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Abstract This article presents a local LR error repair method that repairs syntax errors
quickly by adoption of the A* algorithm that helps remove unproductive configurations. The
new method also enhances the repair quality by adoption of a flexible edit strategy to support
shifting symbols unrestrictedly, as well as inserting and deleting symbols, in order to repair
invalid input strings. Experimental results show that the new method excels existing works
in repair quality and efficiency.

1 Introduction

The problem of repairing syntax errors during context-free parsing has received much atten-
tion [2–4,6–10,14–16,18]. The goal of error repair is to allow the parser to continue after it has
encountered a syntax error so that it can identify and report subsequent errors. Error repair
parsing is indispensable to syntax-directed editors when highlighting syntax errors. Error
repair parsing is also indispensable to batch mode compilers when avoiding the edit-compile
loop by reporting as many errors as possible in a single pass of compilation.

The parser can repair an invalid string by changing it into the closest valid string, whereas
no parser can correct an invalid string in that it does not know the programmer’s intention.
Multiple or infinite repairs of an invalid string exist in general, so there should be an effi-
cient way of choosing the most adequate one among multiple repairs. Error repair methods
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adopting the least-cost repair scheme compute the total cost of inserting and deleting symbols
in repairing an invalid string by associating each symbol with insertion and deletion costs,
and choose the repair with the least total cost [2–4,6–10,14–16,18].

Error repair methods can be classified into “local” and “global” methods. A local repair
method attempts to change the remaining input symbols when detecting a syntax error
whereas a global repair method attempts to change all the input symbols including the sym-
bols before the detected error position. This article focuses on the local error repair method.

The issue in error repair parsing is how to improve the repair efficiency and quality. For
repair efficiency, we need to remove unproductive and redundant repair process. We also
need to speed up the search process for repairs. For repair quality, we need to take into con-
sideration a flexible repair strategy that allows for shifting symbols unrestrictedly, as well as
inserting and deleting symbols, in order to find the most adequate error repairs for detected
syntax errors.

This article presents a local LR error repair method that excels in repair efficiency and
quality. Our method speeds up the repair process greatly by adopting the A* algorithm. Our
method also accelerates the repair process and reduces memory use by removing unproduc-
tive and redundant configurations. Our method enhances the repair quality by adopting a
flexible edit strategy that allows for unrestricted shifts, as well as insertions and deletions,
of symbols. Corchuelo et al.’s method also supported shifting symbols [5], but their limited
shift operation misses many useful repairs. Experimental results show that our method is
excellent to repair syntax errors with respect to quality and efficiency.

This article is organized as follows. Section 2 briefly reviews the preliminaries necessary
for this article. Section 3 presents an LR error repair method using the A* algorithm. Sec-
tion 4 summarizes existing methods related to this article. Section 5 reports the experimental
results. Section 6 concludes. The “Appendix” shows the supplementary lemmas and proofs.

2 Preliminaries

This section shows the basic terminology and definitions for this article.

2.1 LR parsing

Alphabets An alphabet is a finite nonempty set of symbols.

Strings A string is a finite sequence of symbols from the alphabet. For a string x, |x | denotes
the length of x , and k : x denotes the prefix of x whose length is min{k, |x |}. An empty string
is written as ε.

Context free grammars A context free grammar G is a quadruple G = (N , T, P, S),
where N is a finite set of nonterminal symbols, T is a finite set of terminal symbols, P is
a finite subset of N × (N ∪ T )∗ where each member (A, α) is called a production and is
written as A → α, and S is the start symbol in N . N ∩ T should be empty, and the union
of the terminal and nonterminal sets, V , is called the vocabulary set. We always assume that
G is a reduced grammar such that G does not contain any useless symbols. Roman letters
A, B denote nonterminal symbols in N , Roman letters X, Y denote vocabulary symbols in
V , Roman letters x, y, z denote terminal strings in T ∗, and Greek letters α, β, γ, δ denote
vocabulary strings in V ∗.
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Augmented context free grammars An augmented context free grammar for G =
(N , T, P, S) is G ′ = (N ∪ {S′}, T, P ∪ {S′ → S}, S′) where the new start symbol S′ is
not in N ∪ T . The input string is accepted when and only when the new production S′ → S
is reduced.

Viable prefixes A vocabulary string γ is a viable prefix of G if a derivation relation

S ⇒∗
r δAy ⇒r δαβy = γβy

holds in G for some vocabulary string δ, y ∈ T ∗ and production A → αβ in G. A prefix of
a viable prefix is also a viable prefix.

LR(k) items A pair of the form [A → α • β, x] is an LR(k) item for k ≥ 0 if A → αβ is
a production in P and x is a string in k : T ∗. The first part of an item A → α • β is called
the core of the item, and the second part x is a lookahead string. In case of k = 0, lookahead
strings are omitted. Kernel items are items whose core parts are either S′ → •S or A → α•β

(α 	= ε).

Canonical LR(k) machines The canonical LR(k) machine M is a deterministic finite autom-
aton (DFA) for recognizing viable prefixes associated with grammar G = (N , T, P, S) such
that

M = (QM , V, PM , qs, ∅)

where

– QM is the set of all states of M ,
– V is the union of N and T ,
– PM is the set of all transitions of M , and
– qs is the initial state of M .

The canonical LR(k) machine M can be constructed as follows. The initial state qs is

qs = closure([S′ → •S, $k])
where closure(K ) is the smallest set satisfying

closure(K )

= K
∪ {[B → •α, FIRSTk(βx)] | [A → α • Bβ, x] ∈ closure(K ), B → α ∈ P}

and FIRSTk(α) = {k : x | α ⇒∗ x, x ∈ T ∗}. Initially, we let QM = {qs}. For q ∈ QM and
X ∈ V , we compute a new state q ′ as

q ′ = move(q, X)

where move(q, X) = closure( {[A → αX • β, x] | [A → α • Xβ, x] ∈ q} ), and insert q ′

and q
X−→ q ′ into QM and PM , respectively. This process repeats until nothing more can be

added to QM and PM . Figure 1 shows the algorithm for constructing M .

Construction of the LR parsing table For an augmented grammar G ′, the canonical LR(1)
parsing table for G ′, action, can be constructed as follows. Let M = (QM , V, PM , qs, ∅)

be the canonical LR(1) machine using the construction algorithm in Fig. 1, and let QM =
{q0, q1, ..., qn}. The parsing actions for qi are determined as follows.
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Fig. 1 Algorithm for
constructing the canonical LR(k)
machine M = (QM , V, PM ,

qs , ∅) for grammar G = (N , T,

P, S). QM will contain all states
of M, PM will contain all
transitions of M , and qs will be
the initial state of M [20]

– action[qi , a] = shift q j for a terminal symbol a if [A → α • aβ, b] ∈ qi and
move(qi , a) = q j .

– action[qi , A] = goto q j for a nonterminal symbol A if [B → α • Aβ, b] ∈ qi and
move(qi , A) = q j .

– action[qi , a] = reduce A → α if [A → α•, a] ∈ qi , A 	= S′.
– action[qi , $] = accept if [S′ → S•, $] ∈ qi .

All table entries not defined by the above rules are set to “error”. If some shift-reduce or
reduce-reduce conflicts occur during the construction of the action table, the grammar is not
an LR(1) grammar.

LR parsing The LR parsing algorithm decides whether a terminal input string belongs to
the language an LR context-free grammar generates. This algorithm scans the input string
from left to right in a bottom-up style.

The LR(1) parsing algorithm starts from the initial state qs , and decides the next parsing
action by using action[q, a] where q is the top state of parsing stack and a is the next input
symbol. We assume that the input string always ends with $. The LR(1) parsing algorithm can
be expressed using transition rules (LR-SHIFT) and (LR-REDUCE) in Fig. 2 such that
configuration (q1 . . . qi , a1 . . . am) is composed of a state sequence q1 . . . qi and the remain-
ing input string a1 . . . am . If there is no syntax error in the input string xy$, the LR transition
using the transition rules will be

(qs, xy$)
LR−→

∗
(q1 . . . qi , y$)

LR−→
∗

(q1 . . . q j , $)

where action[q j , $] = accept.

False reductions in LALR parsers The tight definition of lookahead sets in an LR(k) parser
ensures that reductions are not carried out once an incorrect input symbol is seen. However,
LALR(k) parsers can have larger lookahead sets and may perform further reductions after an
erroneous input symbol is read. Hence, in repairing syntax errors, the LALR(k) parser needs
to use the reduction stack [8] to recover parsing stack after false reduction happens. When
we say in this article that an error is detected at a state sequence q1...qn , the state sequence
q1...qn is a restored parsing stack using the reduction stack.

Fig. 2 LR(1) transition rules
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2.2 Insertion and deletion costs

Insertion cost ic(a) and deletion cost dc(a) denote, respectively, the positive values of the
insertion and deletion costs of a terminal symbol a. The insertion and deletion costs of a
terminal string a1...an are defined as follows.

ic(a1...an) = ic(a1) + · · · + ic(an)

dc(a1...an) = dc(a1) + · · · + dc(an)

The insertion cost is extended for a vocabulary string α as

ic(α) = min{ic(x) | α ⇒∗ x, x ∈ T ∗}.

The deletion cost of $, dc($), is defined to be infinite so that $ may not be deleted.
Defining insertion and deletion costs is entirely the compiler designer’s job. The compiler

designer should devise the proper costs that will be helpful to repair syntax errors effectively
with his knowledge and experience on the target language or grammar.

2.3 Graph search algorithms

We provide the basic terminology and definitions on graphs which will be necessary to
develop the efficient repair-finding algorithm on the LR(k) machine.

Graphs A directed graph consists of a set of vertices and a set of edges. An edge directed

from p to q with a label X is denoted by p
X→ q . A path p

α� q is a sequence of vertices
and edges leading from p to q with a label sequence α. Each label X has the associated cost.
The length of path p

α� q is the sum of the label costs on its edges. If vertices p and q are
connected, the distance from p to q is the minimum length among all the possible paths from
p to q . If p and q are not connected, the distance is defined to be infinite.

Uniform cost search Uniform cost search algorithm [19,22] is a varied best-first graph
search algorithm. This algorithm evaluates nodes using f (n), which evaluates the cost of
getting from the start node to node n. This algorithm chooses the next node which has the
least f (n). This process repeats until a goal node is reached along some path. As the least-cost
path was always the one chosen for extension, the path first reaching the goal is sure to be
the optimal path. Figure 3 shows the uniform cost search algorithm.

Fig. 3 Uniform cost search algorithm: cost(X) ≥ 0
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Fig. 4 The A* algorithm: cost(X) ≥ 0

The A* algorithm The A* algorithm [11,12,17,19,22] is a best-first graph search algorithm
that improves the uniform cost search algorithm greatly. This algorithm evaluates nodes using
f (n) + g(n) where

– f (n) is the cost of reaching node n from the start node, and
– g(n) is an estimated cost of getting from node n to a goal node.

The f (n) + g(n) is the estimated cost of the least-cost path to a goal node through n. This
algorithm chooses the next node n whose f (n)+ g(n) is minimal. This process repeats until
a goal node is reached. Figure 4 shows a simplified A* algorithm.

This algorithm always finds a least-cost path from the start node to a goal node when such
a path exists if g(n) never overestimates the cost of getting to a goal node [11,12,17,19,22].
That is, if the real minimum cost of getting from node n to a goal node is C(n), then g(n)

satisfies g(n) ≤ C(n).
Generally speaking, depth-first search, breadth-first search, and uniform cost search [19]

are special cases of the A* algorithm. For example, if g(n) = 0 for all nodes, this algorithm
will behave on a general graph like the uniform cost search algorithm.

3 Efficient error repair method using the A* algorithm

Our repair method applies insertions, deletions, or unrestricted shifts to a portion of remaining
input string until parsing can either continue farthest or leads to an accepting configuration.
Furthermore, our repair method uses the A* algorithm, allows nonterminal insertions, and
removes unproductive or redundant configurations in order to speed up repair and to reduce
memory use. Our method improves on McKenzie et al.’s method (p. 15) Cerecke’s method
(p. 16), and Corchuelo et al.’s method (p. 6, 17).

In the following, we will improve Corchuelo et al.’s method [5] by removing unproduc-
tive configurations, allowing inserting nonterminals, applying the A* algorithm, removing
redundant configurations, and improving the repair quality.

3.1 Corchuelo et al.’s method

This method attempts to apply a sequence of insertions, deletions or restricted shifts to a
portion of the remaining input string until parsing can continue for some fixed number of
symbols or else parsing leads to an accepting configuration. This method improves the repair
quality of McKenzie et al.’s method and Cerecke’s method by allowing restricted shifts.

This method uses three transition rules in Fig. 5 to generate new configurations. Config-
uration (q1 . . . qi , p, e, c) is composed of a state sequence (q1...qi ), the current position of
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Fig. 5 Corchuelo et al.’s transition rules

the first remaining input symbol (p), the sequence of edit operations have been made so far
(e), and the sum of insertion and deletion costs to reach the current configuration (c).

This error repair method is based on the uniform cost search algorithm. The prior-
ity queue has the initial configuration (q1 . . . qi , p, ε, 0) for a given error configuration
(q1 . . . qi , ap . . . am). This method removes the least-cost configuration from the priority
queue, generates new configurations from the least-cost one by using transition rules in
Fig. 5, and inserts the new generated ones into the priority queue. This process repeats until
parsing can either continue for at least N symbols or leads to an accepting configuration.

Meanwhile, (CO-SHIFT) allows only the restricted shift operations in that this rule gen-
erates only the configuration obtained after applying sequential k-shift operations but does not
generate all intermediate configurations obtained by m-shift operations (0 < m < k). This
restricted shift operation sometimes causes the parser to miss the proper repair candidates.
Supporting unrestricted shift operations seems trivial by generating all intermediate config-
urations, but it can degrade the repair performance severely because of increased generated
configurations.

3.2 Removing unproductive configurations

We will remove unproductive configurations that Corchuelo et al.’s method [5], Cerecke’s
method [4], and McKenzie et al.’s method [16] generate. Configurations are unproductive if
they never lead to a goal configuration. Removing unproductive configurations can not only
speed up the repair process but also reduce required memory space.

Insertion rules can generate unproductive configurations in Corchuelo et al.’s method [5]
Cerecke’s method [4] and McKenzie et al.’s method [16]. To formally handle generated inser-
tion strings, we introduce two sets of terminal strings. Follow(q1 . . . qi ) is the set of terminal
strings that follow stack sequence q1 . . . qi , and Followa(q1 . . . qi ) is the set of prefixes of
Follow(q1 . . . qi ) that end with the terminal symbol a.

Definition 1

Follow(q1 . . . qi )

= {x ∈ T ∗ | (q1 . . . qi , x$)
LR−→

∗
(q1 . . . q j , $), action[q j , $] = accept}

Followa(q1 . . . qi )

= {xa ∈ T ∗ | (q1 . . . qi , xay$)
LR−→

∗
(q1 . . . q j , y$)}
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Fig. 6 〈〈R1〉〉: Transition rules to prune unproductive configurations

Using Definition 1, insertion rule (CO-INS) in Corchuelo et al.’s method (or insertion rule
(MC-INS) in McKenzie et al.’s method on p. 15) is expressible as

ax ∈ Follow(q1 . . . qi )

(q1 . . . qi , p, e, c)
CO−→ (q1 . . . q j , p, e · (ins a), c + ic(a))

.

However, there can be some terminal a where ax ∈ Follow(q1 . . . qi ) for some terminal
string x but ayap 	∈ Followap (q1 . . . qi ) for any terminal string y. Inserting such terminal
symbol a brings about an unproductive configuration that cannot lead to a goal configuration
(q1 . . . q j , p, e, c) where action[q j , ap] ∈ {shift q,accept}, as in McKenzie et al.’s
method [16], Cerecke’s method [4], and Corchuelo et al.’s method [5].

We can avoid unproductive configurations in repairing syntax errors. Figure 6 shows the
new rule set 〈〈R1〉〉 for repairs. To eliminate unproductive configurations, we restrict insertion
symbols. In other words, we insert only terminal a satisfying axap ∈ Followap (q1 . . . qi )

instead of ax ∈ Follow(q1 . . . qi ) as in rule (R1I).

axap ∈ Followap (q1 . . . qi )

(q1 . . . qi , p, e, c)
R1−→ (q1 . . . q j , p, e · (ins a), c + ic(a))

Excluding rule (R1I), rule set 〈〈R1〉〉 is similar to Corchuelo et al.’s transition rules. Rule set
〈〈R1〉〉 generates configuration (q1 . . . qi , p, e, c) that comprises a state sequence (q1 . . . qi ),
the current position in the remaining input symbols (p), the sequence of edit operations
have been made so far (e), and the sum of insertion and deletion costs to reach the current
configuration (c).

As we will continue improving on 〈〈R1〉〉 in the subsequent subsections, the specific algo-
rithm to compute Followap (q1 . . . qi ) is not presented here. In Sect. 3.4, we will remove
unproductive configurations using the A* algorithm.

3.3 Inserting nonterminal symbols

By inserting nonterminal symbols as well as terminal symbols, we will remove reduce actions
causing many redundant configurations that Corchuelo et al. method [5] and McKenzie et al.
method [16] generate. Removing redundant configurations speeds up the repair process and
reduces the required memory space.

Configurations are redundant if their costs are not the least-cost one among their equiv-
alent configurations. Configurations are equivalent if they have the identical state sequence
and remaining input string. We can always apply the same insertion, deletion, and shift
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Fig. 7 Suppose [B → β1 • Aβ2] ∈ qi , [A → •α] ∈ qi , action[qi A] = goto q, α ⇒∗ x and α ⇒∗ y
for the current configuration (q1 . . . qi , p, e, c). Inserting terminal strings x and y requires to reduce A → α,
which causes equivalent configurations. If inserting A instead of reducing A → α, we obtain the least-cost
configuration (q1 . . . qi q, p, e3, c + ic(A)) removing redundant configurations (q1 . . . qi q, p, e1, c + ic(x))

and (q1 . . . qi q, p, e2, c + ic(y))

operations to equivalent configurations, and after applying the same operations we shall
obtain new equivalent configurations. Removing equivalent configurations except the least-
cost one (or removing redundant configurations) is desirable for reducing search space and
speeding up the repair process.

Inserting terminal symbols alone entails reduce actions that bring about redundant con-
figurations. Suppose that the state sequence of the current configuration is q1 . . . qi and two
items [B → α • Aβ] and [A → •α] are in state qi . Then, reducing A → α after inserting
terminal strings x and y that α generates can make the current configuration lead to equivalent
configurations with the same state sequence of q1 . . . qi q where action[qi , A] = goto q and
the same current position p in the remaining input string as in Fig. 7.

Inserting nonterminal symbols, as well as terminal symbols, can remove reduce actions
causing redundant configurations. Suppose that we insert A at the current configuration
instead of reducing A → α at (q1 . . . qi . . . q j , p, e1, c+ic(x)) and (q1 . . . qi . . . qk, p, e2, c+
ic(y)) in Fig. 7. Then, we can avoid generating redundant configurations (q1 . . . qi q, p, e1, c+
ic(x)) and (q1 . . . qi q, p, e2, c + ic(y)), and obtain the new least-cost configuration
(q1 . . . qi q, p, e3, c + ic(A)) instead. (Note that ic(A) ≤ ic(x) for any terminal string x
generated by A from the definition of nonterminal’s insertion cost.)

In computing Followa(q1 . . . qi ), we will remove reduce actions by using nonterminal
symbols as well as terminal symbols.

Theorem 1

Followa(q1 . . . qi )

= {xa ∈ T ∗ | qi
α� q

a−→ q ′ in LR machine, αa ⇒∗ xa}
∪

⋃

[A→α•β] ∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Followa(q1 . . . qi−|α|q)

where action[qi−|α|, A] = goto q

Proof The proof is in the “Appendix”.

Theorem 1 shows that Followa(q1 . . . qi ) is computable by using terminal and nontermi-
nal symbols on the shift and goto paths in the LR-machine. Furthermore, in computing
Followa(q1 . . . qi ), Theorem 1 uses only kernel items for reduce actions, and removes all the
reduce actions caused by non-kernel items.

Using Theorem 1, we can remove reduce actions by inserting nonterminal symbols as
well as terminal symbols in repairing syntax errors. Figure 8 shows the new transition rule
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Fig. 8 〈〈R2〉〉: Transition rules to allow nonterminal transitions

set 〈〈R2〉〉 to allow nonterminal insertions as well. Transition rule set 〈〈R2〉〉 generates config-
uration (q1 . . . qi , p, t, e, c) that comprises a state sequence (q1 . . . qi ), the current position
of the first remaining input symbol (p), the number of successive shift or goto transitions that
the current configuration has had since the last reduction (t), the sequence of edit operations
have been made so far (e), and the sum of insertion and deletion costs to reach the current
configuration (c). Rule (R1I) in 〈〈R1〉〉 changes into (R2I-S) and (R2I-R) in 〈〈R2〉〉.
Rule (R2I-S) inserts a vocabulary symbol X for repairs, and rule (R2I-R) brings about
reduce actions using the kernel items only. Rule set 〈〈R2〉〉 removes reduce actions non-kernel
items cause that generate many redundant configurations.

3.4 Applying the A* algorithm

To accelerate the repair process and to prune unproductive configurations, we will adopt
the A* algorithm instead of the uniform cost search algorithm. The A* algorithm makes
repair process faster than the uniform cost search algorithm, and is also helpful to remove

the inefficiency that rule (R2I-S) has to check if there is a path satisfying qi
Xα� q

ap−→ q ′
for every visiting configuration (q1 . . . qi , p, t, e, c) before inserting a vocabulary symbol X .
Furthermore, the A* algorithm can remove unproductive configurations.

Heuristic functions are indispensable to the A* algorithm. Heuristic functions guess the
distance to the least-cost goal configuration. As the guessed distance gets closer to the real
distance, we can achieve better performance. However, the guessed distance must not over-
estimate the real distance in order to always obtain the least-cost repair. Heuristic functions
can also prune unproductive configurations. Pruning unproductive configurations decreases
memory use and accelerates the repair process because it greatly diminishes the number of
generated configurations.

We define the guessed distance using the property that reduce actions or deletions do not
occur if t > 1 for configuration (q1...qi , p, t, e, c) in 〈〈R2〉〉. Rule (R2I-S) shows that
configuration (q1...qi , p, t, e, c) uses only shift or goto actions to reach the goals if t > 1.
In this case, we know the real distance to the least-cost goal as follows.

Definition 2

dist(q, a)

= min{ic(γ ) | q
γα� q ′ in LR machine} if some q

γ a� q ′ exists in LR machine
= ∞ otherwise
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Fig. 9 〈〈R3〉〉: Transition rules to use the A* algorithm

Hence, our guessed distance using dist(q, a) is as follows. Our guessed distance is dist(qi , ap)

if t > 1 for configuration (q1...qi , p, t, e, c) because dist(qi , ap) is the real distance to the
least-cost goal in this case. However, our guessed distance is 0 if t = 1 because reduce actions
or deletions can possibly intervene for (q1...qi , p, t, e, c) to reach the goals. As mentioned,
the guessed distance must not overestimate the real distance to obtain the least-cost goal in
the A* algorithm.

We can compute dist(q, a) into a table at parser generation time. When repairing syntax
errors, we just look up the precalculated table for dist(q, a) instead of computing it every
time. Looking up the precalculated table reduces the execution time of the repair process,
while it requires additional storage. To store dist(q, a) into a table, we need a space of
|QM | · |T ∪ {$}| · B where QM is the set of all LR-states, T is the set of terminal symbols,
and B is the bit size of the maximum value of dist(q, a).

Figure 9 shows the new transition rule set 〈〈R3〉〉 that repairs syntax errors using the A*
algorithm. Configuration (q1...qi , p, t, e, c f , cg) contains the cost traversed already c f , and
the guessed distance to the least-cost goal cg . Guessed distance cg is 0 when t = 1. The total
cost of the configuration is c f +cg . If t > 1 and dist(qi , ap) is infinite or there is no path satis-

fying qi
γ ap� q ′ in LR-machine, then the configuration is unproductive since the configuration

never reaches the goal configurations using shift or goto actions only. Such unproductive con-
figurations can cause the huge space of configurations, and slow the error repair process. Rule
(R3I-S) prunes unproductive configurations by not generating new configurations when
dist(q, ap) is infinite. Meanwhile, rule (R3I-S) is more efficient than rule (R2I-S). That
is because rule (R3I-S) checks only whether dist(q, ap) < ∞ by looking up the precom-
puted table before generating new configurations, unlike rule (R2I-S) that checks whether

there is a path satisfying qi
Xα� q

ap−→ q ′ for every visiting configuration (q1 . . . qi , p, t, e, c).

3.5 Removing redundant configurations

We will remove redundant configurations that transition rules in 〈〈R3〉〉 still generate. Although
we eliminated redundant configurations that non-kernel items cause in Sect. 3.3, there can
still be some redundant configurations that kernel items bring about. We will remove some
of such redundant configurations not only to speed up the repair process but also to reduce
required memory space.

We use the hash table to remove the redundant configurations. For configuration
(q1 . . . qi , p, t, e, c f , cg), we use (q1 . . . qi , p) as an index to the hash table. We keep
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only the least-cost configurations in the hash table by removing other redundant ones. If
(q1 . . . qi , p, t ′, e′, c′

f , c′
g) is going to be inserted when (q1 . . . qi , p, t, e, c f , cg) is already

in the hash table, then the configuration with a greater cost will be removed and the configu-
ration with a less cost will be stored at the hash table because (q1 . . . qi , p, t, e, c f , cg) and
(q1 . . . qi , p, t ′, e′, c′

f , c′
g) are equivalent.

We remove only the redundant configurations that rule (R3I-R) generates. For every
generated configuration, looking up its equivalent configuration in the hash table is expensive
because the computation requires comparing the state sequence of the generated configura-
tion with the state sequences of a group of configurations having the same hash value in the
hash table. Hence, if we have a redundancy test for every generated configuration, the repair
process will get slow. On the other hand, if we have no redundancy test for any generated
configurations, the repair process will get slow too. That is because redundant configurations
will increase greatly. For these reasons, we have a redundancy test for only the configurations
that rule (R3I-R) generates.

3.6 Improving the repair quality

We alter rule (R3S) in 〈〈R3〉〉 to

(R3S− n)
(q1 . . . qi , ap . . . am)

LR−→
∗

(q1 . . . q j , ap+1 . . . am)

(q1 . . . qi , p, t, e, c f , cg)
R3−→ (q1 . . . q j , p + 1, 1, e · (shift), c f , 0)

in order to improve the repair quality. Rule(R3S-n) allows examining more varied configu-
rations than rule(R3S) by generating every configuration after each possible shift operation.
Unlike (R3S-n), rule (R3S) generates only the configuration after k shifts; it does not
generate intermediate configurations after m shifts for 0 < m < k. As a result, rule (R3S)
degrades the repair quality because it does not generate intermediate configurations that
would lead to more proper repairs.

We also change the selection method to choose the repair among candidates. We consider
a repair is a sequence of edit operations applying rules (R3I-S), (R3I-R) and (R3D)
within the first Nt input symbols and applying rule (R3S-n) to any possible locations such
that after applying the repair, parsing can continue farther than after applying other repair
candidates. Once a repair candidate is selected, other repair candidates with greater costs will
be removed. Unlike our selection method, Corchuelo et al.’s method considers a repair is a
sequence of edit operations using rules (CO-INS), (CO-DEL) and (CO-SHIFT) within
the first Nt input symbols such that after applying the repair, parsing can continue for at least
N symbols or else it reaches an accepting configuration.

3.7 Examples

We will illustrate how our method works when it detects a syntax error, and compare our
method with Cerecke’s method (p. 16) and Corchuelo et al.’s method (p. 6, 17). Let G =
(N , T, P, S) be a context-free grammar such that

– N = {S, A},
– T = {a, b, (, )}, and
– P = {S → A, A → (A), A → a, A → b}.
Figure 10 shows the LR(1)-machine and parsing table for G. LR states show their corre-
sponding kernel items. Let x = (($ be the input string. Then, the LR(1) parser will detect a
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Fig. 10 The LR(1)-machine and parsing table for G. LR states show their corresponding kernel items

Fig. 11 Configuration tree using 〈〈R3〉〉 and the table for dist(q, a) for input string (($. Configuration
(q1 . . . qi , p, t, e, c f , cg) is composed of a state sequence (q1...qi ), the current position of the first remain-
ing input symbol (p), the number of last states whose shift or goto actions have been considered (t), the
sequence of edit operations have been made so far (e), the cost traversed already c f , and the guessed
distance to the least-cost goal cg . The unproductive configurations (0552, 3, 2, [a], 1,∞), (0553, 3, 2, [b],
1, ∞) and (0555, 3, 2, [(], 1, ∞) are not generated in fact

syntax error after parsing the first two symbols. That is,

(0, (($)
LR−→ (05, ($)

LR−→ (055, $) −→ error.

Our method using 〈〈R3〉〉 starts from configuration (055, 3, 1, [ ], 0, 0) and generates other
configurations using (R3I-S) and (R3I-R) in this example until it reaches a goal config-
uration. (In this case, it reaches the accepting configuration.) All generated configurations are
shown in Fig. 11. The unproductive configurations (0552, 3, 2, [a], 1,∞), (0553, 3, 2, [b],
1,∞) and (0555, 3, 2, [(], 1,∞) are not generated in fact because their cg values are infi-
nite. Our method generates only four configurations, which is more efficient than Corchuelo
et al.’s method in Fig. 12 and Cerecke’s method in Fig. 13.
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Fig. 12 Configuration tree using Corchuelo et al.’s method for input string (($. Configuration (q1 . . . qi ,
p, e, c) is composed of a state sequence (q1...qi ), the current position of the first remaining input symbol (p),
the sequence of edit operations have been made so far (e) and the sum of insertion and deletion costs to reach
the current configuration (c)

Fig. 13 Configuration tree using Cerecke’s method for input string (($. Configuration (q1 . . . qi , p, t, e, c)
is composed of a state sequence (q1...qi ), the current position of the first remaining input symbol (p), the
number of last states whose shift or goto actions have been considered (t), the sequence of edit operations
have been made so far (e) and the sum of insertion and deletion costs to reach the current configuration (c)

Corchuelo et al.’s method and Cerecke’s method generate more configurations than our
method as in Figs. 12, 13. Corchuelo et al.’s method also starts from (055, 3, 1, [ ], 0, 0)

and generates other configurations using (CO-INS) in this example until it reaches a goal
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Fig. 14 McKenzie et al.’s transition rules

configuration. Figure 12 shows the generated configurations using Corchuelo et al.’s method.
This method generates 24 configurations in the worst case. Similarly, Cerecke’s method also
starts from (055, 3, 1, [ ], 0, 0) and generates other configurations using (CR-LR-SHIFT)
and (CR-LR-REDUCE) here until it reaches a goal configurations. Figure 13 shows the
generated 24 configurations in the worst case using Corchuelo et al.’s method.

4 Related works

Fischer et al.’s table-driven local error repair methods [7–10,15] attempt to edit an errone-
ous input string to a syntactically correct one by inserting and deleting terminal symbols.
Their methods find insertion terminal strings by using kernel items and precalculated tables.
However, their methods do not take account of the validation process that selects the most
adequate one among some number of least-cost repair candidates, and they suffer from redun-
dant stack configurations. Fischer and Mauney use the hash table to remove redundant stack
configurations in LL(1) grammars [9].

Bertsch’s method [2] removes redundant stack configurations without using the hash table,
but the method does not consider terminal deletions and is applicable only to LL(1) gram-
mars. Dain’s method [6] generates the whole set of continuation strings of some fixed length
first and then replaces a prefix of the remaining input string with the one whose distance
is minimum according to the criterion by Wagner and Fischer [21]. However, the cost to
find the whole set of continuation strings is very high. Penello and DeRemer [18] attempt to
reduce redundant work by performing in parallel all possible parses from the position where
a syntax error is found.

McKenzie et al.’s method [16] McKenzie et al.’s method attempts to edit an invalid input
string to a syntactically correct one by inserting and deleting terminal symbols. In order to
enhance the repair quality, this method takes account of the validation process that gathers
some number of least-cost repair candidates and then chooses the most adequate one among
them as the final repair.

McKenzie et al.’s method uses two transition rules in Fig. 14 where configuration
(q1 . . . qi , p, e, c) is composed of a state sequence (q1...qi ), the current position of the first
remaining input symbol (p), the sequence of edit operations have been made so far (e), and
the sum of insertion and deletion costs to reach the current configuration (c).

McKenzie et al.’s method generates all the reachable configurations by using (MC-INS)
and (MC-DEL) until some fixed number of least-cost goals are obtained. The goal is some
configuration (q1...qi , p, e, c) where action[qi , ap] ∈ {shift q,accept} for a state q .
This method will choose one among the obtained goals as the repair if the chosen one
enables parsing to continue farthest.

McKenzie et al.’s method is easy to understand, and uses only the parsing table remov-
ing other precalculated ones (for instance, precalculated S and E tables used in [7–10].
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Fig. 15 Cerecke’s transition rules

Theoretically this method can repair any syntax errors. However, this method generates
redundant or unproductive configurations. Thus, for a huge number of generated configura-
tions, this method often fails to find a repair within reasonable time and space. In case of
failure, it reverts to a secondary recovery method such as panic mode [1], which degrades
the repair quality severely. To discard redundant configurations, McKenzie et al. proposed
the bitmap method [16] that removes configurations whose top states in their state sequences
are the same except for the least-cost one. This bitmap method is very efficient but does not
guarantee the least-cost error repair [3] and can not remove unproductive configurations.

Kim and Choe’s method [14] Kim and Choe’s method attempts to edit an erroneous input
string to a syntactically correct one by insertion and deletion operations. This method takes
account of inserting nonterminal symbols as well as terminal symbols for efficient error
repairs. This method also considers the validation process in order to enhance the repair
quality. This method is very efficient to repair syntax errors in O(n + k log n) where the k
least-cost repair candidates are taken into account and the length of the parsing stack is n
when a syntax error occurs.

Although Kim and Choe’s method is very efficient, this method does not consider shift
operations unlike Corchuelo et al.’s method [5]. In addition, though this method reduces
redundant configurations greatly, it fails to remove all of them. As this method chooses the
most proper one among the k least-cost repair candidates, the repair quality can be debased
if there are some redundant configurations among the k least-cost repair candidates.

Cerecke’s method [4] Cerecke’s method improves McKenzie et al.’s method by inserting
nonterminal symbols as well as terminal symbols. Inserting nonterminals can eliminate some
reduce actions to bring about many redundant configurations occurring in McKenzie et al.’s
method.

Cerecke’s method uses three transition rules in Fig. 15 where configuration (q1...qi , p, t,
e, c) is composed of a state sequence (q1...qi ), the current position of the first remaining
input symbol (p), the number of shift or goto actions this configuration has had since the
last reduction (t), the sequence of edit operations have been made so far (e), and the sum of
insertion and deletion to reach the current configuration (c).

Cerecke’s method removes some reduce actions to cause redundant configurations. If
[A → α•] ∈ qi and |α| < t for configuration (q1 . . . qi , p, t, e, c), this method does not
reduce A → α at qi because reducing it just generates a redundant configuration. Figure 16
depicts the situation. If [A → α•] ∈ qi and |α| < t for configuration (q1 . . . qi , p, t, e, c),
there must be some previous configuration (q1...qi−|α|, p, t − |α|, e′, c − ic(α)) leading to
(q1...qi , p, t, e, c) through insertion of α. Furthermore, from the previous configuration, con-
figuration (q1...qi−|α|q, p, t −|α|+1, e′′, c− ic(α)+ ic(A)) was generated by insertion of A.
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Fig. 16 Configuration (q1...qi−|α|q, p, t −|α|+1, e, c) is redundant because it is equivalent to (q1...qi−|α|q,

p, t − |α| + 1, e′′, c − ic(α) + ic(A)) and its cost c is not less than c − ic(α) + ic(A)

Reducing A → α at qi generates configuration (q1...qi−|α|q, p, t − |α| + 1, e, c), which is
redundant because this configuration is equivalent to (q1...qi−|α|q, p, t − |α| + 1, e′′, c −
ic(α)+ ic(A)) and its cost c is not less than c− ic(α)+ ic(A). (Note that ic(A) = min{ic(x) |
A ⇒∗ x} and A → α.) Hence, this unnecessary reduce action is avoidable.

Like McKenzie et al.’s method, Cerecke’s method often fails to find a repair within rea-
sonable time and space, so this method must have an additional way of reducing search
space.

Corchuelo et al.’s method [5] This method is explained in Sect. 3.1. As mentioned,
(CO-SHIFT) supports restricted shifts only. (CO-SHIFT) generates only the configu-
ration obtained by applying sequential k-shift operations, but does not generate intermediate
configurations obtained by m-shift operations (m < k). Such intermediate configurations
can enhance the repair quality by considering more varied configurations whereas they slow
the repair process by increasing the number of generated configurations. Furthermore, this
method often fails to find a repair within reasonable time and space because this method gen-
erates unproductive and redundant configurations. In case of failure, it reverts to a secondary
recovery mechanism such as panic mode [1], which degrades the repair quality severely.

5 Experimental results

This section shows the experimental results that compare our method with Cerecke’s method
[4], Kim and Choe’s method [14] and Corchuelo et al.’s method [5] with respect to quality and
efficiency. We exclude McKenzie et al.’s method from our experiments because Cerecke’s
method is similar to and improves on McKenzie et al.’s method by allowing nonterminal
insertions. For brevity, we write [NM] for our new method, [CE] for Cerecke’s method,
[KC] for Kim and Choe’s method, and [CO] for Corchuelo et al.’s method.

Our test programs are C and Java programs with syntax errors. For test programs, we
corrupt syntactically correct 110 C programs and 144 Java programs by inserting, deleting
or modifying symbols at random positions. Syntax errors are randomly made at one to five
places in a program. Random syntax errors are made using the Unix’s rand() function.

We carried out all the experiments on a machine running Linux kernel 2.6.20-1 with Intel
Pentium-IV 3.20 GHz processor and 2 GB memory. For C language, we use the C grammar
in the book “The C Programming Language, Second Edition” [13]. For Java language, we
use the Java 1.1 grammar. For each erroneous input program, we iterate the same error repair
5 times, and average their total repair times.

When we estimate the repair efficiency using [NM], we use rules (R3I-S), (R3I-R),
(R3D) and (R3S) in 〈〈R3〉〉 and adopt the Corchuelo et al.’s selection method of choosing
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Table 1 Parameter settings for each experiment

Set Method Experiment Ni Nd Nt N Nc

S1 [CE] Mismatched parentheses ∞ 3 − 3 500

[KC] (Figs. 17, 18, 19, 20) ∞ − − 3 500

[CO] 5 0 10 3 −
[NM] 5 5 10 3 −

S2 [CE] Repair efficiency ∞ 3 − 3 500

[KC] (Figs. 21, 22, 23, 24, 25, 26) ∞ − − 3 500

[CO] 4 3 10 3 −
[NM] 4 3 10 3 −

S3 [CE] Repair quality ∞ 3 − 30 500

[KC] (Table 2; Figs. 27, 28) ∞ − − 30 500

[CO] 4 3 10 3 −
[NM] 100 100 30 − −

Fig. 17 Time to repair using
[CE] in C

the repair among candidates for fair comparison with other methods. Meanwhile, when we
estimate the repair quality using [NM], we use rules (R3I-S), (R3I-R), (R3D) and
(R3S-n) and adopt the selection method in Sect. 3.6 for better repair quality.

We limit the repair process to a portion of the first Nt input symbols, the number of inser-
tions to Ni , the number of deletions to Nd , the number of sequential shift operations to at
most N and the number of distinct repair candidates to Nc. We use 1 for all insertion and
deletion costs. Table 1 shows the parameter settings in each experiment. We set parameters
differently in order to get the best results from each experiment within reasonable time and
space.

To evaluate the repair efficiency, we measure the times to repair the following erroneous
C programs

main () {int x; x=((( · · · (0;}

by increasing the number of mismatched left parentheses. This experiment shows our method,
[NM], is much faster than [CE] and [CO] but slower than [KC] in repairing the above
C programs. Figures 17, 18 show that [CE] and [CO] become slow exponentially as the
number of mismatched left parentheses increases. (Note that the y-axes are log-scaled in
Figs. 17, 18.) [CE] and [CO] become very slow if long insertion strings are needed to
repair errors. Unlike these methods, Fig. 20 shows that [KC] is very fast to repair the above
C programs. According to Fig. 20,[KC] becomes slow linearly as the number of mismatched
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Fig. 18 Time to repair using
[CO] in C

Fig. 19 Time to repair using
[NM] in C

Fig. 20 Time to repair using
[KC] in C

left parentheses increases. Figure 19 shows that [NM] still gets slow exponentially and is
slower than [KC] but [NM] is much faster than [CE] and [CO].

To evaluate the repair efficiency, we also measure the execution times to repair our test
programs. Each point corresponds to a test program in Figs. 21, 22, 23, 24, 25, 26. The x
and y coordinates of a point are the execution times to repair the corresponding test program
using the x-axis method and the y-axis method, respectively. If a point (a, b) is located under
the line y = x in Figs. 21, 22, 23, 24, 25, 26, then a > b. Thus, the point’s location implies
that the y-axis method is more efficient to repair the corresponding test program than the
x-axis method. As the x-axes are log-scaled in Figs. 21, 22, 23, 24, 25, 26 in order to show
each point clearly, the line y = x is shown as a curve in each graph.

Figures 21, 22, 23, 24, 25, 26 show that our method [NM] repairs syntax errors more rap-
idly than [CE], [KC] and [CO] on the whole. Figures 21, 22, 23, 24, 25, 26 show X -marks
to represent test programs that each method fails to repair. The X -marks at the rightmost of
graphs imply that the x-axis method fails to repair. Likewise, the X -marks at the topmost of
graphs imply that the y-axis method fails to repair. The [CE] method fails to repair one C
program in Fig. 21 by consuming too much memory space. The [NM] method fails to repair
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Fig. 21 Repair times for C
programs

Fig. 22 Repair times for Java
programs

Fig. 23 Repair times for C
programs

one Java program in Figs. 22, 24, 26 because of limited Ni and Nd . The [CO] method fails
repair 4 C programs in Fig. 25 because of limited Ni and Nd .

In case of [CO], we set Ni = 4, Nd = 3, Nt = 10 and N = 3 because Corchuelo et al.
report that this setting produces good repairs [5]. One may think that [CO] might repair the
4 C programs if Ni and Nd become sufficiently large. In practice, however, [CO] still fails
to find proper repairs within reasonable time and space because [CO] becomes very slow
consuming too much memory space as Ni > 4 or Nd > 3.
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Fig. 24 Repair times for Java
programs

Fig. 25 Repair times for C
programs

Fig. 26 Repair times for Java
programs

Meanwhile, [CO] and [NM] using rule (R3S) should produce the same error repairs
basically, but their numbers of failed test programs are different. That is because [CO] and
[NM] select different repairs from the same cost of repair candidates. Carefully designing
insertion and deletion costs can lessen the number of repair candidates with the same cost.

In order to evaluate the repair quality, we use the sum total of insertion and deletion costs
to repair syntax errors in a test program. We assume that a method repairs a test program
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Table 2 Repair costs and repair quality compared with [NM]

Method Lang Repair cost Failure <[NM] (%) =[NM](%) >[NM](%)

[CE] C 549 – 0.9 74.5 24.5

[KC] C 602 – 1.8 69.1 29.1

[CO] C 539 3.6 1.8 68.2 30.0

[NM] C 419 – – – –

[CE] Java 808 – 1.4 48.6 50.0

[KC] Java 901 – 1.4 38.2 60.4

[CO] Java 544 – 2.8 75.0 22.2

[NM] Java 496 – – – –

Fig. 27 Repair times for C
programs

better than another if the method repairs the test program with less cost of edit operations
than another. (Note that insertion and deletion costs are all equal in our experiments.)

The “Repair cost” column in Table 2 shows the total repair costs of edit operations to
repair all 110 C test programs and all 144 Java test programs using each method. This col-
umn shows that [NM] can repair syntax errors with less costs of edit operations than other
methods.

The “Failure” column in Table 2 shows the ratios of test programs which each correspond-
ing method fails to repair. This column shows that [CO] fails to find proper repairs in 3.6 %
of C programs. As mentioned, [CO] still fails to find proper repairs within reasonable time
and space even if Ni and Nd become sufficiently large.

The “<[NM]”, “=[NM]” and “>[NM]” columns in Table 2 show the relative numbers
of test programs repaired with less costs than [NM], with the same costs as [NM], and with
greater costs than [NM], respectively. These columns show that [NM] can repair syntax
errors with better repair quality than [CE], [KC] and [CO].

Figures 27, 28 show the repair times using [NM] and [CO] with the same parameter
settings as the previous experiment. They show that [NM] with the parameters of Ni =
100, Nd = 100 and Nt = 30 is as efficient as [CO] with the parameters of Ni = 4, Nd =
3, Nt = 10 and N = 3. The x-axes and y-axes are all log-scaled in order to show each point
clearly. The test programs that [CO] fails to repair are represented as the X -marks in Fig. 27.
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Fig. 28 Repair times for Java
programs

6 Conclusions

In this article, we have presented a local LR error repair method that finds high-quality repairs
efficiently. The method improves on existing works both in repair efficiency and in repair
quality, in that it repairs syntax errors quickly by using the A* algorithm and it enhances the
repair quality by supporting unrestricted shifts, as well as insertions and deletions, to repair
invalid input strings. This method also accelerates repair process and reduces memory use
by removing unproductive and redundant configurations. Experimental results show that the
new method is excellent to repair syntax errors with respect to efficiency and quality.

In evaluating error repair methods, the difficulty is how to obtain unbiased test programs
and how to evaluate the repair quality. It is very crucial to obtain unbiased test programs
because biased test programs tend to lead to biased results. In existing works, evaluating
the repair quality has been dependent on a rather subjective evaluation of the experimenters.
We believe that our test programs and evaluation method are more persuasive than those in
existing works although they may not be perfect.

Appendix

Theorem 1

Followa(q1 . . . qi )

= {xa ∈ T ∗ | qi
α� q

a−→ q ′ in LR machine, αa ⇒∗ xa}
∪

⋃

[A→α•β] ∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Followa(q1 . . . qi−|α|q)

where action[qi−|α|, A] = goto q

Proof From Definition 1,

Followa(q1 . . . qi ) = {xa | (q1 . . . qi , xay$)
LR−→

∗
(q1 . . . q j , y$)}.

Followa(q1 . . . qi ) can also be expressed as

{xa | xay ∈ Follow(q1 . . . qi )}.
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On the other hand, from Lemma 3,

Follow(q1 . . . qi )

=
⋃

[A→α•β] ∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q)

where qi−|α|
A−→ q.

Thus, Followa(q1 . . . qi ) can be rewritten as

Followa(q1 . . . qi )

= {xa | xay ∈ Follow(q1 . . . qi )}
=

⋃

[A→α•β] ∈ kernel(qi )

{xa ∈ T ∗ | β ⇒∗ xay}

∪
⋃

[A→α•β] ∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Followa(q1 . . . qi−|α|q)

where qi−|α|
A−→ q.

Then, from Lemma 4, we conclude that

Followa(q1 . . . qi )

= {xa ∈ T ∗ | q
γ a� q ′ in LR machine, γ a ⇒∗ xa}

∪
⋃

[A→α•β] ∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Followa(q1 . . . qi−|α|q)

where qi−|α|
A−→ q.

Lemma 1

Follow(q1 . . . qi )

=
⋃

[A→α•β]∈qi

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q) where qi−|α|
A−→ q

Proof By Definition 1,

Follow(q1 . . . qi ) = {x | (q1 . . . qi , x$)
LR−→

∗
(q1 . . . q j , $), action[q j , $] = accept}.

Then, for any x in Follow(q1 . . . qi ), there exists an item [A → α •β] in qi such that β ⇒∗ y
and x = yz for some terminal strings y and z, satisfying

(q1 . . . qi , x$)

= (q1 . . . qi , yz$)
LR−→

∗
(q1 . . . qi+|β|, z$)

LR−→ (q1 . . . qi−|α|q, z$) reducing A → αβ and qi−|α|
A−→ q

LR−→
∗

(q1 . . . q j , $) and action[q j , $] = accept.

Thus, for any x in Follow(q1 . . . qi ),

x ∈ {w ∈ T ∗ | β ⇒∗ w} · Follow(q1 . . . qi−|α|q)

for some [A → α • β] ∈ qi and qi−|α|
A−→ q . We conclude that

Follow(q1 . . . qi )

=
⋃

[A→α•β]∈qi

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q) where qi−|α|
A−→ q.
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Lemma 2 For any non-kernel item [C → •γ ] in qi , the set

{x ∈ T ∗ | γ ⇒∗ x} · Follow(q1 . . . qi q) where qi
C−→ q

is included in
⋃

[A→α•β]
∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q ′) where] qi−|α|
A−→ q ′.

Proof For any non-kernel item [C → •γ ] in qi , there always exists at least one kernel item
[A → α • Bβ] in qi satisfying the following derivation tree.

Thus, for any w ∈ {x ∈ T ∗ | γ ⇒∗ x} · Follow(q1 . . . qi q), there exists a kernel item
[A → α • Bβ] in qi satisfying the above derivation relation such that

w ∈ {x ∈ T ∗ | γβn . . . β1βδ2 ⇒∗ x}.
This relation can be re-expressed as

w ∈ {x ∈ T ∗ | Bβδ2 ⇒∗ x}
since B ⇒∗ γβn . . . β1, and also as

w ∈ {x ∈ T ∗ | Bβ ⇒∗ x} · Follow(q1 . . . qi−|α|q ′) where qi−|α|
A−→ q ′

since {x ∈ T ∗ | δ2 ⇒∗ x} ⊆ Follow(q1 . . . qi−|α|q ′). Hence,

w ∈
⋃

[A→α•β]
∈kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q ′) where qi−|α|
A−→ q ′.

It follows that, for any non-kernel item [C → •γ ] in qi , the set

{x ∈ T ∗ | γ ⇒∗ x} · Follow(q1 . . . qi q) where qi
C−→ q
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is included in
⋃

[A→α•β]
∈kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q ′) where qi−|α|
A−→ q ′.

Lemma 3

Follow(q1 . . . qi )

=
⋃

[A→α•β] ∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q)

where qi−|α|
A−→ q

Proof By Lemma 1,

Follow(q1 . . . qi )

=
⋃

[A→α•β]∈qi

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q) where qi−|α|
A−→ q.

As qi = kernel(qi ) ∪ non-kernel(qi ), Follow(q1 . . . qi ) can be re-expressed as follows.

Follow(q1 . . . qi )

=
⋃

[A→α•β]∈
kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q) where qi−|α|
A−→ q

⋃ ⋃

[A→•β]∈
non-kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi q) where qi
A−→ q

By Lemma 2,

⋃

[A→•β]∈
non-kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi q) where qi
A−→ q

in included in
⋃

[A→α•β]∈kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q) where qi−|α|
A−→ q.

Hence, we conclude that

Follow(q1 . . . qi )

=
⋃

[A→α•β]
∈ kernel(qi )

{x ∈ T ∗ | β ⇒∗ x} · Follow(q1 . . . qi−|α|q) where qi−|α|
A−→ q.

Lemma 4 For a given terminal symbol a,
⋃

[A→α•β] ∈ kernel(q)

{xa ∈ T ∗ | β ⇒∗ xay}

= {xa ∈ T ∗ | q
γ a� q ′ in LR machine, γ a ⇒∗ xa}.
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Proof We will prove this lemma by showing two sets are included in each other as follows.

(1) There exists some viable prefix δ leading to state q in LR machine. If a kernel item
[A → α • β] is in q , then there is a derivation relation as follows.

S ⇒∗
r δ1 Az ⇒r δ1αβz = δβz

for some viable prefix δ1 and z ∈ T ∗. Meanwhile, if β ⇒∗
r xay ∈ T ∗, then there exists

a vocabulary string γ a such that β ⇒∗
r γ ay ⇒∗

r xay. Thus, there exists a derivation
relation as

S ⇒∗
r δβz ⇒∗

r δγ ayz ⇒∗
r δxayz

meaning that there exists a viable prefix δγ a and γ a ⇒∗ xa. Suppose that δγ a leads to

a state q ′ in the LR machine. As δ leads to a state q , there exists a path q
γ a� q ′ in the

LR machine and γ a ⇒∗ xa. Hence, we conclude that
⋃

[A→α•β]∈ kernel (q)

{xa ∈ T ∗ | β ⇒∗ xay}

⊆ {xa ∈ T ∗ | q
γ a� q ′ in LR machine, γ a ⇒∗ xa}.

(2) Lemma 5 shows that if there is a path q
γ a� q ′ for some state q in LR machine, then there

exists a kernel item [A → α • β] in q such that β ⇒∗
r γ ax for some x ∈ T ∗. From

Lemma 5, we know

{γ a | q
γ a� q ′ in LR machine}

⊆
⋃

[A→α•β]∈ kernel (q)

{γ a | β ⇒∗
r γ ax, ax ∈ T ∗}.

Hence,

{xa ∈ T ∗ | q
γ a� q ′ in LR machine, γ a ⇒∗ xa}

⊆
⋃

[A→α•β]∈ kernel (q)

{xa ∈ T ∗ | β ⇒∗ xay}.

From (1) and (2), we conclude that
⋃

[A→α•β] ∈ kernel(q)

{xa ∈ T ∗ | β ⇒∗ xay}

= {xa ∈ T ∗ | q
γ a� q ′ in LR machine, γ a ⇒∗ xa}.

Lemma 5 If there is a path q
γ� q ′ (|γ | > 0) for some LR state q in LR-machine, then there

exists a kernel item [A → α • β] in q such that β ⇒∗
r γ x for some x ∈ T ∗.

Proof We will prove this lemma by induction on the length of γ .

(1) Suppose that |γ | = 1 and γ = X .
Then, q has some item [B → δ1 • Xδ2].
– If [B → δ1 • Xδ2] is a kernel item in q , then it is evident that there exists a kernel

item [B → δ1 • Xδ2] in q such that Xδ2 ⇒∗
r X x for some x ∈ T ∗.

– If [B → δ1 • Xδ2] is a non-kernel item, then δ1 = ε and there is some kernel item
[A → α • β] in q such that β ⇒∗

r Xδ2 y for some y ∈ T ∗. Hence, there is some
kernel item [A → α • β] in q such that β ⇒∗

r Xδ2 y ⇒∗
r X xy for some x, y ∈ T ∗.
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(2) Suppose that |γ | > 1 and γ = Xγ ′.
Let q

X−→ q ′′ γ ′
� q ′ for some state q ′′. Then, by the inductive hypothesis, there exists a

kernel item [A → αX • β] in q ′′ such that β ⇒∗
r γ ′x for some x ∈ T ∗. (Note that any

kernel item in q ′′ is of the form of [A → αX • β] because q
X−→ q ′′.) From q

X−→ q ′′,
we know that there is an item [A → α • Xβ] in q .

– If [A → α • Xβ] is a kernel item in q , then it is clear that there exists a kernel item
[A → α • Xβ] in q such that Xβ ⇒∗

r Xγ ′x for some x ∈ T ∗. (Note that β ⇒∗
r γ ′x

for some x ∈ T ∗.)
– If [A → α • Xβ] is a non-kernel item, then α = ε and there is some kernel item

[A′ → α′ • β ′] in q such that β ′ ⇒∗
r Xβy for some y ∈ T ∗. Hence, there is some

kernel item [A′ → α′ • β ′] in q such that

β ′ ⇒∗
r Xβy ⇒∗

r Xγ ′xy

for some x, y ∈ T ∗. (Note that β ⇒∗
r γ ′x for some x ∈ T ∗.)

From (1) and (2), we conclude that this lemma is true.
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