Predicate Generation for Learning-Based
Quantifier-Free Loop Invariant Inference*

Yungbum Jung', Wonchan Lee!, Bow-Yaw Wang?, and Kwangkuen Yi'

! Seoul National University
2 INRIA and Academia Sinica

Abstract. We address the predicate generation problem in the context of loop
invariant inference. Motivated by the interpolation-based abstraction refinement
technique, we apply the interpolation theorem to synthesize predicates implicitly
implied by program texts. Our technique is able to improve the effectiveness and
efficiency of the learning-based loop invariant inference algorithm in [14]. Ex-
periments excerpted from Linux, SPEC2000, and Tar source codes are reported.

1 Introduction

One way to prove that an annotated loop satisfies its pre- and post-conditions is by
giving loop invariants. In an annotated loop, pre- and post-conditions specify intended
effects of the loop. The actual behavior of the annotated loop however does not neces-
sarily conform to its specification. Through loop invariants, verification tools can check
whether the annotated loop fulfills its specification automatically [10, 5].

Finding loop invariants is tedious and sometimes requires intelligence. Recently,
an automated technique based on algorithmic learning and predicate abstraction is pro-
posed [14]. Given a fixed set of atomic predicates and an annotated loop, the learning-
based technique can infer a quantifier-free loop invariant generated by the given atomic
predicates. By employing a learning algorithm and a mechanical teacher, the new tech-
nique is able to generate loop invariants without constructing abstract models nor com-
puting fixed points. It gives a new invariant generation framework that can be less sen-
sitive to the number of atomic predicates than traditional techniques.

As in other techniques based on predicate abstraction, the selection of atomic pred-
icates is crucial to the effectiveness of the learning-based technique. Oftentimes, users
extract atomic predicates from program texts heuristically. If this simple strategy does
not yield necessary atomic predicates to express loop invariants, the loop invariant in-
ference algorithm will not be able to infer a loop invariant. Even when the heuristic
does give necessary atomic predicates, it may select too many redundant predicates and
impede the efficiency of loop invariant inference algorithm.

* This work was supported by the Engineering Research Center of Excellence Program of Korea
Ministry of Education, Science and Technology(MEST) / National Research Foundation of
Korea(NRF) (Grant 2010-0001717), National Science Council of Taiwan Grant Numbers 97-
2221-E-001-003-MY3 and 97-2221-E-001-006-MY3, the FORMES Project within LIAMA
Consortium, and the French ANR project SIVES ANR-08-BLAN-0326-01.

One way to circumvent this problem is to generate atomic predicates by need.
Several techniques have been developed to synthesize atomic predicates by interpo-
lation [12,17,18,9]. Let A and B be logic formulae. An interpolant of A and B is a
formula such that A = I and I A B is inconsistent. Moreover, the non-logical symbols
in I must occur in both A and B. By Craig’s interpolation theorem, an interpolant [
always exists for any first-order formulae A and B when A A B is inconsistent [6].
The interpolant I can be seen as a concise summary of A with respect to B. Indeed,
interpolants have been used to synthesize atomic predicates for predicate abstraction
refinement in software model checking [11, 12,17, 18, 9].

Inspired by the refinement technique in software model checking, we develop an
interpolation-based technique to synthesize atomic predicates in the context of loop
invariant inference. Our algorithm does not add new atomic predicates by interpolating
invalid execution paths in control flow graphs. We instead interpolate the loop body
with purported loop invariants from the learning algorithm. Our technique can improve
the effectiveness and efficiency of the learning-based loop invariant inference algorithm
in [14]. Constructing the set of atomic predicates can be fully automatic and on-demand.
Example. Consider the following annotated loop:

{n>0Az=nAy=n}whilex >0dox=x—1;y=y—1ldone{z+y=0}

Assume that variables x and y both have the value n > 0 before entering the loop. In
the loop body, each variable is decremented by one until the variable x is zero. We want
to show that = + y is zero after executing the loop. Note that the predicate x = y is
implicitly implied by the loop. The program text however does not reveal this equality
explicitly. Moreover, atomic predicates from the program text can not express loop
invariants that establish the specification. Using atomic predicates in the program text
does not give necessary atomic predicates.

Any loop invariant must be weaker than the pre-condition and stronger than the
disjunction of the loop guard and the post-condition. We use the atomic predicates in
an interpolant of n > 0Ax = nAy =nand —(z+y = 0V z > 0) to obtain the initial
atomic predicates {x = y,2y > 0}. Observe that the interpolation theorem is able to
synthesize the implicit predicate x = y. In fact, x = y A x > 0 is a loop invariant that
establishes the specification of the loop.

Related Work. Loop invariant inference using algorithmic learning is introduced in [14].
In [15], the learning-based technique is extended to quantified loop invariants. Both al-
gorithms require users to provide atomic predicates. The present work addresses this
problem for the case of quantifier-free loop invariants.

Many interpolation algorithms and their implementations are available [17,3,7].
Interpolation-based techniques for predicate refinement in software model checking are
proposed in [11, 12, 18,9, 13]. Abstract models used in these techniques however may
require excessive invocations to theorem provers. Another interpolation-based tech-
nique for first-order invariants is developed in [19]. The paramodulation-based tech-
nique does not construct abstract models. It however only generates invariants in first-
order logic with equality. A template-based predicate generation technique for quanti-
fied invariants is proposed [20]. The technique reduces the invariant inference problem
to constraint programming and generates predicates in user-provided templates.

This paper is organized as follows. After Introduction, preliminaries are given in
Section 2. We review the learning-based loop invariant inference framework in Sec-
tion 3. Our technical results are presented in Section 4. Section 5 gives the loop invariant
inference algorithm with automatic predicate generation. We report our experimental
results in Section 6. Section 7 concludes this work.

2 Preliminaries

Let QF denote the quantifier-free logic with equality, linear inequality, and uninter-
preted functions [17, 18]. Define the domain D = Q U B where Q is the set of rational
numbers and B = {F, T'} is the Boolean domain. Fix a set X of variables. A valuation
over X is a function from X to D. The class of valuations over X is denoted by Valx.
For any formula § € @QF and valuation v over free variables in 6, 6 is satisfied by v
(written v = 0) if 0 evaluates to T under v; 0 is inconsistent if 6 is not satisfied by
any valuation. Given a formula 0 € QF, a satisfiability modulo theories (SMT) solver
returns a satisfying valuation v of € if 6 is not inconsistent [8, 16].

For § € QF, we denote the set of non-logical symbols occurred in 6 by o(6). Let
O = [b1,...,0,,] be a sequence with ; € QF for 1 < i < m. The sequence O is
inconsistent if 01 A 02 A - - A 0, is inconsistent. The sequence A = [Ag, A1, ..., Ap]
of quantifier-free formulae is an inductive interpolant of © if

- X =Tand\,, = F;
— foralll <i<m,\;_1 ABO; = \;; and
— foralll <i<m, U()\z) - 0(91) ﬁ0(9i+1).

The interpolation theorem states that an inductive interpolant exists for any inconsistent
sequence [6, 17, 18]. We consider the following imperative language in this paper:

Stmt = nop | Stmt; Stmt | x := Exp | z := nondet | if BExp then Stmt else Stmt
Expén|x|Exp+Exp|Exp7Exp
BExp SF | z | -BExp | BExp A BExp | Exp < Exp | Exp = Exp

Two basic types are available: natural numbers and Booleans. A term in Exp is a natural
number; a term in BExp is of Boolean type. The keyword nondet denotes an arbitrary
value in the type of the assigned variable. An annotated loop is of the form:

{6} while x do S1;S2;- - ; Sy, done {€}

The BExp formula « is the loop guard. The BExp formulae and e are the precondition
and postcondition of the annotated loop respectively.

Define X () = {z(% . z € X7}. For any term e over X, define e*) = ¢[X
X ®)). A transition formula [S] for a statement S is a first-order formula over variables

X0 U X1 defined as follows.

[[nop]] é /\ l‘<1> = $<0> [[J; = nondet]] é /\ y<1> _ y<0>
eeX yeX\{z}
[x := €] 220 = (0 A Ay =y
yeX\{z}
[S0: 511 2 AX.[So)[XV = X] A [S1[X O > X]
A

[[pr then S() else Sl]] (p<0> A [[S(]H) V (_|p<0> A [[Sﬂ])
Let v and / be valuations, and S a statement. We write v — o/ if [S] evaluates to

true by assigning v(z) and v/(z) to 2(?) and 21 for each 2 € X respectively. Given a

. s s S,
sequence of statements Sy; Sa; - - - ; Sy, @ program execution vy — vy —= - 27

Vm 18 @ sequence [vg, V1, . . . , Uy, Of valuations such that v; N Vipq for 0 < i < m.

A precondition Pre(0 : Sy;S9;--+;Sy) for 6 € QF with respect to the state-
ment Sq; So; - - - ; Sy, is a first-order formula that entails € after executing the statement
S1;S2; -+ ; Sm. Given an annotated loop {0} while k do S1;S9; -+ - ; Sy, done {e},
the loop invariant inference problem is to compute a formula ¢ € QF satisfying (1)
0=1,2tAN-k=¢€and (3)t Ak = Pre(t: S1;52; - ;Sm). Observe that the
condition (2) is equivalent to ¢ = € V k. The first two conditions specify necessary and
sufficient conditions of any loop invariants respectively. The formulae ¢ and € V x are
called the strongest and weakest approximations to loop invariants respectively.

3 Inferring Loop Invariants with Algorithmic Learning

Given an annotated loop {6} while x do Sy;S%;--- ; S, done {e}, we would like
to infer a loop invariant to establish the pre- and post-conditions. Given a set P of
atomic predicates, the work in [14] shows how to apply a learning algorithm for Boolean
formulae to infer quantifier-free loop invariants freely generated by P. The authors first
adopt predicate abstraction to relate quantifier-free and Boolean formulae. They then
design a mechanical teacher to guide the learning algorithm to a Boolean formula whose
concretization is a loop invariant.

Let QF[P] denote the set of quantifier-

free formulae generated from the set of

v atomic predicates P. Consider the set of

QF BoollBr| - Boolean formulae Bool|Bp| generated

by the set of Boolean variables Bp 2

* {b, : p € P}. An abstract valuation

r is a function from Bp to B. We write

Valp, for the set of abstract valuations.

A Boolean formula in Bool[Bp] is a

Val x - Valp, canonical monomial if it is a conjunction

a of literals, where each Boolean variable

Fig. 1: Relating QF and Bool[Bp] in Bp occurs exactly once. Formulae in

QF[P] and Bool[Bp] are related by the
following functions [14] (Figure 1):

=
=

> 1> e

ﬂ[Bp — P}

V{8 € Bool[Bp] : 8 is a canonical monomial and 6 A ~(/5) is satisfiable}
A {ptn N o}

bp)=T =F

.Uf(bp)
) N T ifv
o*(v) = p where u(by) = {F if v Ei

a(0)

2
*
E

n(

Consider, for instance, P = {n > 0,z =n,y = n} and Bp = {by>0, bg=n, by=n }.
We have v(b,>0 A =bg=n) =n > 0A =(x =n) and

(anO ANbpep A _\by:n) V (bnzo A —bp—p A by:n)\/
a(j(m = y)) = (bn20 A _'ba:zn A _‘by=n) \ (_‘bnzo A bw:n A _'by=n)v
(_‘anO A _‘bx:n A by:n) \% (_‘an0 A _‘bm:n A _‘by:n)-

Moreover, o* (V) (bp>0) = a*(V)(bg=n) = a*(¥)(by=pn) = T when v(n) = v(z) =
v(y) = 1. And v*(p) =n > 0Nz =nA-(y = n) when p(b,>0) = p(bg=pn) = T
but p(by=n) = F. Observe that the pair (c,~) forms the Galois correspondence in
Cartesian predicate abstraction [2].

After formulae in QF and valuations in Valx are abstracted to Bool[Bp] and
Valp, respectively, a learning algorithm is used to infer abstractions of loop invari-
ants. Let £ be an unknown target Boolean formula in Bool[Bp]. A learning algorithm
computes a representation of the target £ by interacting with a teacher. The teacher
should answer the following queries [1, 4]:

— Membership queries. Let |1 € Valp, be an abstract valuation. The membership
query MEM (1) asks if the unknown target £ is satisfied by . If so, the teacher
answers YES'; otherwise, NO.

— Equivalence queries. Let 3 € Bool[Bp] be an abstract conjecture. The equivalence
query EQ(S) asks if § is equivalent to the unknown target . If so, the teacher
answers YES. Otherwise, the teacher gives an abstract valuation p such that the
exclusive disjunction of /3 and £ is satisfied by p. The abstract valuation y is called
an abstract counterexample.

With predicate abstraction and a learning algorithm for Boolean formulae at hand,
it remains to design a mechanical teacher to guide the learning algorithm to the abstrac-
tion of a loop invariant. The key idea in [14] is to exploit approximations to loop invari-
ants. An under-approximation to loop invariants is a quantifier-free formula ¢ which is
stronger than some loop invariants of the given annotated loop; an over-approximation
is a quantifier-free formula ¢ which is weaker than some loop invariants.

To see how approximations to loop invariants can be used in the design of the me-
chanical teacher, let us consider an equivalence query EQ(3). On the abstract conjec-
ture 3 € Bool[Bp], the mechanical teacher computes the corresponding quantifier-free
formula # = ~(3). It then checks if 6 is a loop invariant. If so, we are done. Other-
wise, the algorithm compares 6 with approximations to loop invariants. If 6 is stronger
than the under-approximation or weaker than the over-approximation, a valuation v

satisfying —(2 = 6) or =(6 = 7) can be obtained from an SMT solver. The abstract
valuation o*(v) gives an abstract counterexample. Approximations to loop invariants
can also be used to answer membership queries. For a membership query MEM ()
with 4 € Valp,, the mechanical teacher computes its concretization 6 = ~v*(u). It
returns YES if 0 = ¢; it returns NO if § # 7. Otherwise, a random answer is returned.

MEM (11) :

YES, NO
learning mechanical program
algorithm teacher text
EQ(B) |

YES ¢

Fig. 2: Learning-based Framework

Figure 2 shows the learning-based loop invariant inference framework. In the frame-
work, a learning algorithm is used to drive the search of loop invariants. It “learns” an
unknown loop invariant by inquiring a mechanical teacher. The mechanical teacher of
course does not know any loop invariant. It nevertheless can try to answer these queries
by the information derived from program texts. In this case, approximations to loop
invariants are used. Observe the simplicity of the learning-based framework. By em-
ploying a learning algorithm, it suffices to design a mechanical teacher to find loop
invariants. Moreover, the new framework does not construct abstract models nor com-
pute fixed points. It can be more scalable than traditional techniques.

4 Predicate Generation by Interpolation

One drawback in the learning-based approach to loop invariant inference is to require
a set of atomic predicates. It is essential that at least one quantifier-free loop invariant
is representable by the given set P of atomic predicates. Otherwise, concretization of
formulae in Bool[Bp] cannot be loop invariants. The mechanical teacher never answers
YES to equivalence queries. To address this problem, we will synthesize new atomic
predicates for the learning-based loop invariant inference framework progressively.

The interpolation theorem is essential to our predicate generation technique [6, 19,
18,12]. Let © = [01, 04, ..., 6,,] be an inconsistent sequence of quantifier-free formula
and A = [\, A1, Az, ..., \p] its inductive interpolant. By definition, 1 = ;. Assume
O1 NO N --- /\97; =)\z We have 61 NG A --- /\9i+1 = /\1‘_1,_1 since /\7 /\9i+1 =)\,’+1.
Thus, \; is an over-approximation to 6 Af2 A- - - AG; for 0 < i < m. Moreover, o()\;) C
o(0;) No(B;+1). Hence A; can be seen as a concise summary of 61 A s A - - - A 0; with
restricted symbols. Since each J\; is written in a less expressive vocabulary, new atomic
predicates among variables can be synthesized. We therefore apply the interpolation
theorem to synthesize new atomic predicates and refine the abstraction.

Our predicate generation technique consists of three components. Before the learn-
ing algorithm is invoked, an initial set of atomic predicates is computed (Section 4.1).
When the learning algorithm is failing to infer loop invariants, new atomic predicates
are generated to refine the abstraction (Section 4.2). Lastly, conflicting answers to
queries may incur from predicate abstraction. We further refine the abstraction with
these conflicting answers (Section 4.3). Throughout this section, we consider the anno-
tated loop {0} while x do Sy;So; -+ ; Sy, done {e} with the under-approximation ¢
and over-approximation 7.

4.1 [Initial Atomic Predicates

The under- and over-approximations to loop invariants must satisfy ¢ = 7. Otherwise,
there cannot be any loop invariant ¢ such that ¢ = ¢ and ¢ = 7. Thus, the sequence
[, 7] is inconsistent. For any interpolant [T, A, F'] of [¢, —7], we have t = Aand A = 7.
The quantifier-free formula A can be a loop invariant if it satisfies A A k = Pre(\ :
S1;S9; -+ ;Sm). It is however unlikely that \ happens to be a loop invariant. Yet our
loop invariant inference algorithm can generalize A by taking the atomic predicates in A
as the initial atomic predicates. The learning algorithm will try to infer a loop invariant
freely generated by these atomic predicates.

4.2 Atomic Predicates from Incorrect Conjectures

Consider an equivalence query EQ(3) where 8 € Bool[Bp] is an abstract conjecture.
If the concretization § = () is not a loop invariant, we interpolate the loop body
with the incorrect conjecture 6. For any quantifier-free formula 6 over variables X (9 U
X, define %) = 9[x O s X* X1y XD The desuperscripted form
of a quantifier-free formula A over variables X %) is A\[X*) — X]. Moreover, if v is
a valuation over X0 U ... U X (™), V| x) represents a valuation over X such that
vixw () = v(z®) for z € X. Let ¢ and 1 be quantifier-free formulae over X.
Define the following sequence:

E(¢a 517 ey Small/)) é [¢<O>a Hsl]]m)» HSZH<1>7 ey Hsm}]hn*l)’ _‘1/)<m>]

Observe that

— {9 and [S;]‘? share the variables X(%);
— [Sm]{™1 and =)™ share the variables X ™ ; and
— [Si]%Y and [S;41]" share the variables X ¢ for 1 < i < m.

Starting from the program states satisfying ${’, the formula
OO ALSO A LS)M A A LSV

characterizes the images of ¢{?) during the execution of S;; Ss; - - - ; S;.

Lemma 1. Let X denote the set of variables in the statement S1;So;--- ;.S;, and ¢ a
quantifier-free formula over X. For any valuation v over X0 U X1 U ... U X,
the formula ¢ A [S1] A [So]M A --- A [Si]~Y is satisfied by v if and only if

s s S; . .
Vlxo = vlxa)— -+ =5 vl ya-1) is a program execution and v, x) = ¢.

By definition, ¢ = Pre(¢) : S1;S2;--+ ;Sy,) implies that the image of ¢ must
satisfy 4 after the execution of Sy; So; - - ; Sy,. The sequence Z(¢, S1, ..., Sm,) is
inconsistent if ¢ = Pre(1 : S1;S2;+ -+ ;.Sp). The following proposition will be handy.

Proposition 1. Ler S1;S5;- -+ ; .Sy, be a sequence of statements. For any ¢ with ¢ =
Pre(s : S1;89;--+ ;Sm), E(6,S1,. .., Sm,) has an inductive interpolant.’

Let A= [T,)\, Aa,..., Am+1, F'] be an inductive interpolant of =(¢, S1, . . . , Sy, ©).
Recall that); is a quantifier-free formula over X (i=1) for 1 <4 < m + 1. Itis also an
over-approximation to the image of ¢ after executing Sy; So; - - - ; 9;—1. Proposition 1
can be used to generate new atomic predicates. One simply finds a pair of quantifier-
free formulae ¢ and ¢ with ¢ = Pre(¢p : S1;S2; -+ ; Sm), applies the interpolation
theorem, and collects desuperscripted atomic predicates in an inductive interpolant of
Z(¢,51,...,Sm,). In the following, we show how to obtain such pairs with under-
and over-approximations to loop invariants.

Interpolating Over-Approximation It is not hard to see that an over-approximation to
loop invariants characterizes loop invariants after the execution of the loop body. Recall
that . = 7 for some loop invariant ¢. Moreover, tAx = Pre(c : S1;S2; -+ ; Sy). By the
monotonicity of Pre(e : S1;Sa;--+;S,,), we have t A k = Pre(T: S1;S52;- - ; Sm).

Proposition 2. Let 7 be an over-approximation to loop invariants of the annotated loop
{6} while k do S1; Sa;- - ; Sy, done {€}. For any loop invariant v with 1 = T, LAk =
Pre(z: S1; 52+ ; Sm)-

Proposition 2 gives a necessary condition to loop invariants of interest. Recall that
6 = ~(B) is an incorrect conjecture of loop invariants. If v = —(0 A k = Pre(7 :
S1;S2; -+ ;Sm)), the mechanical teacher returns the abstract counterexample a*(v).
Otherwise, Proposition 1 is applicable with the pair 6 A k and 7.

Corollary 1. Let T be an over-approximation to loop invariants of the annotated loop
{6} while K do S;S;- - ; Sy, done {e}. Forany 6 withOAk = Pre(t : S1;52; - ;Sm),
the sequence Z(0 A k,S1,Sa, ..., Sm,T) has an inductive interpolant.

Interpolating Under-Approximation For under-approximations, there is no neces-
sary condition. Nevertheless, Proposition 1 is applicable with the pair ¢ A and 6.

Corollary 2. Let v be an under-approximation to loop invariants of the annotated loop
{6} while K do S1;Sa;- -+ ; Sy done {e}. Forany 0 with.A\k = Pre(0 : S1;S2;-++ ; Sm),
the sequence Z(L N\ k,S1, 52, ..., Sm, 0) has an inductive interpolant.

3 The existential quantifiers in [S; S'] are eliminated by introducing fresh variables.

Generating atomic predicates from an incorrect conjecture 6 should now be clear
(Algorithm 1). Assuming that the incorrect conjecture satisfies the necessary condition
in Proposition 2, we simply collect all desuperscripted atomic predicates in an inductive
interpolant of Z'(6 Ak, S1, Sa, ..., Sm, £) (Corollary 1). More atomic predicates can be
obtained from an inductive interpolant of = (v A &, S1,Sa,...,Sm,0) if additionally
LA K= Pre(f:51;S2;-;Sn) (Corollary 2).

/* {6} while k do Si;---;Sm done {e} : an annotated loop */
/* L, : under- and over-approximations to loop invariants x/
Input: a formula 0 € QF[P] such that 0 A kK = Pre(Z : S1;52;+ - ; Sm)

Output: a set of atomic predicates

I := an inductive interpolant of ='(6 A s, S1, S2,...,Sm,1);

@ := desuperscripted atomic predicates in I;

ift Nk = Pre(6: S1;52;--+ ; Sm) then

J := an inductive interpolants of = (v A K, S1,S2,...,Sm,0);
R := desuperscripted atomic predicates in .J;
Q=QUR

end

return @

Algorithm 1: PredicatesFromConjecture ()

4.3 Atomic Predicates from Conflicting Abstract Counterexamples

Because of the abstraction, conflicting abstract counterexamples may be given to the
learning algorithm. Consider the example in Section 1. Recall thatn > 0 Az = n A
y=mnand z +y = 0V x > 0 are the under- and over-approximations respectively.
Suppose there is only one atomic predicate y = 0. The learning algorithm tries to infer
a Boolean formula A € Bool[b,—¢]. Let us resolve the equivalence queries EQ(T") and
EQ(F). On the equivalence query EQ(F), we check if F' is weaker than the under-
approximation by an SMT solver. It is not, and the SMT solver gives the valuation
vo(n) = vo(z) = vo(y) = 1 as a witness. Applying the abstraction function a* to vy,
the mechanical teacher returns the abstract counterexample b,—o — F. The abstract
counterexample is intended to notify that the target formula \ and F' have different
truth values when b,—g is F'. That is, A is satisfied by the valuation b,—g — F'.

On the equivalence query EQ(T), the mechanical teacher checks if 7' is stronger
than the over-approximation. It is not, and the SMT solver now returns the valuation
vi(z) = 0,11 (y) = 1 as a witness. The mechanical teacher in turn computes b,—¢ > F
as the corresponding abstract counterexample. The abstract counterexample notifies that
the target formula A\ and T" have different truth values when by—g is F'. That is, A is not
satisfied by the valuation by—¢ +— F'. Yet the target formula A cannot be satisfied and
unsatisfied by the valuation b,—o — F. We have conflicting abstract counterexamples.

Such conflicting abstract counterexamples arise because the abstraction is too coarse.
This gives us another chance to refine the abstraction. Define

I'iv) = /\ x =v(x).

zeX

The function I'(v) specifies the valuation v in QF (Figure 1). For distinct valuations v
and v/, I'(v)AT'(¢') is inconsistent. For instance, I'(vp) = (n = 1)A(xz = 1)A(y = 1),
I'(th) =(x=0)A(y=1),and I'(1) A I'(vp) is inconsistent.

Input: distinct valuations v and v’ such that o*(v) = o* (V')
Output: a set of atomic predicates

x=1(v);
’ !
x =I);
/* xAX is inconsistent x/

p=7"(a"(v)):
@ := atomic predicates in an inductive interpolant of [x, X" V —p];
return Q;

Algorithm 2: PredicatesFromConflict (v, ')

Algorithm 2 generates atomic predicates from conflicting abstract counterexamples.
Let v and v/ be distinct valuations in Valx. We compute formulae y = I'(v) and x’ =
I'(¢"). Since v and ' are conflicting, they correspond to the same abstract valuation
a*(v) = a*(V'). Let p = v*(a*(v)). We have x = p and X’ = p [14]. Recall that
X A X’ is inconsistent. [x, x’ V —p] is also inconsistent for x = p. Algorithm 2 returns
atomic predicates in an inductive interpolant of [x, x' V —p].

5 Algorithm

Our loop invariant inference algorithm is given in Algorithm 3. For an annotated loop
{6} while k do S1;S2;- - ; S, done {e}, we heuristically choose § VV € and € V & as
the under- and over-approximations respectively. Note that the under-approximation is
different from the strongest approximation J. It is reported that the approximations 6 V €
and € V k are more effective in resolving queries [14].

We compute the initial atomic predicates by interpolating ¢ and —z (Section 4.1).
The main loop invokes a learning algorithm. It resolves membership and equivalence
queries from the learning algorithm by under- and over-approximations (detailed later).
If there is a conflict, the loop invariant inference algorithm adds more atomic predicates
by Algorithm 2. Then the main loop reiterates with the new set of atomic predicates.

For membership queries, we compare the concretization of the abstract valuation
with approximations to loop invariants (Algorithm 4). The mechanical teacher returns
NO when the concretization is inconsistent. If the concretization is stronger than the
under-approximation, the mechanical teacher returns YES if the concretization is weaker
than the over-approximation, it returns NO. Otherwise, a random answer is returned [14].

10

/* {6} while k do S1;S2;---;Sm done {€¢} : an annotated loop =*/
Output: a loop invariant for the annotated loop
t:=0Ve
1:=€VK;
P := atomic predicates in an inductive interpolant of [¢, —];
repeat
try
call a learning algorithm for Boolean formulae where membership and
equivalence queries are resolved by Algorithms 4 and 5 respectively;
catch conflict abstract counterexamples —
find distinct valuations v and v’ such that o*(v) = o™ (¢');
P := P U PredicatesFromConflict(v, v');
until a loop invariant is found ;

Algorithm 3: Loop Invariant Inference

/* L, : under- and over-approximations to loop invariants x/
Input: a membership query MEM (p) with p € Valp,

Output: YES or NO

0 :=7"(n);

if 0 is inconsistent then return NO;

if 6 = . then return YES;

if v = —(6 = 7) then return NO;

return YES or NO randomly;

Algorithm 4: Membership Query Resolution

The equivalence query resolution algorithm is given in Algorithm 5. For any equiv-
alence query, the mechanical teacher checks if the concretization of the abstract con-
jecture is a loop invariant. If so, it returns YES and concludes the loop invariant in-
ference algorithm. Otherwise, the mechanical teacher compares the concretization of
the abstract conjecture with approximations to loop invariants. If the concretization is
stronger than the under-approximation, weaker than the over-approximation, or it does
not satisfy the necessary condition given in Proposition 2, an abstract counterexample
is returned after recording the witness valuation [14, 15]. The witnessing valuations are
needed to synthesize atomic predicates when conflicts occur.

If the concretization is not a loop invariant and falls between both approximations
to loop invariants, there are two possibilities. The current set of atomic predicates is
sufficient to express a loop invariant; the learning algorithm just needs a few more
iterations to infer a solution. Or, the current atomic predicates are insufficient to express
any loop invariant; the learning algorithm cannot derive a solution with these predicates.
Since we cannot tell which scenario arises, a threshold is deployed heuristically. If
the number of random abstract counterexamples is less than the threshold, we give
the learning algorithm more time to find a loop invariant. Only when the number of
random abstract counterexamples exceeds the threshold, can we synthesize more atomic
predicates for abstraction refinement. Intuitively, the current atomic predicates are likely
to be insufficient if lots of random abstract counterexamples have been generated. In this

11

/* T : a threshold to generate new atomic predicates */

/+ {6} while kK do S1;S2; -+ ;Sm done {€¢} : an annotated loop =/

/* L, : under—- and over—-approximations to loop invariants x/

Input: an equivalence query EQ(3) with 3 € Bool[Bp]

Output: YES or an abstract counterexample

0 :=~(8):

if0 = 0and0 = eV kand O N k = Pre(0 : S1;S2;- - ; Sm) then return YES;

ifrE-(t=0)orvi=-(0=7)orvi=—-(0 ANk= Pre(t:S1;52; - ;Sm)) then
record v; return o* (v);

if the number of random abstract counterexamples < T then
return a random abstract counterexample;

else
P := P U PredicatesFromConjecture(6); 7 := [1.3/717; reiterate the main loop;
end

Algorithm 5: Equivalence Query Resolution

case, we invoke Algorithm 2 to synthesize more atomic predicates from the incorrect
conjecture, update the threshold to [1.3/”1], and then restart the main loop.

case SIZE PRrREVIOUS (VMCAI’10) CURRENT BLAST
PIMEM|EQ|RE T\|PIMEM|EQ|RE| T\|P| T

ide-ide-tape 16| 6 13| 7/ 1| 0.05| 4 6| 5| 1/0.05/[21| 2.38
ide-wait-ireason 9| 5| 790(445| 33| 1.51|| 5| 122| 91| 7{1.09| 9| 0.33
parser 37|(17| 4,223|616| 13|13.45|| 9 86| 32| 1|0.46| 8| 1.23

riva 82|20 59 11| 2| 0.51 7 14| 5| 1]0.37{|12| 2.67

tar 7| 6 oo| oo| oo| ool 2 2| 5| 1)0.02{/10{ 0.37
usb-message 18{[10 21 7| 1] 0.10| 3 7 6| 1/0.04|| 4] 0.32
vpr 8|l 5 16| 9| 2| 0.05]| 1 1| 3| 1]0.01|f 4|0.23

Table 1: Experimental Results.
P : # of atomic predicates, MEM : # of membership queries, E() : # of equivalence queries, RE
: # of the learning algorithm restarts, 7" : total elapsed time (s).

6 Experimental Results

We have implemented the proposed technique in OCaml*. In our implementation, the
SMT solver YICES and the interpolating theorem prover CSISAT [3] are used for query
resolution and interpolation respectively. In addition to the examples in [14], we add
two more examples: riva is the largest loop expressible in our simple language from
Linux>, and tar is extracted from Tar®. All examples are translated into annotated

* Available at http://ropas.snu.ac.kr/tacas11/ap-gen.tar.gz
3 In Linux 2.6.30 drivers/video/riva/riva_hw.c:nvl10CalcArbitration ()
®InTar 1.13 src/mangle.c:extract_mangle ()

12

loops manually. Data are the average of 100 runs and collected on a 2.4GHz Intel Core2
Quad CPU with 8GB memory running Linux 2.6.31 (Table 2).

case SIZE PREVIOUS [14] CURRENT BLAST [18]
PIMEMI|EQIRE| T||PIMEM|EQ|RE| T| P T

ide-ide-tape 16][6 13[7] 10054 6| 5| 1]0.05][21[1.31(1.07)
ide-wait-ireason o[5| 790445 33| 1.51||5] 122 91| 7[1.09] 9[0.19(0.14)
parser 37|[17] 4.223[616] 13[13.45|[9] 86| 32| 1]0.46] 8[0.74(0.49)
riva 82[20[59 11| 2] 051[[7] 14| 5| 1]0.37|[12[1.50(1.17)

tar 76] oo oo oo oof[2 2[5 1]0.02][10[0.20(0.17)
usb-message 1810 21| 7[1] 0.10[3 71 6] 1]0.04][4[0.18(0.14)
vpr sIl5] 16| 9] 2[0.05[1 1 3] 1]0.01][4[0.13(0.10)

Table 2: Experimental Results.
P : # of atomic predicates, MEM : # of membership queries, E() : # of equivalence queries, RE
: # of the learning algorithm restarts, 7" : total elapsed time (s).

In the table, the column PREVIOUS represents the work in [14] where atomic pred-
icates are chosen heuristically. Specifically, all atomic predicates in pre- and post-
conditions, loop guards, and conditions of if statements are selected. The column
CURRENT gives the results for our automatic predicate generation technique. Interest-
ingly, heuristically chosen atomic predicates suffice to infer loop invariants for all ex-
amples except tar. For the tar example, the learning-based loop invariant inference
algorithm fails to find a loop invariant due to ill-chosen atomic predicates. In contrast,
our new algorithm is able to infer a loop invariant for the tar example in 0.02s. The
number of atomic predicates can be significantly reduced as well. Thanks to a smaller
number of atomic predicates, loop invariant inference becomes more economical in
these examples. Without predicate generation, four of the six examples take more than
one second. Only one of these examples takes more than one second using the new
technique. Particularly, the parser example is improved in orders of magnitude.

The column BLAST gives the results of lazy abstraction technique with inter-
polants implemented in BLAST [18]. In addition to the total elapsed time, we also
show the preprocessing time in parentheses. Since the learning-based framework does
not construct abstract models, our new technique outperforms BLAST in all cases but
one (ide-wait-ireason). If we disregard the time for preprocessing in BLAST,
the learning-based technique still wins three cases (ide—-ide-tape, tar, vpr) and
ties one (usb-message). Also note that the number of atomic predicates generated
by the new technique is always smaller except parser. Given the simplicity of the
learning-based framework, our preliminary experimental results suggest a promising
outlook for further optimizations.

6.1 tar from Tar

13

This simple fragment is excerpted from the

{ size = M A copy = N } code for copying two buffers. M items in the
1 while size > 0 do source buffer are copied to the target buffer
2 available :== nondet; that already has IV items. The variable size
3 if awailable > size then keeps the number of remaining items in the
4 copy := copy + available; source buffer and copy denotes the number of
5 size 1= size — available; items in the target buffer after the last copy.
6 done In each iteration, an arbitrary number of items
{size=0 = copy =M + N } are copied and the values of size and copy are
updated accordingly.

Observe that the atomic predicates in the
program text cannot express any loop invari-
ant that proves the specification. However, our
new algorithm successfully finds the follow-

Fig. 3: A Sample Loop in Tar

ing loop invariant in this example:
M + N < copy + size A copy + size < M + N

The loop invariant asserts that the number of items in both buffers is equal to M + N.
It requires atomic predicates unavailable from the program text. Predicate generation is
essential to find loop invariants for such tricky loops.

6.2 parser from SPEC2000 Benchmarks

For the parser example (Figure 4), 9 atomic predicates are generated. These atomic
predicates are a subset of the 17 atomic predicates from the program text. Every loop in-
variant found by the loop invariant inference algorithm contains all 9 atomic predicates.
This suggests that there are no redundant predicates. Few atomic predicates make loop
invariants easier to comprehend. For instance, the following loop invariant summarizes
the condition when success or give_up is true:

(success V give_up) =
(valid # 0V cutoff = mazcost V words < count) A
(msearch V valid # 0V words < count) A
(linkages = canonical A linkages > valid A linkages < 5000)

Fewer atomic predicates also lead to a smaller standard deviation of the execution
time. The execution time now ranges from 0.36s to 0.58s with the standard deviation
equal to 0.06. In contrast, the execution time for [14] ranges from 1.20s to 80.20s with
the standard deviation equal to 14.09. By Chebyshev’s inequality, the new algorithm
infers a loop invariant in one second with probability greater than 0.988. With a compact
set of atomic predicates, loop invariant inference algorithm performs rather predictably.

7 Conclusions

A predicate generation technique for learning-based loop invariant inference was pre-
sented. The technique applies the interpolation theorem to synthesize atomic predicates

14

{ phase = F A success = F A give_up = F A cutoff = 0 A count =0}
1 while —(success V give_up) do
2 entered_phase := F;
3 if —phase then
4 if cutoff = 0 then cutoff :=1;
5 else if cutoff = 1 A mazcost > 1 then cutoff := mazcost;
6 else phase := T; entered_phase := T; cutoff := 1000;
7 if cutoff = maxcost N\ —search then give_up := T;
8 else
9 count := count + 1;

10 if count > words then give_up := T;

11 if entered_phase then count := 1;

12 linkages := nondet;

13 if linkages > 5000 then linkages := 5000;

14 canonical := 0; valid := 0;

15 if linkages # 0 then

16 valid := nondet;

17 assume 0 < walid A valid < linkages;
18 canonical := linkages;

19 if walid > 0 then success := T;

20 done

{ (valid > 0V count > words \V (cutoff = mazcost A\ —search))A
valid < linkages A canonical = linkages A linkages < 5000 }

Fig.4: A Sample Loop in SPEC2000 Benchmark PARSER

implicitly implied by program texts. To compare the efficiency of the new technique,
examples excerpted from Linux, SPEC2000, and Tar source codes were reported. The
learning-based loop invariant inference algorithm is more effective and performs much
better in these realistic examples.

More experiments are always needed. Especially, we would like to have more re-
alistic examples which require implicit predicates unavailable in program texts. Addi-
tionally, loops manipulating arrays often require quantified loop invariants with linear
inequalities. Extension to quantified loop invariants is also important.
Acknowledgment. The authors would like to thank Wontae Choi, Soonho Kong, and
the anonymous referees for their comments in improving this work.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information and
Computation 75(2) (1987) 87-106

2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model checking
¢ programs. In: TACAS 2001: Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, London, UK, Springer-Verlag
(2001) 268-283

3. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: CAV. (2008)
304-308

15

10.

11.

12.

13.

17.

18.

19.

20.

. Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Information and

Computation 123 (1995) 146-153

. Canet, G., Cuoq, P, Monate, B.: A value analysis for ¢ programs. In: Source Code Analysis

and Manipulation, IEEE (2009) 123-124

. Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symb. Log.

22(3) (1957) 250-268

. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: VM-

CAL (2010) 129-145

. Dutertre, B., Moura, L.D.: The Yices SMT solver. Technical report, SRI International (2006)
. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with craig interpolation and

symbolic pushdown systems. In: TACAS. (2006) 489-503

Filliatre, J.C., Marché, C.: Multi-prover verification of C programs. In Davies, J., Schulte,
W., Barnett, M., eds.: Formal Methods and Software Engineering. Volume 3308 of LNCS.,
Springer (2004) 15-29

Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
POPL ’04, New York, NY, USA, ACM (2004) 232-244

Jhala, R., Mcmillan, K.L..: A practical and complete approach to predicate refinement. In:
TACAS. Volume 3920 of LNCS., Springer (2006) 459-473

Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: CAV, volume 4590 of LNCS,
Springer (2007) 193-206

. Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic by algo-

rithmic learning, decision procedure, and predicate abstraction. In: VMCALI Volume 5944
of LNCS., Springer (2010) 180-196

. Kong, S., Jung, Y., David, C., Wang, B.Y,, Yi, K.: Automatically inferring quantified loop

invariants by algorithmic learning from simple templates. In Ueda, K., ed.: APLAS. (2010)
to appear.

. Kroening, D., Strichman, O.: Decision Procedures an algorithmic point of view. EATCS.

Springer (2008)

McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1)
(2005) 101-121

McMillan, K.L.: Lazy abstraction with interpolants. In Ball, T., Jones, R.B., eds.: CAV.
Volume 4144 of LNCS., Springer (2006) 123-136

McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In:
TACAS. Volume 4693 of LNCS., Springer (2008) 413427

Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstraction.
In: PLDI, ACM (2009) 223-234

16

