::1
else let z = insert i t
in (free 1; h::z) (4)

Inline (4), “free 1" will deallocate the singleans-cell pointed to by. The vey next
expression’s data construction ” will reuse the feed cons-cell. [

1.1. Related works

The type sgtems P5,24,2] based on linear logic fail to achieve thexample 1case
because variableis used twiceKobayashi10], and Aspinall and Hofmanri] overcome
this shortcoming by using more fine-grained usage aspects, but their systems still reject
Example 1because variables andt are aliased at lin€2)—(3). They cannot properly
handle aliasing: forTet x=y in €” wherey points to a list, this list cannot in general
be reused at in their systems. Momver, Asphall and Hofmann did not consider an
automatic transformation for reuse. Kobayigstovides an automatic transformation, but
he requires the memory system to manage a reference counter for every heap cell.
Deductive systems like separation log®1[6,17] and the &as-type systeml[8,26] are
powerful enough to reason about shared mutable data structures, but they cannot be used

1The drawlack of this approach might be that the memoeuse “bandwidth” is limited by the data-
construction expressions in the program text. But our expental results show that elna drawback is imaginary.
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for our goal; they are not automatic. They need the programmer’s help as regards memory
invariants for loops or recursive functions.

The region-based memory managemeB8224,5,7] use a fixed partitioning strategy
for recursive data structures, which isther implied by the programmer’s region
declarations or hardwired inside the region-inference end02]]. Since every heap
cell in a single region has the same lifetime, this “pre-determined” partitioning can be too
coarse; for example, transformations like the onExaample lare impossible.

Blanchet's escape analysi8][and ours are both relational, covering the same class of
relations (inclusion and sharing) among memoijects; the difference is in the relation’s
targets and the deallocation’s granularity. His relation is between memory objects linked
from program variables and their binding expression’s results. Ours is between memory
objects linked from any two program valles. His deallocation is at the end of a
let or function body. Transformations like the oneHixample lare impossible in his
system. Harrison’sd] and Mohnen’s 14] escape analyses have a similar limitation: the
deallocation is at the end of the function body.

1.2. Our solution
The features of our analysis and transformation are:

e Patitioning of heap cells is pivoted by two axes: by structures (e.g. heads and tails
for lists, roots and subtrees for trees) and by set exclusions (e.g. cells A excluding B).
This double-axis partitioning is expressiveceigh to isolate proper reusable cells from
others.

e Sharing information among heap cells is maintained, in order to find the properties
of disjointness between two partitions of heap cells. An analysis result consists of
terms called multiset formulas A multiset formula symbolically manifests an abstract
sharing elation between heap cells.

e The parameterized analysis result of a fiim is instantiated at each function call, in
order to finalize the disjointness profies for the function’s input and output. This
polyvariant analysis is done without realyzing a function body multiple times.

e Dynamic flags are inserted into funatis in order to condition their memory-free
commands on their call sites. Dynamic flags are simple boolean expressions.

Our contribution is a cost-edttive automatic analysis drtrangormation for fine-
grained memory reuses for recursive/algebdata structures in ML-like programs. Our
experimental results show that for small to large ML benchmark programs the memory
reuse ratio ranges from 5.2% to 91.3%. The small-ratio cases expose that our analysis
and transformation system is weak for programs that have too prevalent sharings among
memory cells. Other than for those few cases; experimental results are encouraging
in terms of accuracy and cost: the reuse ratio ranges from 10.6% to 91.3% and the
analysis cost ranges from about 400 to 4500 lines per second. The limitation is that we
only consider ML-like immutable recursive data and a first-order monomorphic language
without memory-free commands.

Section 1.3intuitively presents the features ofir method for an example program.
Section Adefines the core of the target language, which consists of the source language plus
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explicit memory reuse commandSection 3presents the key abstract domain (memory-
types) for our analysisSection 4shows, for the same example asSaction 1.3a more
detailed explanation on how our analysis and transformation system weeksion 5
proves our analysis and transformation corr&eiction 6showsour experimental results
and concludes.

1.3. Exclusion among heap cells and dynamic flags

The accuracy of our algorithm depends on how precisely we can separate the two sets
of heap cells: cells that are safe to deallocatd athers that are not. If the separation is
blurred, we find few ddication opportunities.

For a precise separation of two such groups of heap cells, we have found that the
standard partitioning by structures (e.g. heads and tails for lists, roots and subtrees for trees)
is not enough. We need to refine the partitions using the notion of exclusion. Consider a
function that builds a tree from an input tree. Let us assume that the input tree is not used
after the call. In building the result tree, we want to reuse the nodes of the input tree.
However, we cannot free every node of the input if the output tree shares some of its parts
with the input tree. In that case, we can free only those nodes of the input thattgrarts
of the output. A concrete example is the followiagpyleft function. Both its input and
its output are trees. The output tree’s nodes along its leftmost path are separate copies from
the input tree and the rest are shared with the input tree.

fun copyleft t =
case t of
Leaf => Leaf
| Node (t1,t2) => Node (copyleft ti, t2)

TheLeaf andNode are the binary tree constructolade needs a heap cell that contains

two fields to store the locations for the left and right subtrees. The opportunity of memory

reuse is in thecase-expression’s second branch. When we construct the node after the

recursive call, we can reuse the pattern-matched node of the input tree, but only when the

node isnotincluded in the output tree. Our analysis maintains such a notion of exclusion.
Our transformation insertéree commands that are conditioned on dynamic flags

passed as extra arguments to functions. These dynamic flags make different call sites to

the same function have different deallocation behaviors. By ege commands insertion,

the @ovecopyleft function is transformed to

fun copyleft [B, Bns] t =
case t of
Leaf => Leaf
| Node (t1,t2) => let p = copyleft [B A Bns, Bns] tl
in (free t when B; Node (p,t2))

Flag 8 is true when the argumentto copyleft can be freed inside the function. Hence
thefree command is conditioned on itftee t when B". By the recursive calls, all the
nodes along the leftmost path of the input will be freed. The analysis with the notion of
exclusion nforms us that, in order for théree to be safe, the nodes must be excluded
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SYNTAX
Type t = tree|tree — tree
Boolean Expression b:= g |true|false|bvb|bAb]|—b
Storable Value a::= Leaf ||
Value v = a|x|fix X [B1, B2] AX.€
Expression e = v value
| Node (v, v) dlocation
| freevwhenb dedlocation
| casev (Node (X, Y) =>ep) (Leaf => &) match
| wvl[bq,bo]v application
| letXx=eine binding

OPERATIONAL SEMANTICS

h € Heaps Locations ﬂl {(a1, @) | & is a storable value

f € FreedLocations g (Locations)

> e >

k € Continuations {(X1,€1)...(Xn, en) | X; is a variable an@; an expression

(Node (@1, @), h, f,k) ~ (1, hu{l — (a1,a2)}, f, k)
wherel does not occur itiNode (ap, ap), h, f, k)
(freel when b, h, f,k) ~s (Leaf,h, f U{l},k)ifbstrug | ¢ f, and € dom(h)
(freel when b, h, f, k) ~» (Leaf, h, f, k) if b & true
(case | (Node(Xq, Xp) =>eq1) (Leaf => &), h, f, k) ~ (e1{ay/xq, ay/x2}, h, f,Kk)
whereh(l) = (a1, ap) andl & f
(case Leaf (Node(X1, X2) =>e1) (Leaf =>ey), h, f,k) ~ (ep, h, f, k)
((fix y [B1, B2l Ax.€) [by, bp] v, h, f, k) ~»
(e{(fix y [B1, B2l 1X.€)/Y, b1/B1, b2/ B2, v/x}, h, f, k)
(let x=eg inep, h, f, k)~ (e, h, f, (X, &) - k)
(v, h, f,(x,e) -k) ~ (e{v/x}, h, f, k)

Fig. 1. The syntax and the semantics.

from the output. They are excluded if thereanot reachable from the output. They are not
reachable from the output if the input tree has no sharing between its nodes, because some
parts (e.gt2) of the input are included in the output. Hence the recursive call’s actual flag
for B is B A Bns, Where flagBns is true when there is no sharing inside the input tree.

2. Language

Fig. 1 shows the syntax and semantics of the source language: a typed call-by-value
language with first-order recursive functions, data constructions (memory allocations), de-
constructions (case matches), and mgmaediocations. All expessions are in th& -
normal form R0,10]: every non-value expression is bound to a variablelby. Each
expression’s value is either a tree or a functi@rtree is implenented as linke cells in the
heap memory. The heap consists of binary cells whose fields can store locatidnsadr a
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value. For infance, a tretiode (Leaf, Node (Leaf, Leaf)) is implemented in the heap by
two binary celld andl’ suchthatl containd.eaf andl’, andl’ containd.eaf andLeaf.

The language has three constructs for the higede (v1, v2) allocates a node cell in the
heap, and sets its contentsiyandv;; a case-expression reads the contents of a cell; and
free v when b deallocates a cell if b holds. A function has two kinds of parameters: one
for boolean values and the other for an input tree. The boolean parameters are only used
for the guards fofree commands inside the function.

Throughout the paper, to simplify the presentation, we assume that all functions are
closed, and we consider only well-typed programs in the usual monomorphic type system,
with types beingtree or tree—tree. In our implementation, we handle higher-order
functions, and arbitrary algebraic data types, not just binary trees. We explain more on
this in Section 6

The algorithm in this paper takes a program that does not have locatioas,
commands, or boolean expressions for the guards. Our analysis analyzes such programs,
then automatically inserts tiferee commands and boolean parameters into the program.

3. Memory-types. an abstract domain for heap objects

Our analysis and transformation system use what wenathory-typeso estimate
the heap objects for expression values. Memory-types are defined in terms of multiset
formulas.

3.1. Multiset formula

Multiset formulas are terms that allow us to abstractly reason about disjointness
and sharing among heap locations. We call them “multiset formulas” because, formally
speaking, their meanings (concretizations) are multisets of locations, where a shared
location occurs multiple times.

The multiset formulad. express sharing configuration inside heap objects via the
following grammar:

L == A|R| X |x.root| z.left| zright| #|LUL|LdL|L\L

Symbols A, R, X andrn are just names for multisets of locatio®ssymbolicdly denotes
the heap cells in the input tree of a functioX,the newly allocated heap cellR the heap
cells in the result tree of a function, andthe heap objects whoseats and left/right
subtrees are respectivety.root, z.left, andz.right. @ means the empty multiset, and the
symbol & constructs a term for a multiset-union. The “maximum” operator symbol
constructs a term for the join of two multisets: tetm’i L’ means including two occur-
rences of a location just if or L’ already means including two occurrences of the same
location. The terni\L’ means multiset. excluding the locations included ib'.

Fig. 2 shows theformal meaning ofL in terms of abstract multisets: a function from
locations to the lattic€0, 1, co} ordered by0 C 1 C oco. Note that we consider only good
instantiations) of nameX, A, andx in Fig. 2 Thepre-order forl is

L1 C Ly iff Vn.goodEnv(n) = [Lilln E [L2ln.
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SEMANTICS OF MULTISET FORMULAS

lattice Occurrences
lattice MultiSets

{0,1, 00}, ordered by0 C 1 C oo

A
A . —
= Locations — Occurrences, ordered pointwise

For alln mappingX, A, R, =.root, z.left, andx.right toMultiSets,

iy 2 1

[Vin A n(V) (Vis X, A, R, m.root,  left, or w.right)
IL1tiLoln 2 [Lyllyulilaly
[L16 Lally = [L1ln & [L2ly
[Lailaln 2 [Lyln\ [L20y

where
@ and\ : MultiSets x MultiSets — MultiSets
S ALif S (H=S(1)=1 thenoo else S (1) U S(I)
SI\S Al if (1) =0thenSi(l) else0

REQUIREMENTS ON GOOD ENVIRONMENTS

> 1>

goodEnv(n) éfor all different namesX and X’ and all A,
n(X) is asetdisjoint from bothn (X’) andn(A); and
for all =,
n(m.root) is asetdisjoint from bothy (rr.left) andr (z.righ?

SEMANTICS OF MEMORY-TYPES FORTREES

I(L.1e1.12) Ireen 2 ({1 h) [h(1) = (a1, @) A [LTn1 21 A (& h) € [ Tveen}
| € dom(h)A
[IL]]treen = vl’. let n = number of different paths frointo |’ in h
iNnh>1=[LInl"'32 1) A(n>2=[LInl' =o0)
U {(Leaf, h) |his a keap}

Fig. 2. The semantics of multiset formulas and memory-types for trees.
3.2. Memory-types

Memory-types are given in terms of the multiset formulas. We define memory-iypes
for value-typer usng multiset formulas:

Htree u= (L, ltree, Mtree) | L
Utree—tree := YA.A — IX.(L, L)

A memoly-type uiee for atree-typed value abstracts atsa heap objects. A heap object
is a pair(a, h) of a storable valu@ and a heagh that contains all the reachable cells
froma. Intuitively, it represats a tree reachable froain h whena is a locationptherwise,
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it represent&eaf. A memory-type iseither in astructuredor collapsediorm. A structured
memory-type is a triplgL, u1, u2), andits meaning (concretization) is a set of heap
objects(l, h) suchthatL, w1, andu, abstract the locatiohand the left and right subtrees
of (I, h), resgectively. A collapsed memory-type is m@abstract than a structured one. It
is simply a multiset formuld_, andits meaning (concretization) is a set of heap objects
(a, hy suchthat L abstracts every reachabieation and its sharing ifa, h). The famal
meaning of memory-types is ig. 2

During our analysis, we switch between taustured merory-type and a collapsed
memory-type. We can collapse a structured one viathlepse function:

L (1 (collapse (1) & collapse(i2))
m (for collapsedu)

collapse({L, p1, 42))
collapse(u)

> e

Note that when combiningy andcollapse(i11) & collapse(u2), we usell instead ofé :

this is because a root cell abstracted bgannot be in the left or right subtree. We can also
reconstruct a structured memory-type from a collapsed one when given the splitting name
T

({mr — L}, (m.root, n.left, w.right))
@, 1) (for strucuredu)

reconstruct(L, )
reconstruct(u, )

> e

The second component of the resulre€onstruct is a resulting structured memory-type
and the first one is a record thafs a collection ofr.root, .left, andr.right. The pre-order
Ciree for memory-types for trees is

LC freel’ iff LEL’
(L, p1, n2) & tree(L/, s M/2> ?ﬁ LT L', 41T treepty, anduz C yree ity
(L, 1, p2) E reel” iff collapse((L, w1, 1£2)) E treel’

Note that this order is sound with respect to the semanticSuifC yeeum2, then
Vn.goodEnv(n) = [u1llreen S [u2llireen. The join of two memory-types is done
by an operator that returns an upper bouhdf two memory-types. The operate# is
defined using the functiocollapse:

LiwLlo 2 Li0Ly
(L, i, ) WL, i) = (LOL, pa ), o @ )
Ly (L, n1, u2) 2 L collapse (L7, p1, p2))

For a function typetree — tree, a manory-type describes the behavior of functions. It
has the form o A.A — 3X.(L1, L2), which intuitively says that when the input tree has
the memoy-type A, the function can only access locationdigpand its result must have a
memory-typel ;. Note that the memory-type does not keep track of deallocated locations
because the input programs for our analysis are assumed to hafseaacommands.

2 The domain of memory-types for trees is not a lattitee least upper bound of two memory-types does not
exist in general.
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The nameA denotes all the heap cells reachdbten an argument location, antidenotes

all the heap cells newly allocated in a function. Since we assume that every function is
closed, the memory-type for functions is always closed. The pre-order for memory-types
for functions is the pointwise order of its result pagtandL.

4. The free-insertion algorithm

We explain our analysis and transformation using tb@yleft example inSection 1.3

fun copyleft t =
case t of

Leaf => Leaf ¢D)
| Node (t1,t2) => let p = copyleft ti (2)
in Node (p,t2) (3)

We first aralyze the memory usage of all expressions in ¢heyleft program; then,
using the analysis sellt, we insert saféree commands into the program.

4.1. Step one: The memory usage analysis

Our memory sage aalysis (shown inFig.3) conputes memory-types for all
expressions ircopyleft. In paticular, it givesthe memoy-typevVA.A — IX. (AL X, A)
to copyleft itself. Intuitively, this memory-type says that whéndenotes all the cells in
the agument tree:, the gplicaion “copyleft t” may create new cells, namedin the
memory-type, and returngigee consisting of cells il or X; butituses only the cells iA.

This memory-type is obtained by a fixpoint iteratian€UN). We start from the least
memory-type/ A.A — 3X.(0, ¥) for a function. Each iteration assumes that the recursive
function itself has the memory-type obtained in the previous step, and the argument to the
function has the (fixed) memory-tyge Under this assumption, we calculate the memory-
type and the used cells for the function bodyg.gluarantee the termination, the resulting
memory-type and the used cells are appmatied by “widening” after each iteration.

We focus on the last iteration step. This ayg$ step proceeds with five parametérs
X2, X3, X, andR, andwith a splitting namer: A denotes the cells in the input tregX»
and X3 the newly allocated cells at line®) and (3), resgectively, X the set of all the
newly dlocated cells incopyleft, andR the cells in the tree returned from the recursive
call “copyleft t1” at line (2); the splitting namer is used for partitioning the input
treet to its root, left subtree, andght subtree. With these parameters, we analyze the
copyleft function once more, and its result becomes stable, equal to the previous result
VA.A - IX.(AL X, A):

e Line (1) of the example: Thé&eaf-branch is executed only whenis Leaf whose
memory-type ig). So, we asume that’s memory-type isy when analyzing theeaf-
branch (-CASE).

The memory-type foLeaf is ¢, which sgs thatthe resul tree ofLeaf-branch is
empty U-LEAF anduU-VALUE).

e Line (2) of the example: Th#ode-branch is executed only wheris anon-empty tree.
We exploit this fact to refine the memory-typ& of t. We partition A into three parts:
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Envionment A {x | x is a variablg l” {u | uis a memoy-type}

€
Bound B € {V |VisRormz} Hl {L | L is a multiset formula
Substitution S < {L/V |V is X or A, andL is a multiset formula

Given enwronment A and expressiore, we conpute €'s
Ape: B u,lL memory-typen and usagel with a bound B for newly
introducedRs andrs.

AD>v:p A>vi:ur A>uvy:pur (freshX)
———— (U-VALUE) (U-NODE)
A>v:@,u, @ A > Node (vq, v2) : @, (X, uq, u2),

Arey: By, ulg
AUX > p1l>er:Ba, pug, Lo

A>letXx=e iney: BiUBy, up, L1lLy

(U-LET)

(B. (L. u). 1)) 2 reconstruct(u, ) (freshr)
AU X~ (L,,u,i,,u,’2>, Xy =y, Xo > phl e By, Ly
AU{XH— 0}>e: B2, uo, Lo

(U-CASE)
AU{X +— u} > case X (Node (X1, X2) =>€1) (Leaf =>e») :

BiUBoUB, uiWuo, L10LoliL
A>vy:YAA— IX.(L1, L) ADwvy:pun
S 2 [collapse(u2)/AlIX'/X]  (freshX’, R)

A>viv:{R+~ SL1},R,SLo

(U-APP)

A v:p | Given enironmentA and valuev, we conputev’s memory-typeu.

X € dom(A)

—— (U-VAR) —— (U-LEAF)
A X AX) A > Leaf :

A . VA.A — IX.(wideng(collapse(u’)), wideng(L))
Hifp = where{f — u, x> Aj>e: B, i/, L

(U-FUN)
A fix f Ax.e: wip

Fig. 3. Step one: the memory usage analysis.

the root cell named .root, the left subtree namedleft, and the mht subtree named
w.right, and record that their collection & .rootl (w.left & m.right) = A. Thent1
andt2 haver left andr.right, respectively§-CASE).

The next step is to compute a memory-type of the recursive eapyleft t1”.
In the previous iteration’s memory-typgA. A — IX.(AU X, A) of copyleft, we
instantiateA by the memory-typer.left of the agumentt1, and X by the nameX;
for the newly allocated cells at liné2). The instatiated menory-type z.left —
(.left 1 Xp, m.left) says that whn applied to the left subtregt of t, the function
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returns a tree coiging of new cells or the cells already in the left subtteebutuses
only the cells in the left subtregtl. So, the @inction call’s result has the memory-type
m.left L1 X5, anduses thecells inr.left. However, we use namR for the result of the
function call, and record tha is included inz.left (1 X, (U-APP).

e Line (3) of the example: Wife analyzing line(2), we hae conputed the memory-
types ofp andt2, that is, R andr.right, respectively. ThereforeNéde (p,t2)” has
the memoy-type (X3, R, m.right) whereXs is a name for the newly allocated root cell
at line (3), R for the left subtree, and.right for the right subtreeu-NODE).

After analyzing the branches separgisbe join the results from the branches-CASE).
The memory-type for th&eaf-branch is@, and the nemory-type for thelode-branch
is (X3, R, m.right). We join these two memory-types by first collapsits, R, 7.right)

to get X3zl (R& m.right), and then joining the two collapsed memory-types
X3 U1 (R& m.right) andg. So, the function body has the memory-ty)e 1 (R & m.right).

How about the cells used byopyleft? In theNode-branch of the case-expression, the
root cellz.root of the treet is pattern-matched, and at the function call in lif®, the
left subtree cellsr.left are used. Therefore, we conclude thapyleft uses thecells in
w.rootll m.left.

The last step of each fixpoint iteration is witing: reducing all the multiset formulas
into simpler yet meoe approximate onesu¢FuN). We widen the result memory-type
X3 U1 (R& m.right) and the used cells.rootLi rr.left with the record$3(R) = m.left (1 X5
andB(r) = A. In the following, each widening step &notated with the rule names of
Fig. 4

X3 (R& m.right

X3 Ui ((r.left (1 Xo) & m.right) (B(R) = m.left1 X5) (w6)
X3 U (r.left & m.right) I (Xo & m.righty (& distributesover 1) (w9)
X3 AU (Xo @ mright  (B(r) = Athusr.left® w.right= A) (w7)
X3 AL X & A) (B(w) = Athusr.rightC A) (w8)
XU AU Xo U A (A and X5 are digoint) (w5)

i in

Finally, by replacing dthe newly introducedX; s by a fixed nam& (w1) and ly removing
redundantA and X, weobtain A 1 X. By rules (wW4&w3) in Fig. 4, =.rootL = left for the
used cells is reduced tA.

The widening step ensures the termination of fixpoint iterations. It produces a memory-
type all of whose multiset formulas are in a reduced form and can only have free names
A and X. Note tha there are only finitely many such multiset formulas that do not have a
redundant sub-formula, such &sin A A. Consequently, after the widening step, only
finitely many menory-types can be given to a function.

Although information is lost during the widening step, important properties of a
function still remain. Suppose that the result of a function is given a multiset formula
after the widening step. If does not contain the namfefor the input tree, the result tree
of the function cannot overlap with the inptiThe presence of5 andA in L indicates
whether he result tree has a shared sub-part. If neitpenor A is presentirL_, the result

3 This disjointness property of theput and the result is related to the usage aspects 2 and 3 of Aspinall and
Hofmann f].
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Redewed Form lr:=V |V V |0|LRLULR (Vis Aor X)

- gives a formula in a reduced form such that the formula only
widenp(L) has free name# and X, and isgreater than or equal tb when
B holds.

wideng(L) 4 S(reduceg(L)) (wl)
(S = {X/X" | X" appears imeducep(L) } for the fixedX)

wherereduceg (L) uses the first available rule in the following:

reduceg(R) EY reduceg(B(R)) (w2)
reduceg(i.0) 2 reduceg(B(r)) (w3)
reduceg(Ly L)) 4 reducep (L) U reduceg (L) (w4)
reduceg(Ly & Lp) A reduceg(L1) U reduceg (L) (w5b)
(if disjointg(L1, L) < true wheralisjoint is defined inFig. 6)
reduceg(R® L) 4 reduceg(B(R) & L) (wW6)
reducep (.01 @ 7.0p) £ ::Sﬁzzgigg;? B, gtsénjlics)ze (W7)
reduceg(r.0d L) EY reduceg(B(r) & L) (w8)

reducep((L1UiLy) & Lg) 4 reducep (L & L3) Uireduceg(Lo d Lg)  (W9)
reduceg((L1®Ly) GLg) =

reduceg(L1&Ly) Ureduceg(LodLg) Lireduceg(Lazdly) (wl10)
reduceg(L) 2L (for all otherL) (w11)

Fig. 4. The widening process.

tree cannot have shared sub-parts, amlig present butd is not, the result tree can have
a shared sub-part only when the input Has.

4.2. Step twofree commands insertion

Using the result from the mempusage analysis, our transformation algorithm (shown
in Fig. 5) insertsfree commands, and adds boolean parametersdgns (cdled dynamic
flag9 to each function. The dynamic fla§ says that aell in the argument tree can be
safely dedocated, andsys that no sib-parts of the argument tree are shared. We have
designed the transformation algorithm on the basis of the following principles:

(1) We insertftree commands right before allocatiobecause we intend to deallocate a
heap cell only if it can be reusethimediately after the deallocation.
(2) We do not deallocatée cdls in the result.

4 This shaing information is reminiscent of the “pgorphic uniqueness” in the Clean systezh [
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Presrvation Constraints £ < {b<> L | bisaboolean expressign

takes vy annotated with the analysis resuliA (u), and produces
> v:(LA’“) = vy |free-insertedvy.

B, (=B A}, truep>e=¢€ : £
(1-FUN)

T:M( (I-VAR)|>Lf—:>Lf (I-LEAF) > fix f AX.(e('*B""))
- . = fix f [, Bngl : AX.€

’ takes an xpressione; annotated with the analysis
AB L
B, 51,b>e(1 N > result (A,B’,u, L), a bound B for free names,
and b and &; that prohibit certain cells from be-
ing freed: b says that the result o should not be freed, and eadii — L’ in &
says thatL’ should not be freed wherb’ holds. The algorithm returns &ree-
insertede, and&, whoseb’ < L’ expresses that’ is freed ine; whenb' holds.

>v=
(1-VALUE)

B.C,b>v=1v:0

—IXAMX)=(L, ug, u2) > vy =) > v =0p

(1-NOF)
B,C,br> (Node(vq, vz))(A""") = Node(v/l, v/z):@
IXCAX) = (L, p1, p2) > vp=>v] > vy
ghcub— collapse(n)} b’ 2 freeCondg ¢/ (L)
. (I-FREDB

B,E,b > (Node(vq, vp)) (& i)
= (free X when b’; Node(v}, v})) : {b — L}

B,.C.b>ep =€ :& BCbre=6€:8

(1-CASE)
B,E,b > case X (Node (X1, X2) =>€1) (Leaf => )
= case X (Node (X1, Xp) => e/l) (Leaf => efz) &1 UE
B, £ U {true— L, b collapse(n)} , falser> e; = € : &1
B,EU&Lb>e =68
(I-LET)

B,C,b|>1etx=elin(eg"’”’|‘)) = letX=€|in€,: E,UE

>v=1v L 2 collapse(n) b 2 freeCondgyg(L\R) bnsé noSharingg(L)
(1-APP)

B, > (x (A1) R) = x b bpsl v/ ¢ {b— LR}

freeCondys ¢ (L) calculates a safe condition to free from the boundB for free
B.& names and the constraigt that says when certain cells should

not be freed.

freeCondg g (L) 2 /\ {=b v disjointg(L, L") [(b— L") e £}

Fig. 5. Step two: the gbrithm for insertingtree commands.
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Our algorithm tansforms theopyleft function as dllows:

fun copyleft [B, fnsl t =

case t of Leaf => Leaf 1)
| Node (t1,t2) => let p = copyleft [B A fBns, Pns] tl (2)
in (free t when fB; Node (p,t2)) (3)

Note that ‘g1 ; €” is an abrevidion of “1et X = €1 in " when x does not appear iep.

The algorithm decides to pagsA Bns and Bns in the recursive cal(2) (rule I-APP).
To find the first parameter, we collect coratits about conditions for which heap cells
we should not free £ in 1-APP). Then, the candidate heap cells to deallocate must be
disjoint from the cells to preserve. We derive such a disjointness condition, expressed by
a dmple boolean expressiofreeCondBVg(L\ R) in 1-APP). A preservation constraint has
the conditonal formb < L: whenb holds, we should not free the cells in multidet
because, for instance, they have alreadgrbfreed, or will be used later. For the first
parameter, we get two constraintsg < A” and “true< Xz U (R n.right)” from the
algorithm inFig. 5 (rules 1-FUN andI-LET). The first constraint means that we should
not free the cells in the argument treéf g is false, and the second that we should not
free the celldn the result tree of theopyleft function. Now the candidate heap cells
to deallocate inside the recursive call's body arkeft\ R (the heap cells fot1 excluding
those in the result of the recursive call). For each constlaint L, the aborithm finds a
boolean expression which guarantees thaind.left\ R are disjoint ifb is true; hen, it
takes the conjunction of all the boolean expressions found.

e For “=g — A", the algorithm inFig. 6 returns false for the condition thah and
m.left\R are disjoint:

disjointz (A, .left\R)

= disjointg (A, r.left) (excluding R) (D5)
= disjointg (A, A) (r.rootll (m.left & m.right) = A) (p9)
= false (A=A (pl1l0)

where B = (R nlefti Xz, m — A} and B = (R @, 7 — Al. We take
—(—p) Vv false,equivalently,s.

e For “true— X3 I (R & m.right)”, the algorithm inFig. 6 finds out thaj,s ensures the
disjointness requirement:

disjointg (X3 U (R & m.right), 7.left\R)
= disjointg (X3 U (R & m.righ), 7 left) (D5)
disjointg (X3, 7.left) A disjointg/ (R, 7.left) A disjointg: (.right, .left)
(D7&D8)
disjointg (X3, A) A disjointg (4, 7.left) A noSharingg (A) (D9&D6&D4)
true A true A Bns (D1&D1&D11)

Thus the conjunctioB A Bns becomes the condition for the recursive call body to free a
cellin its argument 1.

For the second boolean flag in the recursive ¢a, we find a boolean expression
that ensures no shag of a sub-part inside the left subtree (noSharingz(L) in 1-APP).
We use he memory-typer.left of t1, and find a boolean expression that guarantees no
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gives a condtion that L1 and L, are disjoint underB.

disjointg(L1. L2) | \ye aply the first available rule in the following:

disjointg (A, X) 2 true, anddisjointg (4, L) 2 true 1)
disjointg (X1, X2) 2 true (whenXq # X2) (D2)
disjointg (;r.root, .0) 2 true (wheno = leftorright)y (D3)
disjointg (. left, w.right) 2 noSharingg(B(r)) (D4)
disjointz r. 11(L1\R. L2) 2 disjoints g (L1 L2) (05)
disjointg (R, L) 2 disjointz(B(R), L) (06)
disjointg(L1 ULy, L3) 4 disjointg (L1, L3) A disjointg (Lo, L3) (D7)
disjointg(L1 & Lo, L3) 2 disjointg (L1, L3) A disjointg(Lo, L3) (D8)
disjointg (.0, L) 2 disjointz(B(r), L) (09)
disjointg (L1, L) 2 false (for otherLq andLy) (D10)

noSharingg(L) |gives acondtion thatL is asetunders:

noSharingg(A) 2 Bns (p11)
(wherepfnsis the cond dynamic flag of the enclosing functjon
noSharingz(L) 2 true (whenL = X, m.root, or¢) (D12)
noSharingg (r.0) 4 noSharingg (B()) (wheno = left orright) (D13)
noSharingg(R) 4 noSharingg(B(R)) (D14)
noSharingg (L1 U Lo) 2 noSharingg(L1) A noSharingg(L2) (D15)

noSharingz(Ly & Lo) EY
noSharingg(L1) A noSharingg(L2) A disjointg(L1, L2) (D16)

noSharingz(L\R) £ noSharingj(L) (p17)

Fig. 6. The algorithm for finding a condition for the disjointness.

sharing inside the multiset left; Sns becomes such an expressionSharing g (r.left) =
noSharingg(A) = Bns (D13 & D11).

The algorithm inserts &iree command right beforeNode (p,t2)” atline (3), which
deallocates the root cell of the tree(I-FREE). But thefree command is safe only in
certain circumstances: the cell should not already have been freed by the recurgigé call
and the cellis neither freed nor used after the return of the current call. Our algorithm shows
that we can meet all these requirements if the dynamicdlegrue; so, the algorithm picks
B as a guard for the insertefitee command. The process for findirggis similar to the
one for the first parameter of the c&lt). We first collect constraits about conditions for
which heap cells we should not free:

e we should not free cells that can be freed befgfen Sns — 7.left\R),
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SEMANTICS OF SAFETY CONSTRAINTS 77 = C

n = SET(L) iff [LTInE=Al.1

nE Li#lo iff (TL10m 1 (L2l =L

n = L1 Eget Loiff ([L10m) nAl.1E [Lalln

nELiELy iff [LilnE[L2ly

nEECE  iff nl=LyCget LowhereLj =U{L [ (b L) € &, b & false}

n = true alvays
nEb=C iff (b < false v (n =C)
nECiAC  iff (mEC)AMEC)

Fig. 7. The semantics of the safety constraints.

e we should not free the input cells whesis false 8 <— A), and
e we should not free cells that are included in the function’s result (treeXs
U (R & m.right)).

These three constraints are generated by rulesp, 1-FUN and I-FREE in Fig. 5,
respectively. From these constraints, we find a condition that thenceslot to free is
disjoint from those cells we should not free. We use the same process as was used for
finding the first dynamic flag of the calR). The result is 8.

5. Algorithm correctness

The correctness of our analysis and transformation is proved via a type system for
safe memory deallocations. Bection 5.1 we introduce a memory-type system, and in
Section 5.2we prove that our memory-type system is sound: every well-typed program
in the system does not access any deallocated heap cells. Th8action 5.3 we
prove that programs resulting from our analysis and transformation are always well-
typed in the memory-type system. Since our transformation only insestscommands,

a transformed program’s computationathmavior modulo the memory-free operations
remains intact.

5.1. The memory-type system

We use a safetyanstraint in our type system for the memory safety of programs. For
instance, consider that a function takes a tree as its input, deallocates all of its right subtree,
and then accesses its left subtree. For such a function, our type system deduces that its
input tree must have no shared sub-parts between its left and right subtrees. This judgment
is expressed by the following safety constraint:

p = SET(L) |[LAL |LCsetL|LEL|ECE
C o= p|lb=C|CAC|true|false

The exact semantic definition 6fis in Fig. 7, andthe definition of the multiset formula
L is in Section 3.1 PredcateSeT(L) means that a multiset formula is indeed a set
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SYNTACTIC SUGARS

7CL 2 7root (m.left  m.right C L
PRECISE(L, 11, u2)) 2 SET(L) A (L#collapse(i1)) A (L#collapse(u2))
PRECISEL) 2 true
EHL=L#E 2 Alb= LA (b L) e &)
A (by—>Ly) €&y,
EHEY = N {bl Aby = Li#lo by Ly) € &
B & AVCBNV) |V edomB)}
L Ciee L' & LT L
A
(L1, 11, 2) Crree (L2 1], ) = (L1 E L) A (1 Ciree 1#2) A () Ctree 1h)
A
(L, 11, u2) Etree L' = collapse((L, u1, u2)) E L
A
L’ Ciree (L. 11, n2) = false

>

- , {true, if they area-equivalent,
M = tree—treet

false otherwise.

1>

1 Cree 1V for memoy-types for trees,
nEp

1 C tree—streert’, for memoy-types for functions.

Fig. 8. The syntactic sugars of the safety constraints.

(i.e.,atreeirL has no shared sub-part);#L » means that 1 andL » are disjointL1 C Lo
means that multisdt > includes multiset.1, L1 Cset L2 means that if we interpret them as
sets,L is asibset ofL, i.e,, every locationirL1 is also inL 2, and&; T &2 means thaf,
says more deallocations th&ndoes. Constraird holdsif and only if for any substitution
S for the boolean variables,

Vn.goodEnv(n) = ( = SO).

ConstraintC; is stronger than constraiigh (C1 = C») if andonly if, for any substitutionS
for the boolean variables,

vn.goodEnv(n) A (n = SC1) = (n = SC2).

In Fig. 8 we define some notation and make it clear that the bofirfd map from names
to a multiset formulakig. 3) and the pe-order relationC e (in Section 3.2 of menory-
types for trees are expressed in our constraints.

By using a safety constint, we define the memory-types for functions as

Utree—tree = AB.ABns LAV, (B, utree, L, ) & C.

A function takes two boolean parametgrsand Sns and onetree-typed value named
A. When onstraintC is satisfied, the function can access only the heap cells, ican
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SUBSTITUTION

S C {L/V |VisA X, R, m.root,.left, orz.right, L is a multiset formulau
{b/B | B is aboolean variableh is aboolean expressign

where
suppS) = {V |(L/V)e S, VisA, X, orR}U
{7 | (L/m.rooY), (L/m left), or (L/m.right) € S}U
{B1(b/B) €S}

APPLYING A SUBSTITUTION

SL, if utree = L

S = .
Hiree (SL ’ S/“‘“lv S/“'“Z)v If Mtree = <L’ "1, I’LZ)
Sliree—stree = Hiree—stree
SA = {id— Su |(d— p) € A}
SB — (Ve SL |V L)eB}, ifsupp(S) Nndom(B) =@

S(Avedomp)V E B(V)),  otherwise
SE = (Sbes> SL |(be> L) € €}

SET(SL), if C =sET(L)

(SLp) op(SLy), if C=Lqo0pLywhereop=#, Cget, OF C
SC = {Sb= 8C, ifC=b=CC

(SCY A (SCp), fC=C1ACo

C, if C = trueor false

Fig. 9. Substitution.

deallocate only those i, and retuns a result that has memory-typgee. SetV is the set
of new names that appear in the type, &itnposes conditions on those names. Since we
assume that every function is closed, we consider only closed memory-types: every name
or boolean variable is eithék, Sns, A, Or thenames iny.

We have a maping from the memory-types in the algorithm to those in the memory-
type system:

T (tttree)
TNMA.A— 3IX.(Lq, L))

Mtree

MBABnsAAI{X, R}.
({R+ L1}, R La, {8 AR, true= X\R})
& (Bns = SET(A))

T(A) = {x+ T(A(X) |x € dom(A)}

Our plan of program transformation is manifesthis translation: (1) we do not deallocate
the heap cells in the resulA{ R and X\ R); (2) only wheng is true we deallocate the
input tree B < A\R); and (3)8ns should indicate that the input has no shared sub-part
(Bns = SET(A)).

The memory-type system is defined Figs. 113 In the definition, we use
substitutions fig. 9 and the @inction “free” in Fig. 10 which gives a set of free names
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FREENAMES
(L}, if L=A, X, orR
free(L) = t}, if L = m.root, m.left, orm.right
q - frequ)Ufrequ), if L= Lll_l |_2, Ll@'—z, or Ll\L2
g, if L =g
_ JfreelL). if ptree = L
free(utree) = free(L) U free(uq) U free(un), if piree = (L, 11, o)

free(iiree—tree) =9
free(A) = {free(w) | (id > p) € A}
free(B) = {free(L) U{V} | (V > L) € B}
free(€) = J{free(L) | (b— L) e &}

freg(L), if C=sET(L)

free(Lq) Ufree(Lp), ifC=LiopLyforop=# Cget, OF T
free(C) = { free(C’), ifC=b=C

free(C1) U free(Co), ifC=C1ACo

] if C = trueor false

free(Aq, ..., An) = ;‘ree(Ai)

Fig. 10. Free names.

in the aguments. Typing judgmentX’ + v : © & C” for a valuev (in Fig.11) means
that for a given memgrtype environment\, valuev has memory-typg under constraint
C. A Leaf-value has a memory-type equal to or greater thénear). An identifierid (a
variable or adcation) has a memory-type equal to or greater théd) (ID). The memory-
type of a function value follows the result of its function boaw().

Typing judgmentA e : 3V. (B, u, L, ) & C”" for an expressiore (in Fig. 11) means
that for a given memartype environmeni, if constraintC is satisfied and the heap cells
in L and & are available, prograra is safely evaluated to a result of memory-type
During the execution, the program may access the heap cellsand may deallocate
those inf. A setV of new names is introdied in the derivation and satisfies constrdint
“free v when b” has menory-type# and deallocates’s root cell whenb is true FREE).

A Node-expression introduces a new namefor its new heap cell, and has a memory-
type whose root isX (NODE). For “case v (Node (X1, X2) => €1) (Leaf => )", whenv
has memory-typ@ which means that is aLeaf-value, the result oéase-expression is
the same as that of itsaf-branchey (LCASE), and wherv has a structured memory-type
which means that is not aLeaf-value, the result oéase-expression is the same as that
of its Node-branche; (NCASE). A function application has the result of its function body
by replacing the formal parametéy, 8, and Bns by the actual argumerit, b, andbys,
respectively APP). For an expressionlet X = e in €”, its memory-type is that o0&,

it uses whaky or & uses, it deallocates whet or &> deallocates, and its constraint is, in
addition to those of; andey, that he heap cells freed st do not overlap with those used
or freed byes (LET).
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AFv:pn&C
id=xorl idedom(A)
C=>0Cu C=A>M)Cu
(LEAF) - (ID)
At Leaf : n&C AFid:p&C

{y> u, x> AlFe:IV.0&C

A fix y[B, fnsl Ax.€: u&C’

(FUN)

Every bound name is fresh:
V Nfree(A) =@.

AFe:IV.0 & Cwhereoc = (B, u, L,E)

AFv:pn&C
AFv:{L,uq, &C (VALUE)
b k2) (FRED) A o300 10, 0)&C

A+ freevwhenb:
3¢. (@7 g’ g’ {bL) L})& C A+ vp - ()Lﬁ)uﬂns)uAHVU & C)& C/
AFvy:L&C free(L)NV =0

AFv:u &C
aA (NODE) SE£{L/A, b/B, bns/pns) AP
A I Node (vq, v2) : : — (APP
3AX). @, (X, w1, p2), 0, 9) & C A Fv1[b, bgl vz : 3V. S0 & (SCACH

Av:p&C Ate :3V1.01&C
Abe:3V.0&C whereoy = (B, i, L, &)
(LCASE) AU{XE> ulke:IV0.02&Co
A casev
ViNnVo =0
(Node (X1, X2) =>€1) . (LET)
(Leaf =>ep) : V.0 & C Alletx=ejinep:

V1 UV7.((01& C1); (02& Cp))
AkFv :<L/,M1,M2>&C
AU{X > pilFep:3V. (B, u, L, E)&C

A+ case v (Node (X1, X2) =>e)(Leaf =>ep) : IV. (B, u, LUL, )& C

(NCASE)

where A
(01&C1); (02&Cy) =
(BLUBg, 2, L1 Lo, E1UEY) & (C1 A Co A (E1#L2) A (E1#E2))

whenoj = (Bi, i, Li, &).

Fig. 11. The memory-type system.

The memory-type system has five structural rule§ig. 12. We can conclude with
a greater result WEAK). We can merge sever{;s into one hameX (MERGE). We
can introduce new name by replacingL1, L2, and L3 by =.root, =.left, andn.right,
respectively, and recordirnthat e colledion of z.root, .left, andn.right is equal to or
smaller than the collection df1, L, andL3 (INT). We can introduce new nanfe by
replacingL by Rin the judgment and recording th&is equal to or smaller thaln (RINT).
We can analyze a program by separating two cases of a variable in the environment. The
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A e:3V.0&Cwhereo — (B, 1. L. £) | Every bound name is fresh:

YV Nfree(A) = 9.
AbFe:3V.0'&C AtFe:IVU{X}Soc&SC
V' NireeC, o) C V S 2w X))/ X)
@V.o'&C)HE @V.0 & C) X; ¢ free(a,C) X, X ¢V
(WEAK) (MERGE)
AFe:IV.c&C ArFe:IVU{X}.oc&C

AFe:IV.Sc&SC n &V
i 2 (L1,Lp,L3) PRECISEW)
Sa {L1/m.root, Lo/m.left, L3/m.right}

(TINT)
AFe:IVU{x}. (¢ U{x — collapse(n)}) & C

Are:3V.S0&SC S2{L/R] RgV
AFe:3VU(RL.(cU{R— LD&C

(RINT)

AU {X > (m.root z.left, z.right} -e:3IV.0c & C
AU{XH—0}Fe:IV.0&C 7V

(PRUNE)
AU{X > ueel F€: 3V U {r}. (0 U {r — collapse(uiree)}) & C

where A
orUB = (BLUB, 1, L1,&E1)
FV1.01& C1) E (@o.02& Cy) ff
V12 V2, By = Bz, andB1 ACa = C1 A (u1 E u2) A (L1 Cset L2) A (E1E &)

whenoj = (Bi, i, Li, &).

Fig. 12. The structural rules of the memory-type system.

separationd when he variable has Beaf-value or not. The result is the one where both
cases agre@RUNE).

The memory-type system for a state is definedrig. 13. A state(e, h, f, k) is well-
typed when each component is Nvgped, the constraintg A C;) of expressione and
continuatiork are satisfied, and it is safe to sequentially evalesdedk when the heap
cells of locationsf are freed $TATE). Note that the side conditions make sure that the
freed heap cells of locationt should be neither used nor freed byr k (C(0,1) A C(0,2))
and the heap cells freed lgyshould be neither used nor freed kY(C(1,2)). In rules (IL)
and (CONT), we use a special identifierfor the argument of a continuation.

5.2. The memory-type system is sound

We prove the soundness of the memory-type system by the syntactic app2@hadie
key propositions are, as usual:
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Every bound name is fresh:

AFKk:3V.0 & Cwhereo = (B, i, L,E) VN ifreeA) = ¢

AU{XH— ulFe:V1.01&C
whereoy = (B, 11, L, £)
AU{et> pu1}FKk:IN0.00&Co

ViNVo=9
(NIL) (CONT)
AUf{et> ulke: AU{e—> ul-(x,€-k:
0. (3, 9,0,0) & C V1 U Vr.((01 & Cq); (02 & C2))
. A
Fh:a A=A{l1 (X1 n@1. k@2) - In = (Xn, w1 #m,2)}
. — . .. A JA®D), whena; j) =1
VAL X ;éxj VI’I'M(I’J)_{Q, Whena(i,j):Leaf
(HEAP)
= {|1 > (a(lyl), a(l’z)), RN PSS (a(nyl), a(nyz))} A
AFT:&E VIj € £.AMD) = (Xi. i, p1f)
(FREED)
Ak f:{true— X |lj € f}
F (e h, f,k
Fh:A AFTf:&
A+ e:3IV.01& Cp whereoy = (By, n1, L1, 1)
AU{et> u1}FK:3IVsr.00& Cr Wwhereop = (B2, w2, Lo, £2)
ViNVy =9
By A Bz = C1 AC2ACo,1) ACa,2) ACo,2) WhereCj jy = E#L | A EHE|
(STATE)
F (e h, f, k)
A .
where (01&C1); (028 Cy) 2 (ByUBg, g, L1l E1UE)

& (C1 A Co A (Eqtl o) A (E1#ED))
whenoj = (Bi, ui, Li, &).

Fig. 13. The memory-type system for states.

e subject reduction: if a well-typed state has a transition, the next state is also well-typed
(Proposition }; and

e progress: there exists a transition from the well-typed state, or the well-typed state is
final (Proposition 2.

In order to achieve the above two key propositions, we need to establish several
lemmas:

e we can rename the names in our judgmehtnima J;
e We can substitute multiset formulas for free names, or boolean expressions for free
boolean variables in our judgmentsefnma 3;
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e We can substitute values for program valésbin our judgments when their memory-
types are the saméémma 3; and
e our typing derivation is monotonit.émma 4.

Lemmal (Fresh Name$. For a mamory-type environmeni, an expession e, a seV
of names, a result, and a constrainC, if A - e : 3V.0 & C, then for a subdgitution
S = {V//V} with V' being a fresh name of the same kind as §A + e :
SV |V € V}.So & SC.

Proof. By structural induction on the derivation trees]

We can apply a substitution to judgments only when the substitution respects the
conditions of good environments. Note thati@stitution can violate the good environment
conditions; for instanceg.root andr.left are disjoint in a good environment whereas
S(rr.root) andS(r.left) can overlap each other wheéh= {X/m.root X/x left}. Theside
conditions of substitution (b)—(d) ihemma 2are for preserving the conditions of good
environments.

Lemma2 (Type Rplacement For constraint1, C2, andC, a manory-type environment
A, a valuev, an exprasion e, a meory-typeu, a setV of names, and a result, the
following are true:

(1) if C1 = C3, thenSC1 = SCo;

) ifArv:u&C,thenSAFv:Su& SC; and

(3)if A e:3V.0 & C holds andy N freg(S) = ¥, thenSA F Se: V. So & SC holds
with the same size of derivation tree; and the same lemma holds for continuation k,

whensS is either

(@) {L/R};

(b) {L1/m.root Lo/m.left, L3/m.right} wherePRECISE(L1, L2, L3)) holds;
(c) {L/ X} where L consists of fresh; XandseT(L) holds;

(d) {L/A} where L consists of fresh;Xand As; or

(e) {b1/B1, ..., bn/Bn}
Proof. The proofisinll]. O

We can replace a variable in judgments by a value when the variable and the value have
the sane memoy-type. The exception is that the memory-type is p@cise a menory-
typew is not precise if and only if: is structured and its root and left/right sub-tree can be
overlappé; for instance{X1, X1, X2) is not precise because the root pditand the left
sub-treeX; are overlapped. This exception is because we only have a pruningrubee
restricted for a variable: after replacing a variable by a value, since we cannot apply rule
PRUNEIN the same way, we may not derive the same judgment.

Lemma3 (Term Repcement For a memory-type environmeni, a variable x, values
v andv’, an exprasion e, memory-typgsandu’, a constraintC, a sety of names, and a
resulto, the fdlowing are true:

QD HFAUX— pulFY W& CandA v : u&C,thenA v {v/x}: ' &C.
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@ IfAU{X—pul-e:W.oc&CandAFv: pu&C,thenA Fefv/x}:IV.oc&C
unlessv is atree-typed identifier anePRECISE 1) does not hold.

Proof. The proofisin L. O

Our typing derivation is monotonic. When a judgment holds with a memory-type
environmentA, by using a stronger one thafr, we can derive another judgment whose
result is stronger than the original one.

Lemma4 (Monotonicity. For a memory-type environmer, a valuev, an exprasion e,
a memoy-typeu, a oonstraintC, a set) of names, and a resuit, the fdlowing are true:

WFAFvV: u&CandC = A'C A, there eists a memory-type.’ such that
ANFv:p/&CandC = W/ Cpu.

() If
(@) C= A'C A,
(b) AFe:3V.0&C,and
(c) Vniree(A') = 4,
then there exist a result’ and a constrainC’ suchthat A’ - e : 3V.0’ & C’ and
@V.o'&C) E 3AV.o & C). Moreover, the same lemma holds for continuation k,

whereC = A’C A if and only ifdom(A”) © dom(A) and for dl id € dom(A),
C = A/(id) C A(id).

Proof. The proofisin 1. O

Proposition 1 (Subject ReductionFor staes (e h, f,k) and (¢,h, f', k), if
(e, h, f,k)and(e h, f,k) ~ (¢/,h’, f’, k), wehavel- (¢, h’, f’, k).

Proof. For each ftransition(e, h, f,k) ~» (¢,h’, f/,k’) in Fig.1l we derive -
(e, h, £/, k') fromt (e, h, f, k). By (STATE),

Fh:A, (1)
AF f:&, (2)
VinV, =40, (3)
A e: V1. 01& C1 whereoy = (B1, u1, L1, £1), 4)
AU{e— i} Fk:3Vo.02& Co Wwhereoo = (B>, u2, L2, £2), and (5)
(B1AB2) = CiAC2ACo1 AC2) AC,2 (6)
whereC j) = &#Lj A E#Ej. In order to avail thecase that4) ends withthe structural

rules WEAK), (MERGE), (RINT), (xINT), and PRUNE), we first prove that there is another
derivation tree fot- (e, h, f, k) where @) does not end with the structural rules. We prove
it by induction on the size of the derivation tree 4:(

e case (WEAK): : The assumption is tha#) is derived by (WEAK); thatis, there exisvV],
C1, andoj suchthat

Ate: 3V (B, uy, Ly, ED&Cy, )
V1 Nfree(oy, C1) € Vi, (8)
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VicV, )]
1 = Bi, and (10)
By AC1= Cy A (k] E pa) A (L] Eset L1) A (61 & 1), (11)
We can assume that; \ V1 are fresh by.emma land @). Then @) and @) imply that
ViNV, =4. (12)
(5) implies that
AU{e > p1} Fk:IVo.02& (C2 A By A Bo). (13)
because

- whenk =¢, AU {e — u1} € :30., 9,9, & C foranyC, and
- whenk = (x, e) - k/, (5) has sub-judgment U {X — u1} - e: 3V.o & C for some
V, o andC. By (WEAK), AU {X > u1} - e : 3V.0 & (C A By A B2). Then by
(CoNT), we achieve13).
(6), (10) and (1) imply that By A B2 = pj Ep1. ThenBy A B2 AC2 = AU
{o —> 1)} EAU{e ui}. (12) implies that fregu)) N V2 = ¥ because freg)) <
V1. Then byLemma 4 (13) implies that there exisB,, u5, L5, £, andC;, suchthat

AU o pi} Ek: Vo (By, . Lb, £5) & Cs, (14)
, = Bp, and (15)
By ABaACa= Coy A (B o) A (L Eset L2) A (65 E &2). (16)
(6), (10), and (L5) imply that
By ABy= B1ABaACLACo. (17)
(1), (16), and (L7) imply that
By A B, =
CyACH A (L Cset L1) A (E1E €D A (Ly Eset L2) A (65 E &2). (18)
(6) and (L7) imply that
By A B, = Eottla A EgEL A Eottla A Eotta A E1ttlo A E1HE. (19)
(18) and (L9) imply that
By A By = Eottl) A EotEL A Eottlly A EoHEY N Ex#LY A ELHES. (20)

By (STATE), (1), (2), (7), (12), (14), (18), and @0) imply thatt- (e, h, f, k).
e case (RINT): The assumption is that4) is derived by RINT); thatis, whenS = {L/R},
V1=V U{R},ando1 = o] U{R— L},

A+ e:3V;. So1 & SCy. (21)
By Lemma 2 we can applyS to (5) and ©):

SAU{er— Syt k: V. So2 & SCor, and (22)
(SB1ASB2) = SC1 ASC2 ASCo,1) ASCi1,2) ASC0,2)- (23)
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Note that sinceR does not appear i and &, SA = A and S& = &y, that
is, SC,iy = Eo#SLi A E#HSEi. Then by 6TATE), (1)—(3) and 1)—(23) imply that
F (e h, f,Kk).

e case (INT) and MERGE): These cases are proved similarly to the casaT).

e case (PRUNE): (4) cannot be derived byyRUNE) because doi\) has only locations.

We prove by case ralysis vith the assumption thatl] does not end with # strudural
rules.

e case (freel when b, h, f,k) ~» (Leaf, h, f U{l}, k) whenl € domh),| ¢ f, and
b & true.: Inthis cased is

At freel whenb: 30. (4,9, 0, {true— L}) & C1.

By (FRER, A + | : (L, u1, u2) & C1 for somepug and up. By (HEAP), A(l) =
(X, uy, ny) for someX, u}, andu,, andby (D), C1 = X L. Since 6) implies
thaty = C1, we haveX C L. By (FREED), (2) implies that

AR fU{l}: EU ftrue— X} . (24)
By (LEAF) and (ALUE),

A+ Leaf : 30. (4, 9, 8, ) & Ca. (25)
Since&p U {true— X} C &y U &1, (6) implies that

B1 A By = (EgU {true— XP#HLo A (Eg U {true— X}H#E>. (26)

Therefore by $TATE), (1), (3), (5), (6), and @4)—(26) imply that
F (Leaf, h, f U{l}, k).

e case (e h, f,k) ~ (e1{ar/x1,ax/x2},h, f,k) whenh() = (a1,a2),| ¢ f, and
e = casel (Node (X1, X2) => €1) (Leaf =>e): (4)is

At e:3IVy. (B, pn1, L1, E1) & Ch. 27)

By (HEAP), A(l) = (X, u1, u2) for some X, and preciseu; and up. Sinceit is
impossble to havel = A(l) C ¢ for anyC, (27) is derived by NCASE); thatis,

AU {Xi — ;,LI/} Fe o 3IVi. (B, n1, L/l, &) & C1, and (28)
AFIl: (L,//l,u’z)&cl, (29)

whereL) UL = Li. SinceA() = (X, 1, u2), by (ID), (29) implies thatC; =
pi E py. By Lemma 4 (28) implies that

AU — i} ber: 3V (By, p, LY, €1) & Cr. (30)

By (HEAP), (ID), and (EAF), A F & : uj & C1. Then byLemma 3 (30) implies that
A ey {ag/xq, ap/x2} : V1. (Ba, pa, L7, £1) & C1. By (WEAK),

A+ er{ai/x1, ap/Xo} : V1. (B, p1, L1, £1) & C1. (31)
Then by 6TATE), (1)—(3), (5), (6), and G0) imply that
F (ex{a1/x1, az/x2}, h, f,Kk).
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e case (F [b,bpg] v, h, f,k) ~ (e{b/B, bns/Bns} {F/y}{v/x},h, f,k) where F =
fix y[B1, B2l Ax.€.. (4)is
A F[b,bagv:IV.So & (SCAC).
By (APP), whenS = {L/A, b/B, bns/Bns},

AF fix y[B1, B2l Ax.e: n & C' wherey = AB.ABnsAA. V.0 & C, (32)
AFv:L&C, and (33)
freeq(L)NY =@. (34)

By (FUN), (32) implies that{y — u, X > A} Fe: 3V.0 & C. By (34) andLemma 2
applyingsS to the judgment,

{y—> u,x+— L} e{b/B, bps/Bns} : V. So & SC.
By Lemma4
AUy u,x— L} Fe{b/B, bns/Bns} : V. So & SC.
By (32), (33), andLemma 3
A Fe{by/B1. b2/B2} (F/y} {v/x} : V. So & (SC A C). (35)
By (STATE), (1)—(3), (5), (6), and @5) imply that
= (e{b1/B1, b2/ B2} {F/y} {v/x}, h, f,K).
The proofs for other cases are il]. O

Proposition 2 (Progress. If a state (e, h, f, k) is well-typed (i.e.}- (e, h, f, k)), then
(e, h, f,k) is final (i.e., e is a value and k is an empty continuatinor there exists
atranstion (e, h, f,k) ~ (¢, h’, f’, k') for some(€, h’, f/, k).

Proof. We consider only the cases of memory erraran-closed or ill-typed states in the
ordinary type system are straightforwardly rejected by our memory-type system.

e case (freel when b, h, f, k) whenb < true,l € f, andl € domh): Assume for a
contradiction that- (free |l when b, h, f, k). By (STATE),

Fh:A, (36)
A+ f: &, (37)
At freel whenb:3V.0 & Cwhereoc = (B, i, L, E), and (38)
B = C A (EgHE). (39)

As we did when we proveBroposition 1 we can assume thaB8) does not end with
the structural rgs; thais, by FREg), B =0, £ = {b— L'}, and

Al Z(L/,/,L]_, /,L2>&C

for someus anduz. By (D), C = A(l) C (L', u1, u2). By (HEAP) and B6), A(l) =
(X, uy, ny) for some X, ufy, and uh. SinceB = ¢, B = C,C = XEL/, and
& ={b< L'}, andb < true, we can anclude that39) implies thatéo#{true< X}
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holds. By §ReeD) and @7), & has {true<- X}. Then our conclusion becomes
{true— X}#{true— X} whichdoes not hold.

e case (casel (Node (X1, X2) =>e1) (Leaf => &), h, f, k) whenl e f: Assume for a
contradiction thak (casel (Node (X1, X2) => €1) (Leaf => &), h, f, k). By (STATE),

Fh:A, (40)
A f:&, (41)
A+ casel (Node (X1, X2) => €) (Leaf => &) : IV.(B, u, L, E) & C, (42)
B = C A (Egt{true— L}). (43)

We can assume thad®) is derived by NCASE); thatis,

AL, p1, pn2)

for some pu1 and up. By (D), C = A(l)E (L, u1, n2). By (HEAP) and d40),
Al = (X, puy, ny) for some X, uj, and uh. Since B = C andC =
X E L, we can conclude that4@) implies thatB = &p#{true— X}. By (FREED)
and @1), & has {true< X}. Thenour conclusion become8 = ({true— X}#
{true— X}; that is,B = X#X whichdoes not hold. O

Theorem 1 (Memay-Type Soundnekslf a state (e, h, f, k) is well-typed in the memory-
type system (i.e.- (e h, f,k)), then (e h, f,k) does not go to a stuck state:
(e, h, f,k) ~* (v, h, f’, €) for somev, I, and f/, or a transition from(e, h, f, k) does
not terminate.

Proof. Assume for a comadiction that(ep, ho, fo, ko) is well-typed in he memory-type
system but it causes a memgcerror. Then we can prove that a faulty state can be well-
typed, which conflicts witHProposition 2 Suppose a transition frorteg, hg, fo, ko) to a
faulty state(en, hn, fn, kn):

(e5 hv f5 k) i (elv hlv fl5 kl) NA e N (Q’h hn5 fnv kn)'
We can prove that evergg, h;, fi, ki) is well-typed by induction om.

e case = 0: The assumption is that (ep, hg, fo, ko).
e casei > 0: By induction hypothesis; (-1, hj_1, fi_1, ki—1). Sincethere exists a
transition(e 1, hi_1, fi—1, ki—1) ~ (&, hi, fi, ki), by Proposition 1+ (g, h;, fi, ki).

Therefore a well-typed state does not go to a stuck stdfe.
5.3. Transformed programs are well-typed

Now we pove that pograms transformed by our algorithm do not cause any memory
error. There are two key propositions.

o Transformed epressions respect preservation constraints: our algorithm does not insert
any memory-free command that violates preservation constr&mpg@sition 3.

e Transformed expressions are well-typed: for each transformed expression, there is a
corresponding judgment in the memory-type system which is based on the result of our
analysis and transformatioRoposition 4.
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In order to achieve the above two key propositions, we first prove for two sub-routines of
the algorithm.

e One isfreeCond in Fig. 5 which takes a bound3, a pregrvation constrainf, and
a multiset formulal, and gives asafe condition for deallocating the heap cellsLin
without violating preservation constrai§iunder bound3 (Lemma 5.

e The other isreduce which takes a bound3 and a multiset formuld. and gives a
multiset formula which is greater than or equalltainder bounds (Lemma 6.

Lemma. For a boundB, a pregrvation constrain€, andmultiset formulas L, k&, and
L2, whenCps = (Bns = SET(A)), the fdlowing are true:

(1) (B A Cng) = (noSharingz(L) = SET(L));
(2) (B A Cng) = (disjointg(L1, L2) = Li#L»); and
(3) (B ACne) = ({freeCondg g(L) < L} #¢).

Proof. The proofisinll]. O

Lemma 6. For a bound5 and a multiset formula L reduceg(L) gives a multiset formula
Lrin areduced fan suchthat3 = L C LRg.

Proof. The proofisin 1. O

Proposition 3 (Transformed Expressions Respect Constrairiar a bounds, a pre®r-
vation constraint, a boolean value b, and an expression e, if e is transformed hy e
the algorithm (i.e.B, £, b> e®-B'1w.L) — & . £) then(B A Cns) = E'#E holds where
Cns = Pns = SET(A).

Proof. We prove it by induction on the number of calls:

e case (I-VALUE andI-NOF): & = @.

e case(I-FREB): Sinceb’ = freeCondp ¢~ (L) where€” = £ U {b — collapse(u)}, by
Lemma 5B A Cns = {0/ < L} #&”. Therdore B A Chs = {b < L} #€ also holds.

e case (I-CAsSE): By induction hypothesisiZ A Chs = &E#E fori = 1 or 2. Then by
definition, B A Chs = (€1 U E2)#E also holds.

e case (I-LET): By induction,B A Chs = E1#(E U {true— L, b < collapse(u)}) and
B A Chs = EHME U E1); thatis,B A Cns = Ei#E fori = 1 or 2. Then iy definition,
B A Cns= (E1 U E2)#E holds.

e case (I-APP): By Lemma5BAChs= {b'— L\R}#£. O

Our analysis and transformation systefways gives well-typed programs in our
memory-type system. That is, for each sformed expression, there is a corresponding
judgment in the memory-type system which is based on the result of our analysis and
transfomation.

Proposition 4 (Transformed Expressions are Well-Typethe followng are true:

(1) For a valuev, if the algorithm transformw to v’ (i.e., >v®*) = V'), thenA + v :
u &true holds.
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(2) For a boundBy, a pre®rvation constrainfp, a boolean value b, and an expression e,
if the algorithm transform e to’di.e., Bo, £, b > e2-B:L) — ¢ : £), whenV is a
se of freshnames introduced during the analysis phase (hery e: 5, u, L),
(a) when b= false thereexids C suchthat (Bg A Crs) = C and

TA)F€:3V. (B, T(w),L,E&C; and
(b) when b= true, there exits fresh R and’ suchthat (Bp A Crs) = C and
T(A) € :3V. (BU{R collapse(n)}, R, L,&)&C
where &' = (£\R) U {true— (lixcy X)\R}
and £\R2{b— LIR| (b L) &)
Proof. In proof, we do notexplicitly put the translation functio because it is clear from
the mntext whereZ” should appear.
e case (I-FUN/U-FUN): The asumption is that-(fix y Ax.e)(>*) = (fix y AX.€) is
derived by (-FUN) and the lasstep of (U-FUN); thatis,
uw=VA A — IX.(L1, Lp) and (44)
B.{=p = A}, true> e f=nx=ALBUL) - o . ¢ (45)
whereL’ = collapse(n/), L1 = S(reducep(L’)), L» = S(reduceg(L)), S =

{X/X1, ..., X/ Xp}, and Xjs are newxs in V. By induction hypothesis46) implies
that there exist§ suchthat

(f > u,x— A€ :3VU(R}.

(BU{R~ L'}, R L, (E\R) U {true— (5 X)\R}) &C (46)

B A Chs= C. 47
By Lemma 6

B = (L' C reduceg(L")) A (L C reducep(L)). (48)
Note that these reduced forms consist of olyand X;s in V. For a educed
form L, when &' = {(iX)/X}, we have LC S'(SL) becauseS'S =
{5 Xi)/ X1, ..., (4 Xi)/ Xn}. Then @8) implies that

B=(L'CSL)A(LESLy). (49)

By Proposition 3(45) implies thatB A Chs = E#{—8 — A}, and
E#{-B—> A= EC(E\AU{B— A}

because

- wheng = false,E#{A} = £ = £\ A, and

- wheng = true, true= £ C (E\A) U {true— A}.
Then

E\RC (E\M\R U {B < A\R}. (50)
Moreover& C {true— Lifreeg&)} and byLemma 6

B = Lfree(£) Cget reduces (Ll free(£)).
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Since he reduced form consists #for newX;sinV,
reduceg (L freg(€)) Eset AL (U x, ey Xi).
Then 60) implies that
B = &E\R C {true— (AU U x,cvXiN\ANR, g — AR}
= S'{true— X\R, B — A\R}
becaused#X;. Then by WEAK), (46), (47), (49), and 61) imply that

{f > u,x—> Al € :IVU(RL.
(BU{RH S'L1},R,8'L2, S {true X\R, B = A\R}) & Cns

By (MERGE),

{f > u, x> A} F € :3domB) U{X, R}.
(BU{RC L1}, R, Lo, {true=> X\R, B = A\R}) & Cns.

Since he result part has only free namasX, andR, by (WEAK),

{(f—pux— A€
3(X, R}. (R~ L1}, R L2, {true— X\R, B = A\R}) & Cps.

By (FUN) andthe definition of7 in Section 5.1A - fix f AX.€ : T(w).

171

(51)

e case (I-FREE/U-NODE): The assumption is that wheea = free X when b’;

Node(v], v,) whichislet y = free X when b’ in Node (v}, v5) for some fresly,
Bo, £, b > Node(vq, v2) &P #D — e {b/ S L}

whereu = (X, u1, u2) is derived by (-FREE) and U-NODE); thatis,
b = freeCondBoygé(L),
&y = E U {b— collapse(u)},

A(X) = (L, pufy, ub) for someu’ andus, and

Dvi(A’”i)

= .
By induction hypothesis6) implies thatA + vf : uj &true. By (NODE),
A I Node(vy, vp) : I{X}. (4, 1, ¥, ¥) &true.
Sincey is fresh, byLemma 4
AUy > @} - Node(vy, v5) : 3{X}. (4, p, ¥, B) &true.
SinceA(x) = (L, uf, ub), by (iD), A = x : (L, u}. ub) &true. By (FREE),
A free X when b’ : 30. (9, 0, 9, {b’ s L}) & true.
By (LET), (56) and 67) imply that
Ate:3{XL @, u 0, {0 — L} &true

which proves forb = false.

(52)
(53)
(54)
(55)

(56)

(57)

(68)
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Now we pove forb = _true with ¢ = (0 = L#collapse(u)). Since
C= {b/— L} Cset {I < L\collapse(n)} andu E collapse(w), by (WEAK), (58)
implies that

A+ e: 3{X}. (2, collapse(n), 8, {b’ — L\collapse(u))} & C.
By (RINT),
At e:3X, R} (R~ collapse(u)}, R, @, {b' — L\R})&C.

By Lemma5 (52) implies that Bo A Cns = {b/ < L}#&j. Since & includes
(b — collapse(w)) andb = true,Bg A Chs = C.

The proofs of other cases are ttl]. O

Theorem 2 (Algorithm Correctnegs For every well-typed closed expression e, when e is
transformed to eby the memory usage analy$isr> e : B, u, L) and thefree-insetion
algorithm(B, ¢, falser> e?-B-1-L) — ¢ : £), then expession € does not cause a memory
error.

Proof. By Proposition 4@ +~ € : 3V. (B, u, L, £) & Chs for someV. By Lemma 2 we
can apply substitutio§ = {@/ A} to the judgment. As a result,

Pr€:3V.(SB,Su,SL, SE) &true.

By (HEaP), - ¥ : 0. By (FREED), ¥ + @ : @. By (NIL), {e+—> u} +
€ : A0.(8,0,0,0) &true. Theefore by 6TATE), - (€, @, @, €). Then byTheorem 1
(€/,9, 9, ¢) does not go to a stuck statel]

6. Experiments

We experimented with the insertion algorithm with ML benchmark programs which use
various data types such as lists, trees, and abstract syntax trees:

program ‘ Iines‘ description

sieve 18 | prime number computation (sizd0000)

gsort 24 | quick sort(size=10000)

merge 30 | merging two ordered integer lists (siz20000)

msort 61 | merge sort (size10000)

queens 66 | solving eight queen problem

mirage 141 | aninterpreter for a tiny non-deterministic programming language
life 169 | “life” from the SML/NJ [19] berchmark suite (loog50)

kb 557 | “knuth-bendix” from the SML/NJ19] berchmarksuite

k-eval 645 | an interpreter for a tiny imperative programming language
nucleic | 3230 | “nucleic” from the SML/NJ [L9] berchmarksuite

We first pre-processed benchmark programs to monomorphic and closure-condgfted [
programs, and then applied the algorithm to the pre-processed programs.
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- Analysis cost
[program| lines | (1) totaP((2) reus&(2)/(D[cost®)]  (ogarithmic scale)

slope = 1.46

sieve 18 | 161112 131040 81.3% 0.004 10
gsort 24 | 675925 617412 91.39% 0.007 ¢
merge 30 | 120012 599971 50.09% 0.007 1 y
msort 61 | 440433 390429 88.7%4 0.019 /
queens 66 | 118224 6168 5.2% 0.017 0.1
mirage | 141 | 208914 176214 84.49 0.114 /
life 169 84483 8961 10.6%q 0.113 0.01
kb 557 | 2747397 235596 8.6% 0.85(Q /
k-eval | 645 | 271591 1616071 59.59%q 1.564 0.001

] i 1 10 100 1000 10000
nucleic| 3230 (1616487 294067 18.2% 3.893 Program size (logarithmic scale)

@words: the amount of total allocated heap celisl reused heap cells by our transformation

b seconds: our analysis and transformation systesmmimpiled by the Objective Caml 3.04 native
compiler [L2], and executed in Sun Sparc 400 MHz, Solaris 2.7

Fig. 14. Analysis cet and euse ratio.

We extarded the presented algorithm to analyze and transform programs with more
features. (1) Our implementation supports more data constructors thabepustand
Node. It analyzes heap cells with different constructors separately, and it inserts twice as
many dynamic flags as the number of constreefor each parameter. (2) For functions
with several parameters, we made the dynamic flaglso keep the alias information
of function parameters so that if two parameters share some heap cells, both of their
dynamic flagss are turned off. (3) For higher-order cases, we simply assumed the worst
memory-types for the argument functions. For instance, we just assumed that an argument
function, whose type idree — tree, has menory-type VA.A — 3IX.(L,L) where
L=(Ad A U(Xd X).(4) When we have multiple candidate cells for deallocation, we
choose one whose guard is weaker than the others. For incomparable guards, we choose
one arbitarily.

The experimental results are showrFig. 14. Our aralysis and transformation system
achieves the memory reuse ratio (the fifth column) of 5.2% to 91.3%. In the taibig. 4#,
the cond column is the number of lines, the third column is the amount of heap cells
allocated during the execution of the original programs, the fourth the amount of heap
cells reused during the execution of the transformed programs, the fifth its ratio, and the
sixth the cost of our analysis and transformation. For the two cases whose reuse ratio is low
(queens andkb), we found that they have a number of data structures that are shared. The
kb program heavily uses a term-substitution function that can return a shared structure,
where the number of shares depends on an argument value (e.g. a substituteixiters
everyx in the target term sham. Other than for such cases, our experimental results are
encouraging in terms of accuracy and cost. The grapfignl4 indicates that the analysis
and transformation cost can be less than square in the program size in practice although
the worst-case complexity is exponential.
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program reuse| (A) memory | (B) reduced| (A— B)/A
ratio peal peak
sieve (size=1000) | 56.0% 690 300 56.5%
gsort (size=100) | 81.0% 1189 334 71.9%
merge (Size=500) | 49.4% 1197 606 49.4%
msort (size=100) | 82.5% 714 321 55.0%
queens (N=5) 8.3% 255 255 0.0%
mirage 84.4% 1398 1361 2.6%
life (loop=5) 10.6% 2346 1746 25.6%
kb (group rule) 12.7% 27125 26501 2.3%
k-eval 59.5% 1044 944 9.6%
nucleic 18.2% 103677 89352 13.8%

@words: the maknum number of live cells. It is profiled byur interpreter which has the same memory
layout as that of Objective Caml 3.04 compil&2]. (A) is for the original program an(B) is for the
program transformed by our algorithm.

Fig. 15. The memory peak is reduced.

Our transformation reducesaimemory pak from 0.0% to 71.9%Hgs. 15-17). The
memory peak is the maximum number of live cells during the program execution. In
Fig. 15, the seond columnis the reuse ratio, the third is the memory peak of the original
programs, the fourth the memory peak of the transformed programs, and the fifth how much
the memory peak is reduced byr transformation. Fagieve, merge, gsort, andmsort,
both reuse ratios and peak reductions are highgkeens andkb, both reuse ratios and
peak reductions are low. But farife andmirage, reuse rdos and peakeductions do
not match. Fomirage, its reuse ratio is higlf84.4%) whereas its peak reduction is low
(2.6%). This is because, as seen in the graph (Pigf16, the trasformednirage fails
to reduce several peaks the ®cond phase. Farife, the stuation is reversed. This is
because, as seen in the graph (dyigf 16, it always euses only those cells that contribute
to the memory peak.

7. Conclusion and futurework

We havepresented a static analysis and a soulevel transformation system that add
explicit memory reuse commands into the program text, and we have shown that they
effectively find memory reuse points.

We are curently implementing the analysis and transformation system inside our nML
compiler [L5] to have it usd in ddly programming. The main issues in the implementation
are to reduce the runtime overhead of the dynamic flags and to extend our method to handle
polymorphism and mutable data structures. The runtime overhead of dynamic flags can be
substantial because, for instance, if a function takgsarameters and each parameter’s
type hask data constructors, thfeinction hagto take 2x n x k dynamic flags according
to the current dteme. We are considering reducing this overhead by doing a constant
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12000 SiEve-reuse’ 6000 ‘merge-reuse’ e
‘sieve’ , ‘merge’ - o
10000 ///- 5000 / b
8000 | 1 4000t '
6000 4 3000t =
4000 1 2000} 1
2000 [ 1 1000 1
0 0
(a) sieve (b) merge
1200 /LA ‘gsortreuse’ 800 ‘msort-reuse’ ——
‘gsort’ —------
1000 7 700
/ 600
800
500
600 400
400 800
200
200
100
0 0
(c) gsort (d) msort
2500 ’life-reuse’ —— 1400 ‘mirage-reuse’ ——
; [/ — /
; 1200
2000 | /1
;i ! / /| i 1000
1500 800
1000 600
400
500
200 7
0 o}
(e) life (f) mirage

Fig. 16. The numbers of live memory cells from start to the end. The upper dotted lines are the original program’s
and the lower solid lines are those of the programs transformed by our algorithm.

propagation for dynamic flagemitting some unnecessary flags; associating a single flag
with several data constructors of the same size; implementing flags via bit-vectors; and
duplicating a functioraccording to the different values of flags.

To extend our method for polymorphism, we need a sophisticated mechanism for
dynamic flags. For instance, a polymorphic function of tyjpeae — o can take a value
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300 , ; 30000 p ;
queens-reuse’ kb-reuse
‘queens’ ——— kb’
250 25000 |
200 20000 | :
150 15000 Ak 1
100 10000 | o ]
50 5000 | E
0 0
(a) queens (b) kb
1200 5 ; 120000 , - ;
k-eval-reuse’ nucleic-reuse
’k-eval’ ‘nucleic’ ---
1000 [ty zhwuu 100000 .
800 v‘H‘H”“HHMMHM““HH“AWWM/AW'NMWMMM 80000
600 k 60000
400 9 40000
200 - ! 20000
0
(c) k-eval (d) nucleic

Fig. 17. The numbers of live memory cells from start to the end. The upper dotted lines are the original program’s
and the lower solid lines are those of the programs transformed by our algorithm.

with two constructors or one with three construstdSo, this polymorphic input parameter
does not fit in the current method because aquttyave insert twice as many dynamic flags

as the number of constructors for each par@m®©ur tentative solution is to assign only
two flags to the input parameter of typeand to take conjunctions of flags in a call site:
when a function is called with an input value with two constructors, instead of passing the
four dynamic flags8, Bns, B', and B, we pass8 A B’ and fins A Bps FOr mutdle data
structues, we plan to take a conservative approach similar to that of Gheorghioiu@t al. [
heap cells possibly reachable from modifiable cells cannot be reused.
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