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1. Motivation

A key application for static analysis is automatic
bug-finding. Given the program source, a static analyzer
computes an approximation of dynamic program states
occurring at each program point, and reports possible
bugs by examining the approximate states.

From such static bug-finding analysis, false alarms
are inevitable. Because static analysis is done at com-
pile-time, exact computation of the program’s run-time
states is impossible. Hence some approximation must
be involved, so that the detected bugs can contain some
false positives. Methodologies such as the abstract inter-
pretation framework [6–8] counsel us to design a correct
(conservative) static analyzer. The correctness criterion
exacerbates the false alarm problem, because whenever
in doubt the analysis must err on the pessimistic side.
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Reducing the number of false alarms has always been
a big challenge in static analysis design. Controlling the
approximation level of the analysis will work, but not
very effectively. It is clear that using a less approximate
analysis can give more precise results, but practically,
relying solely on this approach will soon hit an unac-
ceptable analysis cost. Furthermore, if the analyzer must
handle an unlimited set of input programs, there will
always be a program that fools the analyzer. User an-
notation in source code can be effective, yet is always
less desirable than full automation. Worse still, blindly
using annotations to repair the accuracy of the analyzer
renders the approach vulnerable to annotation mistakes.
Another approach to handling false alarms is to equip
the analyzer with all possible techniques for accuracy
improvement and let the user choose a suitable com-
bination of techniques for the programs at hand. The
library of techniques must be extensive enough to spe-
cialize the analyzer for as wide spectrum of the input
programs as possible. This approach requires the user
to have an inside knowledge of the static analysis tech-
niques, to allow them to decide how to control false
alarms.

A promising approach orthogonal to the aforemen-
tioned techniques is statistical post-analysis. Given
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the reported alarms, classification methods compute
a “strength” of each alarm being true. We use these
quantities to rank the alarms, so that the user can check
highly probable errors first. The practicality of this
approach has been demonstrated in various settings
[5,13].

One natural question is, which among the many clas-
sification methods would be most effective in classi-
fying alarms from bug-finding static analyzers? In this
article, we report our experimental results. We attached
classifiers to our conservative C analyzer Airac [12]
which statically detects buffer-overrun errors in C pro-
grams. The classifiers are based on features extracted
from the bug reports. We train the classifiers on the fea-
tures for a set of inspected reports, and then evaluate the
classifiers on a reserved test set to represent uninspected
errors.

2. Airac, a bug-finding C analyzer

Airac [12] is an abstract interpreter [6–8] that detects
buffer overrun errors in C programs. A buffer over-
run error happens in C programs when allocated mem-
ory is read or written outside its valid memory range.
Airac does an interprocedural analysis, covering almost
all C features (including dynamic allocations, aliases,
gotos/breaks, function pointers, and aliases). It chases
all accesses to both dynamically and statically allocated
buffers. Airac is an industrial-strength analyzer, which
has been successfully used to detect buffer overrun er-
rors in GNU software, Linux kernel sources, and com-
mercial programs. It has been used in industry for more
than a year. Upon analysis completion, Airac reports po-
sitions of errors (alarms) in the input C source, along
with symptoms that may signify either the analysis pre-
cision or imprecision. These symptoms are later used by
the classifiers to rank the alarms.

3. Experiments on false-alarm classification
methods

We considered eight classification methods. For
a probability modeling technique, we used naïve Bayes
[11]. For linear regression techniques, we used logistic
regression [11] and Lasso [16]. For machine learning
techniques, we used three approaches built around clas-
sification trees—bagging [3], boosting [10] and random
forest [4], a form of ensemble learner—and two support
vector machines [17] (one with a linear kernel, the other
with a Gaussian kernel). In our experiments, we use the
R system [1] for all classification methods.
3.1. Experiments

First, we collected sample alarms by running Airac
on three varieties of programs: 36 files (device drivers
and modules) from the Linux kernel 2.6.4 sources,
12 programs in algorithm textbooks, and 10 short pro-
grams which were arbitrarily written to test Airac. The
total number of the alarms is 332. We manually in-
spected and classified the alarms as either true or false.
Among 332 alarms, 269 are false alarms and 63 are true.
We take this as the correct classification. Airac also ex-
tracted “symptoms” (see Section 3.2) for each of the
alarms.

Then, we trialled the eight classification methods
with the above sample alarms. Our experiments are
done as follows:

(1) We randomly divide the 332 alarms into two sets:
a training set of 232 alarms and the remaining test
set of 100 alarms.

(2) We use the 232 alarms of the training set to derive
8 classifiers, one for each method.

(3) We measure the performances of derived 8 classi-
fiers with the 100 alarms of the test set. We checked
the test-set classification results against the correct
classification.

(4) We repeat the loop of steps (1)–(3) for 100 times in
order to avoid, if any, an accidental bias in a divi-
sion. We simply sum the results over 100 different
divisions of the training and the testing sets.

For step (1), we employ a stratified sampling to “ran-
domly” select 100 alarms for the test set: we randomly
sample (without replacement) 19 true and 81 false
alarms from the total set of 332 sample alarms. The
remaining 232 constitute the training set. This sampling
method preserves in the test set the ratio of true to false
alarms that appears in the entire set of alarms.

The classification methods compute scores for the
alarms. Scores are real numbers in [0,1]. For the logis-
tic regression and Lasso methods, an alarm score is the
probability of the alarm being true, while for the other
methods the score indicates the relative strength with
which the alarm should be true in comparison with other
alarms.

The effectiveness of classification methods is deter-
mined by how much mis-classification is done while we
vary the threshold score. A mis-classification happens
when a true (resp. false) alarm has a lower (resp. higher)
score than the threshold score.

Scores are employed by Airac to rank alarms from
most-to-least probable to be real bugs, or to filter alarms
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whose scores are less than a threshold. Such a filtering
threshold is determined by a user-provided ratio of the
risk of silencing true alarms (false negatives) to that of
emitting false alarms [12].

3.2. Symptoms

Each alarm from Airac consists of the location of
a buffer-overrun expression, its target buffer size as an
integer interval, and the overrun index value also as
an integer interval.

For each alarm, Airac also provides its symptoms to
be used as attributes in the classification methods. Airac
examines in total 20 binary symptoms. Each symptom
indicates a situation that may contribute to either the
analysis precision or imprecision.

Each symptom indicates the analysis precision or im-
precision, and they were are largely derived from obser-
vation accrued in the deployment of Airac. Moreover,
symptoms are selected without concern for any correla-
tion between them.

The 20 symptoms can be classified into three classes:
12 syntactic symptoms, 5 semantics symptoms, and
3 result symptoms.

• Syntactic symptoms describe the syntactic context
around the alarmed expressions. They indicate whether
an alarmed expression occurs at a place where the analy-
sis accuracy is readily compromised for analysis termi-
nation.

Airac examines the following 12 syntactic symptoms
inside the function body that contains an alarmed ex-
pression:

AfterLoop AfterBranch AfterReturn CallFunc

CallFuncPtr InLoopCond InBranchCond

InFunParam InNestedFunParam InRightOfAnd

InNestedLoopBodyN InNestedBranchBodyN

AfterLoop and AfterBranch are, respectively, turned on
when loops and branches appear before the alarmed ex-
pressions. These symptoms are for false alarms; loop
and branch can decrease analysis accuracy due to the
join operations at their flow-join points. AfterReturn is
on when a return statement precedes the alarmed ex-
pression. This symptom is for false alarms; while the
return commands in the middle of function body are
often for exiting on erroneous cases, static analyzers
can blindly propagate such erroneous cases to unrelated
buffer access expressions. CallFunc and CallFuncPtr are
on when a function call (a regular call or a call via
a function pointer) precedes in a path an alarmed expres-
sion. These are for false alarms because our analyzer
is context-insensitive during inter-procedural analysis.
InLoopCond and InBranchCond are on when alarms
are inside the condition expressions, and InFuncParam
and InNestedFuncParam are on when alarms occur in-
side function’s actual parameter expressions. These four
symptoms are for true alarms because it is likely that ex-
pressions in those contexts are more carefully checked
by programmers than expressions in other contexts.
InRightOfAnd is for alarms in the right-hand side (rhs) of
the logical-and && operator. This symptom is for false
alarms because C’s short-circuit semantics can skip ex-
ecuting the && operator’s rhs expressions. InNested-
LoopBodyN and InNestedBranchBodyN are for true
alarms because programmer are easy to mistake inside
nested loops and branches. Since we found that simple
nested structures were common in both true and false
alarms, we refined symptoms by their nesting depth
N = 0,1,2,3, or >3.

• Semantic symptoms reflect analysis operations
whose application during the analysis influence the
analysis’ accuracy—e.g., whether an inevitable approx-
imation is later refined using the “narrowing” opera-
tor [8].

Airac examines the following 5 semantic symptoms
during analysis:

JoinN Prune FailPrune FailNarrow InStructure

The number of join operations before the alarmed ex-
pressions affects the analysis accuracy. This situation
is captured by symptom JoinN . N is the number of
join operations at the nearest control-join point before
an alarmed expression. N ranges over {1, . . . ,10,>10}.
The context pruning (an operation of refining an ana-
lyzed program state to an if-branch condition) as well
as the narrowing operations are factors that influence
analysis accuracy. FailPrune and FailNarrow are on
when those operations fail to refine an analyzed pro-
gram state. Prune is on when the pruning succeeded.
InStructure is on when the target buffers are pointed
to from some data structures (e.g., record fields). This
symptom is for true alarms because such complicated
use of the target buffers are likely to be confused.

• Result symptoms are direct attributes of the alarms
—e.g., whether the estimated buffer index interval has
an infinite integer, which strongly suggests that the
analysis erred too much.

Airac examines 3 result symptoms:

TopIndex HalfInfiniteIndex FiniteIndex

If an estimated buffer index is the whole integer inter-
val (the top element of the analysis’ lattice) is likely to
be a false alarm (TopIndex) because it is likely to have
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Fig. 1. Example ROC (Receiver Operating Characteristic) curve. X-axis: #false alarms/total #false alarms. Y -axis: #true alarms/total #true alarms.
Result from random forest method in our experiment.
erred too much. HalfInfiniteIndex is on when an index in-
terval is half-infinite like [1,∞]. Conversely, buffer in-
dices with exact boundaries (FiniteIndex) strongly sug-
gest true alarms.

From a classification perspective, two things are
noteworthy. One is about the generality of these symp-
toms: the symptoms’ three classes would be common
across semantics-based static analyzers. Another thing
is that some symptoms are correlated. For example,
an alarm inside a loop (symptom InNestedLoopBodyN )
is likely to have an infinite buffer access index (symp-
tom HalfInfiniteIndex). Because of this correlation, when
we tried logistic regression (which is known to be inef-
fective for correlated attributes) we used the well-known
stepwise-forward-selection technique for selecting only
those symptoms with little correlation. For other classi-
fication methods, we used all the symptoms without any
artificial selection.

3.3. Results

Each classification method’s effectiveness can be vi-
sualized by its Receiver Operating Characteristic (ROC)
curve [9]. The ROC curve depicts the fractions of in-
cluded false alarms (x-axis) and true alarms (y-axis).
The numbers on the curve are the threshold scores. Thus
the lower the mis-classification error, the closer the plot
moves to the upper left corner (i.e., the more similar to
a Γ -shape). As an example ROC curve, Fig. 1 shows
that of the random forest method in our experiment.
Numbers on the ROC curve are threshold scores.

An overall measure of a forecast’s accuracy is the
area under the ROC curve (AUC). AUC = 1 indicates
a perfect forecast, while AUC = 0.5 indicates a random
Method AUC Method AUC

boosting 0.9290 Lasso 0.9095
random forest 0.9257 Logistic Regression 0.8929
SVM linear 0.9221 bagging 0.8845
SVM Gaussian 0.9213 Naïve Bayes 0.8745

Fig. 2. Area under curve (AUC) calculation for Response Operating
Characteristic curve.

forecast. The AUC value for each ROC curve is shown
in Fig. 2. By this measure, overall effectiveness of the
classification methods are exposed: boosting, random
forest, and Support Vector Machine (SVM) methods are
the most effective.

Rather than the AUC measure, it is more meaningful
in practice to compare an early portion of the ROC plots
because an early portion shows among high-ranked
alarms how many true and false alarms are mixed. Fig. 3
shows the early portion of the ROC plots for the eight
classification methods. It shows that the random forest
method is most effective in excluding false alarms from
high-scored ones. It’s plot is the nearest to the right an-
gle. Later, however, boosting catches up with random
forest: though it mixes more false alarms in high scores
than random forest does, it later mixes less false alarms.

In numbers, the effectiveness of the top two meth-
ods (random forest and boosting) is as follows. Suppose
the user sees higher-scored alarms earlier. Then, by the
time 50% (950) of the 1900 true alarms1 have been seen,
only 0.32% (26) of the 8100 false alarms have been
mixed with them. It is particularly impressive that no
false alarm are seen until 22.58% (429) of the 1900 true

1 The total 1900 true alarms are from 100 test sets, each of which
has 19 true and 81 false alarms.
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Fig. 3. ROC (Receiver Operating Characteristic) curves of the eight
classification methods. X-axis: #false alarms/total #false alarms.
Y -axis: #true alarms/total #true alarms.

alarms have been seen. Meanwhile, for boosting, at the
50% true alarm stage, 1.21% (98) of the false alarms
will also have been seen, and the first false alarm is seen
when only 1.10% (21) of the true alarms have been seen,
no false alarms. On the other hand, boosting is slightly
better than random forest at excluding true alarms from
low scores. For random forest, at the score threshold by
which 50% (4050) of the 8100 false alarms are filtered
out, 5.10% (97) of the 1900 true alarms are included;
for boosting, this number is only 4.47% (86). The pref-
erence between boosting and random forest depends on
the relative importance of missing true alarms, and of
checking false alarms.

That random forest and boosting work better in our
case agrees with other empirical comparison studies [2,
18,15,14]. Random forest and boosting are both ensem-
ble methods (where a collection of decision trees vote
on a decision) that have strategies for reducing, if any,
a bias of decision trees. In our case too, reduced bias
(i.e., an increased variety) in decision trees appears to
improve the classification accuracy. Boosting directly
reduces a bias by giving an extra attention to mar-
ginal data (mis-classified or near-to-the-classification-
boundary data) while random forest indirectly dilute
a bias by introducing extra randomness. In boosting,
tree-growing data set (a bootstrap sample from the train-
ing set) is selected such that marginal data near to the
classification boundary by the previous tree, which may
be the victims of a bias, are fitted again in the current
decision tree. Random forest grows each tree with an
independent random bootstrap sample, and for an ad-
ditional randomness, for each node of each tree only
a random subset of the symptoms (attributes) are con-
sidered to find the best splitter.

Trained classifiers are not biased for a particular test
population. Though this is expected because we trained
the classifiers with a pool of multiple codebases (Linux
and non-Linux codes), to see whether the trained classi-
fiers perform well only on a particular test population or
not, we measured the fraction of Linux alarms among
the correctly classified alarms in tests. We measure the
fraction for each method varying the threshold values
from 0.1 to 0.8. The range of the fraction for all the eight
classifiers is from 39.8% to 69.5%. That is, in correctly
classified alarms, Linux and non-Linux alarms are about
half and half, meaning that the trained classifiers are not
biased for either Linux or non-Linux alarms.

Regarding the relative importance2 (Fig. 4) of the
20 symptoms during the random forest method, 10 most
effective symptoms include those from all three classes:
all 3 result symptoms, 3 from 5 semantic symptoms, and
4 from 12 syntactic symptoms. This indicates that each
of the three symptom classes is meaningful for classifi-
cation. Among the top 10 symptoms, result symptoms
are the most effective indicators (ranked 1st, 2nd, and
4th), followed by semantics symptoms (ranked 3rd, 5th,
and 7th) and by syntactic symptoms (ranked 6th, and
from 8th to 10th). Regarding the bottom 10 syntactic
and semantic symptoms, they are not clearly compara-
ble. While semantic symptom JoinN is next to the least
effective, another semantic symptom InStructure is bet-
ter than six other syntactic symptoms.

4. Conclusion

Random forest [4] and boosting [10] generated the
most accurate classifications, closely followed by sup-
port vector machines [17], among the eight classifica-
tion methods trialled. Our results may hint to static
analysis designers, who use semantics-based framework
such as abstract interpretation [6–8] to develop bug-
finding analyzers, that ensemble methods are effective
in ranking the output alarms, particularly if the methods
are tuned, as in random forest [4] and boosting [10],
to increase the varieties of decision trees. The three
classes of symptoms (syntactic, semantics, and result
symptoms) for signaling the analysis (im)precision are
common across semantics-based static analyzers.

Although improving the accuracy of the static analy-
sis is the orthodox approach to increasing the effective-
ness of bug-finding static analyses, it appears that there

2 The relative importance is measured by the Gini index [11].
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Rank Symptom Class Rank Symptom Class

1 FiniteIndex result 11 InFunParam syntactic
2 TopIndex result 12 InNestedBranchBodyN syntactic
3 FailPrune semantic 13 InStructure semantic
4 HalfInfiniteIndex result 14 InLoopCond syntactic
5 Prune semantic 15 CallFuncPtr syntactic
6 CallFunc syntactic 16 AfterReturn syntactic
7 FailNarrow semantic 17 InBranchCond syntactic
8 AfterBranch syntactic 18 InRightOfAnd syntactic
9 AfterLoop syntactic 19 JoinN semantic

10 InNestedLoopBodyN syntactic 20 InNestedFuncParam syntactic

Fig. 4. Symptom’s relative importance in random forest.
is value in applying statistical classification method.
Classification methods are relatively easy and effective
to improve the usability of bug-finding static analy-
ses.

References

[1] The R Project for Statistical Computing, http://www.r-project.
org.

[2] E. Bauer, R. Kohavi, An empirical comparison of voting clas-
sification algorithms: Bagging, boosting, and variants, Machine
Learning 36 (1998) 105–139.

[3] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996)
123–140.

[4] L. Breiman, Random forests, Machine Learning 45 (1) (2001)
5–32.

[5] W.R. Bush, J.D. Pincus, D.J. Sielaff, A static analyzer for finding
dynamic programming errors, Software—Practice and Experi-
ence 30 (2000) 775–802.

[6] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints, in: Proceedings of ACM Symposium on
Principles of Programming Languages, January 1977, pp. 238–
252.

[7] P. Cousot, R. Cousot, Systematic design of program analysis
frameworks, in: Proceedings of ACM Symposium on Principles
of Programming Languages, 1979, pp. 269–282.

[8] P. Cousot, R. Cousot, Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation, in:
PLILP’92: Proceedings of the 4th International Symposium on
Programming Language Implementation and Logic Program-
ming, Springer-Verlag, Berlin, 1992, pp. 269–295.
[9] T. Fawcett, ROC graphs: Notes and practical considerations
for data mining researchers, Technical Report HPL-2003-4, HP
Labs, 2003.

[10] J.H. Friedman, Greedy function approximation: a gradient boost-
ing machine, Annals of Statistics 29 (2001) 1189–1232.

[11] T. Hasite, R. Tibshirani, J. Friedman, The Elements of Statisti-
cal Learning: Data Mining, Inference and Prediction, Springer,
Berlin, 2001.

[12] Y. Jung, J. Kim, J. Shin, K. Yi, Taming false alarms from
a domain-unaware C analyzer by a Bayesian statistical post
analysis, in: SAS’05: 12th Annual International Static Analysis
Symposium, in: Lecture Notes in Computer Science, vol. 3672,
Springer, Berlin, 2005, pp. 203–217.

[13] T. Kremenek, D. Engler, Z-ranking: Using statistical analy-
sis to counter the impact of static analysis approximations, in:
R. Cousot (Ed.), SAS’03: Proceedings of the 10th Annual Inter-
national Static Analysis Symposium, in: Lecture Notes in Com-
puter Science, vol. 2694, Springer, Berlin, 2003, pp. 295–315.

[14] J.W. Lee, J.B. Lee, M. Park, S.H. Songa, An extensive com-
parison of recent classification tools applied to microarray data,
Computational Statistics and Data Analysis 48 (2005) 869–885.

[15] R.A. McDonald, D.J. Hand, I.A. Eckley, An empirical compari-
son of three boosting algorithms on real data sets with artificial
class noise, in: MCS 2003: 4th International Workshop on Mul-
tiple Classifier Systems, in: Lecture Notes in Computer Science,
vol. 2709, Springer, Berlin, 2003, pp. 35–44.

[16] R. Tibshirani, Regression shrinkage and selection via the Lasso,
Journal of the Royal Statistical Society, Ser. B 50 (1) (1996) 267–
288.

[17] V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons,
Inc., 1998.

[18] B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone,
D. Ward, K. Williams, H. Zhao, Comparison of statistical meth-
ods for classification of ovarian cancer using mass spectrometry
data, Bioinformatics 19 (September 2003) 1636–1643.


