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Abstract

We present a static analyzer that detects memory leaks in C pro-
grams. It achieves relatively high accuracy at a relatively low cost
on SPEC2000 benchmarks and several open-source software pack-
ages, demonstrating its practicality and competitive edge against
other reported analyzers: for a set of benchmarks totaling 1,777
KLOCs, it found 332 bugs with 47 additional false positives (a
12.4% false-positive ratio), and the average analysis speed was 720
LOC/sec.

We separately analyze each procedure’s memory behavior into
a summary that is used in analyzing its call sites. Each procedural
summary is parameterized by the procedure’s call context so that it
can be instantiated at different call sites. What information to cap-
ture in each procedural summary has been carefully tuned so that
the summary should not lose any common memory-leak-related be-
haviors in real-world C programs.

Because each procedure is summarized by conventional fixpoint
iteration over the abstract semantics (à la abstract interpretation),
the analyzer naturally handles arbitrary call cycles from direct or
indirect recursive calls.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Symbolic Execution; D.3.4 [Pro-
gramming Languages]: Processors—Memory Management(garbage
collection)

General Terms Experimentation, Languages, Verification.

Keywords program analysis, memory management, error detec-
tion, abstract interpretation, memory leaks, shape analysis.

1. Introduction

A memory leak in a C program is sometimes fatal; it may silently
ail the program until memory is exhausted and the program is
aborted. A procedure leaks heap memory whenever (1) memory
is allocated while the procedure is active and (2) this memory is
neither recycled nor visible to its caller after its return.
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In this article, we present a practical, fully automatic static an-
alyzer (called SPARROW ) that locates memory leaks in C pro-
grams. In comparison with other published memory leak detec-
tors [14, 8, 2, 11], our analyzer consistently detects more bugs
for the same published benchmark software. Our analysis speed
is 720LOC/sec, next to that of the fastest analyzer, FastCheck [2].
Our false-positive ratio (the percentage of alarms that are not true
bugs) is 12.4%, which is beaten only by Saturn [14].

C program Tool Bug False Alarm
Count Count

SPEC2000 SPARROW 81 15
benchmark FastCheck [2] 59 8

binutils-2.13.1 SPARROW 236 19
& Saturn [14] 165 5

openssh-3.5.p1 Clouseau [8] 84 269

Table 1. Performance comparison for the same C programs. Other
tools’ data are from the cited papers. SPARROW found more bugs
than others with a reasonable false-alarm ratio.

Tool C Size Speed Bug False Alarm
KLOC LOC/s Count Ratio(%)

Saturn [14] 6,822 50 455 10%
Clouseau [8] 1,086 500 409 64%
FastCheck [2] 671 37,900 63 14%
Contradiction [11] 321 300 26 56%
SPARROW 1,777 720 332 12%

Table 2. Overall comparison with other memory leak detectors.
Other tools’ data are from [2]. Note that these tools are applied to
different programs.

SPARROW separately analyzes each procedure’s memory be-
havior into a summary. Each procedure’s analysis summary is used
at its call sites. The summary is parameterized so that it can be in-
stantiated differently depending on the memory state at each call
site.

Because extracting each procedure’s summary is done by the
conventional fixpoint iterations over abstract semantics (à la ab-
stract interpretation), the analyzer naturally handles loops, arbitrary
call cycles, and aliases within the abstract semantics.

The choice of summary categories has been empirically tuned.
The summary categories are chosen after other choices have been
tested against realistic C programs. The abstraction decision fo-
cuses on not neglecting common memory-leak-related behaviors
in realistic C programs.

SPARROW cannot soundly determine that a program is free from
memory leaks; it detects some memory leaks but not all.



1.1 Analysis Overview

1.1.1 Summaries and Their Use

The analysis consists of two interlocking processes: (1) the summa-
rization of procedures’ memory behavior and (2) the use of these
summaries at the procedures’ call sites. The summary is then used
in analyzing its call site, when its caller’s procedural summary is
extracted. In the program analysis, summarization of a procedure
is triggered when a call site of that procedure is encountered. The
order in which procedures are summarized is thus the reverse topo-
logical order of the call graph. In the case of call cycles, all pro-
cedures in a call cycle are analyzed together within a single fix-
point iteration. In the case of dynamic call edges (due to function
pointers), the caller’s summarization is delayed until the callee’s
summary becomes ready.

• Example Consider the following example:

int *f(List *p) { int *g(){
if (n) return malloc(4); List k;
else { int *a = f(&k);

p->next = malloc(10); return a;
return 0; }

}
}

ret

arg
*

*

next

!

!

a

&k
*

*

next

!

!

ret
* !

summary of f instantiation for summary of g
a = f(&k)

Figure 1. Procedural summary, instantiation, leak detection

The summary representation is explained in Section 2.1. The
summary for procedure f says that the return value can be
a pointer to an allocated cell (the ! marked circle) and the
argument pointer’s next field can point to another allocated
cell. Solid arrows are for references created in the procedure
body. Dotted arrows are for those that already existed before
the procedure was called. The call site f(&k) inside g uses this
summary by instantiating the return and argument boxes with
a and &k, respectively. Among the two allocated cells visible
inside g (through a and k), only the one reachable from a can
be returned, hence g can leak memory (reachable from k). 2

1.1.2 From Memory Effects to Summaries

Summarization of procedures consists of two sequential steps: (1)
estimating memory effects and (2) using this estimate to create a
summary consisting of information useful in identifying possible
memory leaks. The memory-effect estimation step is based on
abstract interpretation [3], using fixpoint iteration on our abstract
semantics of the C language.

The memory effect for each procedure consists of three pieces
of information: allocated addresses, freed addresses, and the exit
memory state (memory state at the end of the procedure). From
these three pieces of information, it is straightforward to summarize
effects related to memory leaks. From the exit memory state, we
collect the addresses that are potentially reachable from outside
the procedure (via the global variables, the pointer arguments, and
the return value). We then examine which among these locations
are allocated ones, freed ones, or aliased ones. The results are
summarized into the procedure’s summary.

Parameterizing Memory Effects by Access Paths One major ob-
stacle in estimating the exit memory state for each procedure is how

to derive the exit memory state without knowing the input memory
state (call context). We have to parameterize the exit memory state
by the procedure’s input memory state. How?

Our first observation is that we do not need the whole image of
the input memory but only those locations that are accessed by the
procedure. Our second observation is that C procedures access the
input memory through either arguments or global variables. Our
third observation is that although we cannot collect the accessed
locations themselves unless we have the input memory, we can de-
termine the “access path” with which those locations are accessed.
Such access paths are explicit in the procedure source.

• Example For the previous example procedure f, the analyzed
exit memory states at the two exit points are:

n [−∞,−1][1,∞]
ret ℓ1

n [0, 0]
p α
α.next ℓ2
ret null

First consider the table at the right, which shows the state of
the memory at the exit of the false branch. The memory has
only entries for the accessed locations. The accessed locations
are n (because of the if-condition), p (because of p->), α.next
(because of p->next), and ret to store the return value.

Note that the abstract location “α.next” is the access path
along which locations of the input memory can be accessed.
The α here is a parameter, which is unknown now but will be
instantiated at f’s different call sites.

Location ℓ2 is the abstract, symbolic location allocated at
malloc(10). This ℓ2 will be instantiated as a new symbolic
location at each of f’s call sites.

The table at the left shows the state of the memory at the
exit of the true branch. The accessed locations in the true
branch are n (because of the if-condition) and ret (to store the
return value). The location ret has ℓ1, which is the abstract,
symbolic location allocated at malloc(4). This ℓ1 will also be
instantiated as a new symbolic location at each call site of f.
The location n has the shown pair of integer intervals because
we don’t know anything about this global variable except that it
cannot be zero. 2

As implied by the above example, we use the well-known inte-
ger interval analysis [3] for abstraction of numeric values. Numeric
values dependent on the call context are not parameterized; instead,
we assume the worst-case: [−∞,∞].

Summarizing Each procedural summary describes accessed lo-
cations that are reachable from the outside of the procedure. All
accessed locations, in parameterized form as access paths, occur
as location entries in the exit memory state. Among them, reach-
able locations from the outside of the procedure are those reachable
from global variables, the pointer arguments, or the return value. In
the summary, from such reachable locations and the sets of allo-
cated and freed locations we summarize the procedure’s behavior.

For the previous example, in the two exit memory states, the
reachable locations from outside the procedure are those reachable
from n (global variable), p (pointer parameter), and ret (return
value). They are ℓ2 (from p via α.next) and ℓ1 (from ret). Hence
f is simply summarized (Figure 1).

1.1.3 Instantiating Summaries

In analyzing a procedure, when we meet a call site we instantiate
the called procedure’s summary with the call site’s memory state.
The instantiation consists simply of using the call site’s memory to



fill in the blanks in the summary that were parameterized by sum-
marization. Alias information captured at the call site’s memory is
reflected in instantiation.

The instantiation’s output consists of the memory state after the
call, along with the updated sets of allocated and freed locations.
We track these three pieces of information to the exits of the current
procedure using fixpoint iteration, and then we record this informa-
tion in the current procedure’s summary, as explained above.

• Example Consider the following procedure f and its call site in
procedure g.

f(List *x, List *y) { g() {
free(y->next); List *a = malloc();
free(x); List *b = a;

} a->next = malloc();
f(a,b);

}

arg1

arg2

*

* next �

�

a ℓ1
b ℓ1
ℓ1.next ℓ2

a ℓ1

b ℓ1 ℓ2

*

* next �

�

summary of f memory state at instantiation for
f(a,b) f(a,b)

Figure 2. Summary instantiation, reflecting call context.

The summary of f shows that locations pointed to by the first
argument can be freed (the � marked node), and locations
pointed to by the second argument via access path next also
can be freed.

At the call site of f inside g, the two actual parameters a and
b both point to the same location ℓ1. Instantiating f’s summary
with this memory state results in the actual summary use (the
right-hand-side one) that concludes both ℓ1 and ℓ2 can be freed.
2

1.2 Contribution

• Our approach tends to be both faster and more accurate than
existing analyzers that make a comparable cost-accuracy trade-
off. In comparison with other published memory leak detec-
tors [14, 8, 2, 11] using the same benchmark software, our ana-
lyzer consistently detects more bugs than the others. The analy-
sis speed (720 LOC/sec) is second only to FastCheck [2]1, and
the false-positive ratio (12.4%) is the second smallest, beaten
only by Saturn [14]: (10%).

• We present what information to collect in the procedural sum-
mary to find an effective trade-off point without path-sensitive
and/or global analysis. The information is categorized into eight
classes (Section 2).

• In memory leak detection for realistic C programs, we report
design decisions (Section 3) of the analysis, some of which
are even unsound yet effectively increase the analysis accuracy
without much increase in cost.

• We present an analysis method for separately summarizing each
procedure’s memory leak behavior. We separately analyze each
procedure’s memory behavior to produce a parameterized sum-
mary of it, which will be instantiated in analyzing its call sites.
Each procedure’s summarization is done by conventional fix-
point iteration over the abstract semantics (à la abstract interpre-
tation [3]). The summary is parameterized for its call context.

1 FastCheck’s reported speed of 37,900LOC/sec does not count the pointer
analysis cost [2] though.

The call context is the collection of locations accessed by the
procedure. The accessed locations are expressed by the access
path forms that are explicit in the procedure’s source text.

2. Procedural Summary

We analyze memory-leak-related effects of procedures, and we
focus on effects visible to the outside of the procedures. Locations
visible to the outside of a procedure are those reachable from the
global variables, the pointer arguments, and the return value of the
procedure.

Understanding a procedure’s memory-leak-related effects needs
three pieces of information: allocations, deallocations, and aliases.
That is, we need to know which allocations inside procedures
become visible to the outside, which locations visible to the outside
are freed, and which locations visible to the outside are aliased.

free global argument return
allocation - - Alloc2Arg Alloc2Ret
global - - Glob2Arg Glob2Ret
argument Arg2Free Arg2Glob Arg2Arg Arg2Ret

Table 3. Eight categories of our procedural summary. The reach-
able locations from outside and the sets of allocated and freed lo-
cations give us memory leak related information.

1. Recording allocations inside procedures that become visible to
the outside of procedures: Allocated locations are visible to the
outside of a procedure only when they are returned or assigned
to the locations of the caller’s environment. In C, locations
of the caller’s environment are reachable via only globals or
pointer arguments.

Thus we record which allocated locations are returned (cate-
gory Alloc2Ret), or assigned to locations reachable from ar-
guments (category Alloc2Arg). We do not record which allo-
cated locations are assigned to globals (we don’t use the cat-
egory Alloc2Glob), because addresses reachable from global
variables are accessible from any environment in the program.
However, we miss some leaks that come from interprocedural
overwriting of allocated addresses on the same global variable.

2. We record which existing locations are freed or made accessible
via another alias.

For locations that were allocated before the procedure call yet
visible inside the procedure, there are two cases. Such locations
are accessible via pointer arguments or globals. For those reach-
able from arguments, we record which locations are explicitly
freed (category Arg2Free) and which locations are reachable
from the return value (category Arg2Ret) or assigned to loca-
tions reachable from globals (category Arg2Glob) or from other
arguments (category Arg2Arg). For allocated locations already
reachable from globals we don’t record which are freed. Lo-
cations reachable from globals remain visible from anywhere
in the program until the global variable is overwritten with
a new address, so they are not of concern for detecting non-
interprocedural memory leaks.

3. Recording aliases of locations visible to the outside of pro-
cedures: Be reminded that locations visible to the outside are
those reachable from the globals, pointer arguments, and return
values. Aliases between these three classes of locations happen
by assignments between them. Among the nine combinations
only five cases are meaningful: assigning locations reachable
from globals to locations reachable from arguments (category
Glob2Arg) or from return values (category Glob2Ret), assign-
ing locations reachable from arguments to those from glob-
als (category Arg2Glob), to those from arguments (category



arg1

*
next �

struct List{
struct List * next;
int *val;

};

freeNext(List *lst){
free(lst->next);

}

Figure 3. Arg2Free case: The procedure frees addresses reachable
from arguments. The freed location is marked by “�”.

Arg2Arg), or to those from return values (category Arg2Ret).
(Note that Arg2Ret, Arg2Arg, and Arg2Glob are already used
also for recording the deallocation effects before.) Three of the
remaining cases (categories Ret2Glob, Ret2Arg, Ret2Ret) are
impossible, because the return value only exists (as such) at the
exit of the procedure. In other words, once the procedure re-
turns a value, the procedure is done, so it cannot assign the re-
turned value (as such) to anything. The aliases between globals
Glob2Glob are not considered in our analysis because we use a
single abstract location for all global variables.

2.1 Examples of the Eight Summary Categories

We show examples of how the selected eight categories are cap-
tured in the procedural summary. In the examples we will use the
same pictorial forms for procedural summaries as we already used
before.

A summary is represented by a directed graph. Each node rep-
resents one abstract address. Circle nodes are for heap locations
(dynamically allocated addresses). Rectangular nodes are for stack
locations (for variables, arguments, and globals). Newly allocated
heap locations in the current procedure are marked by “!”. Freed
locations are marked by “�”. Each directed edge from node a to
node b indicates that location a may point to location b. The label
on the edge indicates the manner in which the predecessor points
to the successor. The label can be “∗” (dereferencing) or the name
of a pointer field in a structure. A dotted edge indicates a relation-
ship that already existed before the procedure was called. These
locations (those connected by dotted edges) are parameterized lo-
cations that will be instantiated by the call site’s memory state. A
solid edge indicates an effect done by the procedure.

• Arg2Free (Fig. 3): Procedure freeNext in the example frees a
location reachable from the argument. Its summary is shown in
the graph figure.

• Arg2Glob and Glob2Arg (Fig. 4): In the example, the first argu-
ment node has one dotted edge and the second argument node
has one solid edge. The dotted edge linked at the first argu-
ment represents Arg2Glob. In the attachGlob procedure, the
address node pointed to by first argument p1 becomes reach-
able from the global variables node. All global variables in pro-
gram are abstracted into one global variable node. The solid
edge from the second argument represents Glob2Arg.

int *p1 = malloc();
int **p2;
attachGlob(p1,&p2);
*p2 = malloc();

The difference is clearly revealed when instantiating the sum-
mary. All allocated addresses in the above code become reach-
able from global variables. Procedure attachGlob makes the
allocated location pointed to by p1 reachable from a global vari-
able. It also makes the pointer *p2 become an alias of a location

arg1 global arg2

*
*

*

int *gInt;
List gLst;

attachGlob(int *p1,
int ***p2){

gInt = p1;
*p2 = &(gLst.val);

}

Figure 4. Arg2Glob and Glob2Arg cases: The attachGlob pro-
cedure attaches some locations reachable from arguments to global
variables and attaches locations reachable from global variables to
arguments.

arg1

*

* !

makeArray(int ** p){
*p = malloc();

}

Figure 5. Alloc2Arg case: The makeArray procedure attaches an
allocated address to the pointer argument p. The allocated node is
marked by “!”.

ret
*

val

next

val

! !

! !

List * make2List(){
List * lst = malloc();
lst->val = malloc();
lst->next = malloc();
(lst->next)->val = malloc();
return lst;

}

Figure 6. Alloc2Ret case: The make2List procedure returns an
allocated list of length two.

reachable from a global variable, and therefore the allocated ad-
dress pointed to by *p2 after the procedure call is reachable
from a global variable.

• Alloc2Arg (Fig. 5): In real C programs some procedures attach
allocated addresses to pointer arguments. More leaks can be
detected by capturing this situation.

• Alloc2Ret (Fig. 6): In real C programs many objects are allo-
cated via procedure calls. It is the most common way to return
allocated heap objects. The structures of heap objects are cap-
tured.

• Glob2Ret and Arg2Arg (Fig. 7): Some procedures in the Linux
kernel return an object from a global table. Allocated addresses
attached to this object must not to be reported as leaks.

Traces of addresses passed through arguments to other argu-
ments should be kept. In the example, the address pointed to by
first argument is passed to second argument. This information
enables the analyzer to know interprocedural aliases via argu-
ments.

• Arg2Ret (Fig. 8): Some library functions in C (e.g. “memcpy”
and “strcpy”) return a pointer argument. Variable ret and the
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ret
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List * argPassing
(List *lst1,
List **lst2){

*lst2 = lst1;
return &gLst;

}

Figure 7. Glob2Ret and Arg2Arg cases: The argPassing proce-
dure passes an address from the first argument to the second argu-
ment and returns global pointer.

arg1

ret

next

* val

* next

� �

!

List * renewList(List * lst){
List * ret = malloc();
ret->next = lst->next;
free(lst->val);
free(lst);
return ret;

}

Figure 8. Arg2Ret case: The renewList procedure returns ad-
dresses reachable from an argument

pointer argument lst share a commonly reachable location.
This interprocedural aliasing can be captured.

2.2 Interprocedural Summary Instantiation

We show how such procedural summaries are instantiated with sim-
ple C code (Figure 9). The leak procedure leaks a memory block

void leak(){
1: List *lst1,*lst2;
2: int **ptr;
3: lst1 = make2List();
4: lst2 = renewList(lst1);
5: attachGlob((lst2->next)->val, &ptr);
6: makeArray(ptr);
7: freeNext(lst2);
}

Figure 9. The leak procedure calls some procedures presented
above

pointed to by lst2 at the exit of the procedure. At line 3, procedure
make2List is called. The procedure have been analyzed and its
summary (Figure 6) can be used. The return value of the summary
is instantiated with variable lst1. Pointer variable lst1 becomes
a pointer to newly allocated list of length two. At line 4, procedure
renewList (Figure 8) is called. The first formal parameter and the
returned address are instantiated with variables lst1 and lst2 re-
spectively. Procedure renewList frees two nodes reachable from
the first argument. We can trace which addresses are freed by fol-
lowing the access path of the summary. The allocated addresses
*lst1 and *(*lst1).val at line 3 are freed. The freed addresses
are removed from the allocation set and added to the freed set. The
memory state after line 4 is described in Figure 10.

At line 5, one allocated address (lst2->next)->val is global-
ized by procedure attachGlob. The pointer ptr is aliased with

lst1

lst2

* next

valval

*
next

�

�

!

!

!

Figure 10. The memory state after line 4 of the code in Fig-
ure 9: some allocated addresses are freed and the other allocated
addresses are reachable from the pointer variable lst2.

a global variable. At line 6, procedure makeArray makes one al-
located address pointed to by ptr. At line 7, one allocated ad-
dress lst2->next is freed by freeNext. The final memory state
of clean is represented in Figure 11.

lst1 global

lst2 ptr

* next

valval

*
next

*

*
*

�

�

�

!

! !

Figure 11. The exit memory state of leak: the one allocated ad-
dress (marked by “!”) pointed to by lst2 is not reachable from
global variables, hence leaked.

We can see that all addresses but one in the allocation set
become reachable from global variables. Hence we conclude that
there is a leak in the clean procedure.

3. Unsound Decisions for Cost-Accuracy Tradeoff

We use the following techniques (some of which violate the analy-
sis soundness) to silence false alarms and lower the analysis costs,
accepting tradeoff of missing a small number of memory leaks.

• Global Variables Abstraction All global variables in the pro-
gram are abstracted into one global variable node in the proce-
dural summary. We miss some leaks that come from interproce-
dural overwriting of allocated addresses stored in same global
variable. For example, in the following program, a memory leak
(involving the block allocated by malloc(4)) is not reported.

int *gp;
f(int *p){ gp = p; }
...

int *p = malloc(4);
f(p);
p = malloc(8);
f(p);

arg1

global

*

*

• Unsound Escaping Effects from Path-insensitivity Arg2Free
collects all freed addresses regardless of the path. So, we might
fail to detect a memory leak if the leaked block of memory
would have been freed on a different path than the one that is
actually taken. For example, the following example program’s
summary has no path-dependency information:



f(int *p, int n){
if (n) free(p);

}
arg1

* �

Similarly, assignments to global variables are collected regard-
less of the path. For example, the following example program’s
memory states has no path-dependency information:

int *gp;
f(int n){

int *p =malloc();
if(n) gp = p;

}

p

global

*

*

!

We assume that function free frees all locations that may be
pointed to by the argument. In the following example program,
the memory states indicate that both locations pointed to by
the arguments are subject to being freed, though only one is
actually freed.

f(int *x, int *y){
int *p = x;
if (n) p = y;
free(p);

}

x

y p

*

* *

*

!�

!�

• K-bound Exploration Deriving memory images from loops is
k-bounded, and hence the summaries are finite (Figure 12).

freeList(List *p){
List *t = p;
while(t != 0){

free(t);
p = p->next;
t = p;

}
}

arg ... ...

k-bound

* next next next� � �

Figure 12. From a k-bounded exit memory state, the summary is
k-bounded.

• Being Sensitive to Memory-Allocating Paths We have ob-
served that almost all false positives come from the lack of in-
terprocedural path-sensitivity.

int foo(int **pp){
if(n==0) return 0;
*pp = malloc(n);
return 1;
}
void bar(){
int *p;
if(foo(&p) == 0) return;
...

}
Procedure foo returns the integer 1 whenever a newly allocated
location is assigned to its argument. But the summarized return
value of this procedure would to be the interval [0,1] (i.e., the
return value must be either 0 or 1) because of the return 0
statement. Whenever procedure foo is called, our analyzer as-
sumes that pointer p points to a newly allocated address and the
return value is the interval [0, 1]. Hence we lose the information
regarding the relation between the returned integer and allocat-
ing action. So our analyzer falsely reports the allocated address
as a potential leak.

Our remedy is, when we collect summary categories from all
the exits, if some paths allocate new locations and others do not,
instead of joining the all possibilities we choose to summarize
only the allocation paths. Hence the return value is determined
by only the allocation paths. The summary of the foo function
is that it returns 1 and attaches an allocated address to the
pointer argument.

• Following Loop Iteration Effects At flow join points (e.g.,
a loop head), the allocation set L and the freed set L′ of all
predecessors are collected. For loops like in Figure 13, it may
cause some false positives. Allocated address ℓ remains in the
allocation set at the exit even if it is definitely freed in the loop
body.

p = malloc();
for(i=0;i<10;i++){

...
free(p);

}
return;

p = mallocℓ()

i<10? return

free(p)

〈∅, ∅〉

〈{ℓ}, ∅〉

〈{ℓ}, ∅〉〈∅, {ℓ}〉

〈{ℓ}, {ℓ}〉

Figure 13. Tuple 〈L, L′〉 at each edge is the set of allocated and,
respectively, freed locations. At the exit, allocated address ℓ re-
mains not to be freed.

When a loop iterates more than once, we do not join with the
〈{ℓ}, ∅〉 tuple of the initial input memory at the loop head. This
choice is based on the heuristic that most loops in programs
iterate at least once.

• Using Names in Addition To Paths in Summaries This is
not unsound. Some procedures return an allocated address and
attach the same address to an argument. Because extracting a
summary from the exit memory state derives locations in terms
of access paths, two different paths whose ends are the same
allocated location can be confused to mean different locations.
For example, analyzer can misunderstand the semantics of pro-
cedure foo below as if it allocates two different addresses for
the return value and the argument. We use allocation site identi-
fiers in addition to access paths when summarizing procedures.

arg1 ret

ℓ

*

*

*
!

int * foo(int **p){
int *ret = mallocℓ(4);
*p = ret;
return ret;

}

4. Summarizing Procedures via Fixpoint

Iterations

To summarize a procedure we must know what the procedure does.
Based on the abstract interpretation framework [3], our analyzer
does fixpoint iteration to find memory states at the exits of the
procedures in the input program.

During fixpoint iteration, some symbolic addresses are intro-
duced to represent accessed locations in the unknown input mem-
ory. From these symbolic addresses an abstract input memory im-
age is derived. Starting with this input memory image, we track
the procedure’s memory behavior. The procedure’s behavior is then
summarized from the memory states at the procedure’s exit points.



int *f(int n, List *p){
if(n)

return mallocℓ(n);
returni p->val;
}

Memory states at return statements
n ([−∞,−1], [1,∞])
ret ℓ

n [0, 0]
p 〈p, i〉
〈p, i〉.val 〈〈p, i〉.val, i〉
ret 〈〈p, i〉.val, i〉

Categories of summary
Alloc2Ret {ret*}
Arg2Ret {(arg

2
*.val, ret*)}

arg2

ret

* val

*! *

Figure 14. Example code, memory state at return statements, categories of summary and procedural summary.

4.1 Abstract Domains

The input memory state of a procedure is derived from the expres-

sions in the procedure. We introduce “explore-address” Êxplore
(represented as α in previous Section 1.1.2) in order to represent
unknown addresses in the input memory states. We always assume
that these symbolic addresses are all distinct when summarizing.
However these addresses can be instantiated as the same address at
a call context (See Figure 2) when instantiating. An explore-address
is a pair of an address ba and a program point i . It denotes that the
address ba pointed to this explore address 〈ba, i〉 at this program
point i .

The termination of our analyzer is guaranteed by our abstrac-
tion. The k-bound exploration2 limits the number of generating
explore-addresses to k at every program point. When the number of
generating explore-addresses exceeds k, the k-th explore-address is
used instead of generating a new explore-address. Infinitely many

allocated addresses are abstracted to their static call sites R̂egion .
The allocation site is freshly renamed to represent context-sensitive
allocations. We abstract numeric values into pairs of integer inter-
vals. We use a widening operation [3] to avoid infinite divergence.

bT ∈ T̂able = Block
fin
→ M̂emory

bm ∈ M̂emory = M̂ap × ̂AllocFree
cM ∈ M̂ap = Âddr

fin
→ V̂alue

bL ∈ Âddress = 2Âddr

ℓ ∈ R̂egion = AllocSite
i ∈ PgmPoint

〈ba, i〉 ∈ Êxplore = Âddr × PgmPoint

ba ∈ Âddr = GVar + ProcId × Var

+R̂egion + Âddr × FieldId

+Êxplore +Null
bV ∈ V̂alue = bZ + Âddress

̂AllocFree = Âlloc × dFree

cAL ∈ Âlloc = 2R̂egion

cFR ∈ dFree = 2R̂egion+Êxplore

Table 4. Abstract domains for our fixpoint iteration

The abstract domains for fixpoint iteration are presented in
Table 4. Block is the set of all basic blocks in the input program.
GVar is the memory storing the global variables (considered as an
amalgamated unit). ProcId × Var is for local variables and the
return address. FieldId is the set of field labels for all structures
in the program. bZ is a pair of intervals to collect numeric values.
The pair of intervals is useful to represent non-zero, negative, and

positive integer ranges. The allocation set Âlloc and the freed set

2 We chose five for k in the implementation.

dFree keep allocated addresses and freed addresses respectively.

Note that an Êxplore address can be included in the free set dFree .

The semantics of allocation is to add an allocated address to Âlloc.
The semantics of free is to remove the freed address from Âlloc
and add it to dFree .

The analysis result of the fixpoint iteration is a map from each
basic block in the procedure to its memory state. Figure 14 shows
example code and its analysis results. The value of n is pruned with
the condition expression. At the first return statement, the value of
n can’t be zero and the return address ret points to newly allocated
address. At the second return statement, n must be zero. The explo-
ration of memory follows the semantics of expressions. We assume
that p points to an explore-address 〈p, i〉 when we try to access *p.
The i is the program point of the second return statement. Again we
assume that 〈p, i〉.val points to an explore-address 〈〈p, i〉.val, i〉
when we try to access (*p).val. This address is assigned to the
return address ret of the procedure.

4.2 Procedure Summarization from Memories at Exits

A procedure is summarized from the memory states at the exits
of the procedure. We need to know which addresses are reachable
from certain addresses in order to evaluate all the eight categories
of procedural summary. Furthermore we have to know how those
addresses can be reached. The anchor concept is introduced to
represent such access.

ψ ∈ Anchor = (ret | argi | global)(* | .f)∗

An anchor is a list of which the first element is the root address.
The symbolic address argi denotes the formal parameters of a
procedure, where i denotes the i-th parameter. The symbol “*”
is used for dereferencing. The notation “.f” denotes an access
through a field pointer of a structure. We present the procedural
summary of the f procedure in Figure 14. The Alloc2Ret is a set of
anchors. Each anchor in Alloc2Ret indicates that a newly allocated
address is reachable via the return value. Arg2Ret is a set of tuples
of two anchors, the first being an argument and the second being the
return value. Each element in Arg2Ret illustrates which address,
reachable from an argument in the input memory state, is aliased
with an address reachable from the return value in the exit memory
states.

Summarizing from Exit Memory State We use several functions
for computing certain summary categories from the exit heap state.

Given map cM , reachcM
bL collects all reachable addresses and their

anchors i.e., the access paths to those addresses from each address

in bL:

reachcM
: 2Âddr → 2Âddr×Anchor

X, S ∈ 2Âddr×Anchor

reachcM
bL = lfpF λS.X ∪ (F S)



where

X = {(ba, ba) | ba ∈ bL}
F S =

S
{(ba ′, ψ*) | ba ′ ∈ cM (ba), (ba, ψ) ∈ S}S
{((ba, f), ψ.f) | (ba, f) ∈ dom(cM ), (ba, ψ) ∈ S}

X is the root tuple set of the addresses in bL.F S finds addresses and
accesses that can be directly reached from S. A memory location
is investigated from the input tuples if reachable via dereferencings
or field accesses. The reach operation collects all the reachable ad-
dresses and their accesses. The addr function picks up all addresses
from S.

S F S′ = addr S ⊆ addr S′

addr S = {ba | (ba, _) ∈ S}

Let bm = (cM , ( cAL, cFR)) be the memory at an exit of a procedure.

Let cGL be the reachable addresses from the global variables. Let
cRL be the addresses reachable from the return value.

The following four categories are calculated from the exit mem-
ory state.

Glob2Arg =
[

i

reachcM
{argi} ⋓ cGL

Alloc2Arg =
[

i

reachcM
{argi} ⋓ ( cAL − cGL)

Alloc2Ret = reachcM
{ret} ⋓ ( cAL − cGL)

Glob2Ret = reachcM
{ret} ⋓ cGL

The operation S ⋓ bL collects all anchors in S whose address is also

in bL.

S ⋓ bL = {ψ | (ba, ψ) ∈ S, ba ∈ bL}
The Glob2Arg is the intersection of reachable addresses from ar-
guments with the reachable addresses from global variables. The
Alloc2Arg is the intersection of reachable addresses from argu-
ments with the allocation set. Alloc2Ret and Glob2Ret are similar
to Alloc2Arg and Glob2Arg respectively.

Summarizing from Input Memory State In order to calculate
the other categories we have to know the input memory state. We
infer the input memory state from the output memory state. The
use of the input memory state is recorded in the output memory
state. We define function Sreach to compute symbolic reachability.
This function is exactly equal to the reach function except for the
dereferencing part in the F S.

F S =
S
{(ba ′, ψ*) | 〈ba, i〉 ∈ dom(cM ), (ba, ψ) ∈ S}

For an input address ba , we follow the explore-address 〈ba, i〉 instead
of looking up the memory with ba . For field addresses, Sreach
acts the same as reach. Using the function Sreach, the other four
categories are computed as follows.

Arg2Free =
[

i

SreachcM
{argi} ⋓ cFR

Arg2Glob =
[

i

SreachcM
{argi} ⋓ cGL

Arg2Arg =
[

ij

common (reachcM
{argj}) (SreachcM

{argi})

Arg2Ret = common (reachcM
{ret}) (SreachcM

{argi})

The common S S′ function collects all pairs of anchors whose
addresses belong to both S and S′.

common S S
′ = {(ψ,ψ′) | (ba, ψ) ∈ S, (ba, ψ′) ∈ S

′}

The categories Arg2Free and Arg2Glob are the intersections of ad-
dresses that were reachable from the arguments with the freed set
and the globally reachable set, respectively. These two categories

are sets of anchors. The categories Arg2Arg and Arg2Ret are the
intersections of addresses that were reachable from the arguments
with addresses reachable from other arguments and from the re-
turn value, respectively. These two categories are sets of pairs of
anchors.

If there are several return statements in the procedure, then, for
each category, we take the union of the contents of that category at
all the possible exit points. For example, in Figure 14, procedure
f returns an allocated address at one path and returns a different
address at the other path. We summarize this procedure such that
it returns an allocated address and returns an address pointed to by
the argument.

Reporting Leaks Among the addresses in the allocation set, if
there exist addresses that are not reachable from the global vari-
ables, the arguments, or the return value. then the addresses are
leaked in this procedure:

LeakedAddress = cAL− cGL− (addr reachcM
(
[

i

{argi}∪{ret}))

For each address in LeakedAddress, the analyzer reports the po-
sitions of the allocation site and the return statements. The proce-
dural summaries concerning each leaked address are displayed to
help users inspect reported alarms.

4.3 Instantiation of Procedural Summary

A procedure’s summary is instantiated at each of its call sites.
The values of the actual parameters, addresses that will contain
the return value, and the input memory state are the inputs for

instantiation. Let (cM , ( cAL, cFR)) be an input memory state of a
procedure call site.

The freed set is updated only by the Arg2Free component of the
called procedure’s summary. This component contains the set of
all access paths that freed memory reachable via arguments. Each
access path locates an address which must be freed. The allocation
and freed sets are updated:

cAL
′

= cAL − bL cFR
′

= cFR ∪ bL

where bL =
[

ψ∈Arg2Free

Ψ(bLi, ψ,cM )

Note that the source of ψ is argi. The bLi represents the address
of the i-th actual parameter. Function Ψ is used to locate the target

addresses. It returns all the addresses that are reachable from bL via
ψ.

Ψ : Âddress × Anchor × M̂ap → Âddress

Ψ(bL, ba :: t,cM ) = Ψ(bL, t,cM )

Ψ(bL, * :: t,cM ) = Ψ({ba ′ | ba ′ ∈M(ba), ba ∈ bL}, t,cM )

Ψ(bL, .f :: t,cM ) = Ψ({〈ba, f〉 | ba ∈ bL}, t,cM )

Ψ(bL, nil,cM ) = bL
This function Ψ is also used to instantiate other components of
the summary. The Alloc2Arg and Alloc2Ret in the summary affect
both the allocation set and the output memory.

For instantiating Arg2Arg and Arg2Ret, aliases are found by
using Ψ. From Glob2Arg, Arg2Glob and Glob2Ret, some ad-
dresses are globalized.

5. Experiment Results

We implemented the analysis of this paper in SPARROW . The per-
formance results are presented in the Table 5. We ran our analyzer
on a 3.2GHz Pentium 4 machine with 4GB of memory under Linux.



Programs Size Time Bug False
KLOC (sec) Count Alarm

ammp 13.2 9.68 20 0
art 1.2 0.68 1 0
bzip2 4.6 1.52 1 0
crafty 19.4 84.32 0 0
equake 1.5 1.03 0 0
gap 59.4 31.03 0 0
gcc 205.8 1330.33 44 1
gzip 7.7 1.56 1 4
mcf 1.9 2.77 0 0
mesa 50.2 43.15 9 0
parser 10.9 15.93 0 0
twolf 19.7 68.80 5 0
vortex 52.6 34.79 0 1
vpr 16.9 7.85 0 9

binutils-2.13.1 909.4 712.09 228 25
openssh-3.5p1 36.7 10.75 18 4
httpd-2.2.2 316.4 74.87 0 0
tar-1.13 49.5 11.73 5 3

Table 5. Analysis results on programs from SPEC2000 benchmark
and open source programs.

Comparison with FastCheck We have experimented with pro-
grams from SPEC2000 benchmarks to compare SPARROW with
FastCheck [2]. Analyzing the same set of programs as in [2] ex-
cept for “perlmbk”3 , SPARROW found 81 bugs among 96 reported
alarms and FastCheck found 59 bugs among 67 reported alarms.
SPARROW caught all the bugs found by FastCheck except for only
two bugs from the “gcc” program.

261: osmesa = (OSMesaContext) calloc( 1, sizeof( ...
262: if (osmesa) {
263: osmesa->gl_visual = gl_create_visual( rgbmode,

...
272: if (!osmesa->gl_visual) {
273: return NULL;
274: }

276: osmesa->gl_ctx = gl_create_context( ...
...

279: if (!osmesa->gl_ctx) {
280: gl_destroy_visual( osmesa->gl_visual );
281: free(osmesa);
282: return NULL;
283: }
284: osmesa->gl_buffer = gl_create_framebuffer( ...
285: if (!osmesa->gl_buffer) {
286: gl_destroy_visual( osmesa->gl_visual );
287: gl_destroy_context( osmesa->gl_ctx );
288: free(osmesa);
289: return NULL;
290: }

Figure 15. Example code from “mesa”(a SPEC2000 benchmark).

The Figure 15 shows two reported memory leaks from the
“mesa” program. From line 261 to 263, the pointer variable osmesa
points to an allocated heap structure and osmesa->gl_visual
points to another allocated heap structure. SPARROW successfully
captures that procedure gl_create_visual returns an allocated

3 We could not analyze the ’perlmbk’ program because our parser can not
accept many of its files.

heap structure. If the procedure gl_create_visual returns a null
pointer then the current procedure returns the null pointer at line
273 without freeing the heap structure pointed to by osmesa.
SPARROW reports this leak. SPARROW is silent at line 282, be-
cause all allocated heap Structures (allocated at line 261 and 263)
are freed. At line 289, SPARROW reports that some addresses allo-
cated at line 276 are leaked. It seems a false positive at first glance
because there is a gl_destroy_context function call at line 287.
However, they are indeed leaked. By inspecting our procedural
summaries we find out that some heap locations allocated by the
procedure gl_create_context are not freed by the procedure
gl_destroy_context. FastCheck missed this leak. Figure 16
shows the procedural summary of the creator and the addresses
not freed by the destroyer. The analyzer can capture the creation
and the destruction of such a complex heap structure through its
procedural summaries.

In SPEC2000 benchmarks, our false positives come from
several sources: the limitation of our pruning operation for if-
conditions (for “gcc”); path-insensitivity between the return value
and the condition for allocation (for “gzip”); inaccurate approxi-
mation of the number of loop iterations (for “vortex”); and over-
approximation on a two-dimensional array (for “vpr”).

Comparison with Saturn We analyzed four open source pack-
ages: binutils, openssh, httpd and tar. We used older versions of the
first two in order to compare with the results reported in existing
memory leak detection tools [14, 8]. Open source software pack-
ages have several target platforms (e.g. binary, library, ...). Table
5 lists the analysis results for one target that generates the largest
number of alarms.

While Saturn found 29 bugs in openssh, SPARROW found 18
bugs. As mentioned above (Section 3), SPARROW misses some
bugs due to path-insensitivity in the openssh program: at a flow
junction, if one path attaches an address to a global variable and
the other path doesn’t, then SPARROW assumes that the address is
attached to the global, and hence concludes no leaks.

On the other hand, SPARROW found more bugs (228) than Sat-
urn (136) in analyzing binutils. This is because our procedural
summary is finer than Saturn’s. Saturn fails to follow allocated ad-
dresses if they become reachable from the procedure’s parameters
(category Alloc2Arg). In binutils, more procedures pass newly al-
located memory back to their caller via their parameters (491) than
via their return value (160). Even if allocated addresses are returned
from a procedure, Saturn cannot capture the structure (shape) of the
allocated addresses (category Alloc2Ret).

6. Related Work

Whaley and Rinard developed a compositional pointer and escape
analysis for Java [13]. The analysis uses parameterized points-to
escape graphs that keeps information regarding which memory
blocks escape from methods. This information is similar to our
procedural summary, but we needed more information in order to
detect memory leaks.

Heine and Lam [8, 9] presented a flow-sensitive and context-
sensitive C and C++ memory leak detector, Clouseau [8, 9]. They
developed a type system to formalize a practical ownership model
of memory management. In their ownership model, every object is
pointed to by only one owning pointer. The owning pointer takes
the responsibility of freeing the object or passing its obligation to
another pointer. From this concept they generate constraints for
the input program. If constraints are unsatisfiable then there are
memory leaks or double deletions. Their analysis generates more
false positives than ours.

Orlovich and Rugina [11] proposed a leak detection algorithm
that assumes the presence of leaks and runs a reverse heap analysis
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Figure 16. Procedural summary of gl_create_context. Nodes are shaded if they are not freed by procedure gl_destroy_context.

to disprove the assumption. Our analysis finds more bugs with a
lower false positive ratio on SPEC2000 benchmarks.

Recently Rugina et al. proposed a new analyzer FastCheck [2]
using guarded value-flow analysis. They model memory leak de-
tecting problems using source-sink properties. They simplify the
program to guarded value flows by reaching definition and branch
condition expressions. Their analysis is very fast but additional re-
gion analysis is required. They found bugs with a low false positive
ratio. Our analyzer can detect more bugs with a similar false posi-
tive ratio (differences are 2∼3%) on SPEC2000 benchmarks.

Xie and Aiken [14] presented a Saturn-based memory leak
detector. Saturn [14, 15] exploits path-sensitivity from modeling
the input program as Boolean formulas. Memory leak detection
is reduced to a Boolean satisfiability problem. Their analyzer is
context- and path- sensitive, but loops and recursion are handled
heuristically. Their analysis takes more time than our analysis.

7. Conclusion

We have presented a practical memory leak detector (named
SPARROW ) for C programs. In comparison with other published
memory leak detectors [14, 8, 2, 11], SPARROW detects consis-
tently more bugs for the same published benchmark software, while
the analysis speed is next to the fastest and the false-positive ratio
is next to the smallest.

SPARROW analyzes programs in a compositional way; it ana-
lyzes each procedure’s memory behavior separately and produces
a summary of it. The summary is parameterized by the memory
state at its call site so that it can be instantiated at different call
sites. Our summary categories enable us to find an effective trade-
off point without path-sensitive or global analysis. We report design
decisions of the analysis, some of which are unsound yet increase
the analysis accuracy without much increase in cost.
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