GMETA: A Generic Formal Metatheory
Framework for First-Order Representations*

Gyesik Lee!, Bruno C. d. S. Oliveira?, Sungkeun Cho?, and Kwangkeun Yi?

! Hankyong National University, Korea
gslee@hknu.ac.kr
2 ROSAEC Center, Seoul National University, Korea
{bruno, skcho,kwang}@ropas.snu.ac.kr

Abstract. This paper presents GMETA: a generic framework for first-
order representations of variable binding that provides once and for all
many of the so-called infrastructure lemmas and definitions required in
mechanizations of formal metatheory. The key idea is to employ datatype-
generic programming (DGP) and modular programming techniques to
deal with the infrastructure overhead. Using a generic universe for rep-
resenting a large family of object languages we define datatype-generic
libraries of infrastructure for first-order representations such as locally
nameless or de Bruijn indices. Modules are used to provide templates: a
convenient interface between the datatype-generic libraries and the end-
users of GMETA. We conducted case studies based on the POPLmark
challenge, and showed that dealing with challenging binding constructs,
like the ones found in System F.., is possible with GMETA. All of
GMETA’s generic infrastructure is implemented in the Coq theorem prover.
Furthermore, due to GMETA’s modular design, the libraries can be easily
used, extended, and customized by users.

Keywords: Mechanization, variable binding, first-order representations,
POPLmark challenge, datatype-generic programming, Coq

1 Introduction

A key issue in mechanical developments of formal metatheory for programming
languages concerns the representation and manipulation of terms with variable
binding. There are two main approaches to address this issue: first-order and
higher-order approaches. In first-order approaches variables are typically en-
coded using names or natural numbers, whereas higher-order approaches such
as higher-order abstract syntax (HOAS) use the function space in the meta-
language to encode binding of the object language.

Higher-order approaches are appealing because issues like capture-avoidance
and alpha-equivalence can be handled once and for all. This is why such ap-
proaches are used in logical frameworks such as Hybrid (Momigliano et al. 2008),

* This work was supported by the Engineering Research Center of Excellence Program
of Korea Ministry of Education, Science and Technology(MEST)/National Research
Foundation of Korea(NRF) (Grants R11-2008-007-01002-0 and 2010-0001717).

term

type

term

Variables

bsubstiermxterm

bsubstermx type

Parameters

fSUbSbterm X term

fSUbSbterm X type

type

Variables

bSUbSttypex term

bsubstiypextype

Parameters

fSUbSttypeX term

fsubstiypextype

Fig. 1. Possible variations of substitutions for parameters and variables for a language
with two syntactic sorts (term and type) in the locally nameless style.

Abella (Gacek 2008), or Twelf (Pfenning and Schiirmann 1999); and have also
been advocated (Despeyroux et al. 1995; Chlipala 2008) in general-purpose the-
orem provers like Coq (Coq Development Team 2009).

The main advantage of first-order approaches, and the reason why they are
so popular in theorem provers like Coq, is that they are close to pen-and-paper
developments and they do not require special support from the theorem prover.

However, the main drawback of first-order approaches is that the tedious
infrastructure required for handling variable binding has to be repeated each
time for a new object language. For each binding construct in the language,
there is a set of infrastructure operations and associated lemmas that should
be implemented. In the locally nameless style (Aydemir et al. 2008) and lo-
cally named (McKinna and Pollack 1993) styles we usually need operations like
substitution for parameters (free variables) and for (bound) variables as well
some associated lemmas. For de Bruijn indices (de Bruijn 1972) we need similar
infrastructure, but for operations such as substitution and shifting instead.

Often, the majority of the total number of lemmas and definitions in a for-
malization consists of basic infrastructure. Figure 1 illustrates the issue using a
simple language with two syntactic sorts (types and terms) supporting binding
constructs for both type and term variables and assuming a locally nameless
style. In the worst case scenario, 8 different types of substitution are needed.
We need substitutions for parameters and variables, and for each of these we
need to consider all four combinations of substitutions using types and terms.
While not all operations are necessary in formalizations, many of them are. For
example, System F.., which is the language described in the POPLMark chal-
lenge (Aydemir et al. 2005), requires 6 out of the 8 substitutions. Because for
each operation we need to also prove a number of associated lemmas, solutions
to the POPLMark challenge typically have a large percentage of lemmas and
definitions just for infrastructure. In the solution by Aydemir et al. (2008), in-
frastructure amounts to 65% of the total number of definitions and lemmas (see
also Figure 10). In realistic formalizations the situation is often not better: Ross-
berg et al. (2010) report a combinatorial explosion of infrastructure lemmas and
operations as the number of syntactic sorts and binding constructs increases.

Importantly, considering only homogeneous operations (like bsubstiermxterm),
which perform substitutions of variables on terms of the same sort (term),
is insufficient. Generally we must also consider heterogeneous operations, like
bsubstiypexterm, Where the sort of variables being substituted (type) is not of

(xQlso type_iso {
Parameter type_fvar,
Variable type_bvar,
Binder type_all _

(xQlso term_iso {
Parameter term_fvar,
Variable term_bvar,
Binder term_abs _,

}x) Binder term_tabs _ binds type
Inductive type := }*)
| type_fvar :N — type Inductive term :=

| type_bvar N — type | term_fvar : N — term

| type_top : type | term_bvar : N — term

| type_arrow : type — type — type | term_app : term — term — term

| type_all : type — type — type. | term_abs : type — term — term
| term_tapp : term — type — term
| term_tabs : type — term — term.

Fig. 2. Syntax definitions and GMETA isomorphism annotations for a locally nameless
style version of System F.. in Coq.

the same as the terms which are being substituted into (term). Languages like
System F have type abstractions in terms (AX.e) and require operations like
bsubstiypexterm and fsubstiypexterm for substituting type variables in terms.

1.1 Owur solution

To deal with the combinatorial explosion of infrastructure operations and lem-
mas, we propose the use of datatype-generic programming (DGP) and modular
programming techniques. The key idea is that, with DGP, we can define once
and for all the tedious infrastructure lemmas and operations in a generic way
and, with modules, we can provide a convenient interface for users to instantiate
such generic infrastructure to their object languages.

This idea is realized in GMETA: a generic framework for first-order repre-
sentations of variable binding implemented in Coq3. In GMETA, a DGP uni-
verse (Martin-Lof 1984) is used to represent a large family of object languages
and includes constructs for representing the binding structure of those languages.
The universe is independent of the particular choice of first-order representations:
it can be instantiated, for example, to locally nameless or de Bruijn representa-
tions. GMETA uses that universe to provide libraries with the infrastructure for
various first-order representations.

The infrastructure is reused by users through so-called templates. Templates
are functors parameterized by isomorphisms between the object language and
the corresponding representation of that language in the universe. By instanti-
ating templates with isomorphisms, users get access to a module that provides
infrastructure tailored for a particular binding construct in their own object lan-
guage. For example, for System F.., the required infrastructure is provided by
3 modules which instantiate GMETA’s locally nameless template:

3 We also have an experimental Agda implementation.

Module Miermxterm := LNTemplate term_iso term_iso.
Module Miypextype := LNTemplate type_iso type_iso.
Module Miypexterm := LNTemplate type_iso term_iso.

Each module corresponds to one of the 3 combinations needed in System F_.,
and contains the relevant lemmas and operations. By using this scheme we can
deal with the general case of object languages with N syntactic sorts, just by
expressing the combinations needed in that language. Moreover GMETA can also
provide some more specialized templates for additional reuse and it is easy for
users to define their own types of infrastructure and customized templates.

Since isomorphisms can be mechanically generated from the inductive defi-
nition of the object language, provided a few annotations, GMETA also includes
optional tool support for generating such isomorphisms automatically. Figure 2
illustrates these annotations for System F... Essentially, the keyword Iso intro-
duces an isomorphism annotation, while the keywords Parameter, Variable and
Binder provide the generator with information about which constructors corre-
spond, respectively, to the parameters, variables or binders. Therefore, at the
cost of just a few annotations or explicitly creating an isomorphism by hand,
GMETA provides much of the tedious infrastructure boilerplate that would con-
stitute a large part of the whole development otherwise.

1.2 Contributions

Our main contribution is to investigate how DGP techniques can deal with the
infrastructure overhead required by formalizations using first-order representa-
tions. More concretely, the contributions of this paper are:

— Sound, generic, reusable and extensible infrastructure for first-order repre-
sentations: The main advantages of using DGP are that it allows a library-
based approach in which 1) the infrastructure can be defined and verified
once and for all within the meta-logic itself; and 2) extending the infrastruc-
ture is easy since it just amounts to extending the library.

— Heterogeneous generic operations and lemmas: Of particular interest is the
ability of GMETA to deal with binding constructs involving multiple syntac-
tic sorts, such as binders found in the System F' family of languages, using
heterogeneous generic operations and lemmas.

— Case studies using the POPLmark challenge: To validate our approach in
practice, we conducted case studies using the POPLmark challenge. Com-
pared to other solutions, our approach shows significant savings in the num-
ber of definitions and lemmas required by formalizations.

— Coq implementation and other resources: The GMETA framework Coq im-
plementation is available online* along with other resources such as tutorials
and more case studies.

4 http://ropas.snu.ac.kr/gmeta/
The implementation is based on Coq Version 8.2pl2.

style|savings

STLC|GMETA vs Aydemir et al.| LN | 52%

P GMETA vs Aydemir et al.| LN | 38%
<" |GMEeTA vs Vouillon dB | 35%

Fig. 3. Savings in various formalizations in terms of numbers of definitions and lemmas.

2 Case Studies

In order to verify the effectiveness of GMETA in reducing the infrastructure
overhead, we conducted case studies using locally nameless and de Bruijn repre-
sentations. Since the results in terms of savings were similar, and due to space
limitations, we mainly discuss the locally nameless case studies in this paper. The
details of the de Bruijn case studies can be found on GMETA’s online webpage.
Our two case studies are a solution to the POPLmark challenge parts 1A+2A,
and a formalization of the STLC.

GMETA can reduce the infrastructure overhead because it provides reuse of
boilerplate definitions and lemmas. By boilerplate we mean the following;:

— Common operations: operations such as sets of parameters and (bound) vari-
ables, term size or different forms of substitution-like operations (such as
substitutions for parameters and variables in the locally nameless style; or
shifting in the de Bruijn style).

— Lemmas about common operations: lemmas about properties of the common
operations, such as several forms of permutation lemmas about substitutions.

— Lemmas involving well-formedness: many lemmas about common operations
only hold when a term is well-formed under a certain environment. Since
well-formedness is a notion that appears in many systems and it is often
mechanical, we consider such lemmas boilerplate.

The biggest benefit of GMETA is that it significantly lowers the overheads
required in mechanical formalizations by providing reuse of the basic infrastruc-
ture. Figure 3 shows the savings that GMETA achieved relative to the reference
solutions by Aydemir et al. (2008) and Vouillon (2007). Note that in GMETA
only user-defined code is counted. In all case studies more than 35% of the total
numbers of definitions were saved. We conducted case studies in both System
F.. and STLC. A more detailed discussion and evaluation is given in Section 6.

3 GMETA Design

This section gives a general overview of GMETA’s design and discusses the tech-
niques used by us to make GMETA convenient to use.

As depicted in Figure 4, the GMETA framework is structured into 5 layers
of modules. The structure is hierarchical, with the more general modules at the
top and the more specific modules at the bottom.

DGP Layer DGP
[I T
. [Locally Nameless J Wyﬂ {de Bruijn} omMing)
Representations . ¢
Layer : H

Isomorphisms .
Isomorphism
Layer

isol isol
Templates LNTemplate [iso2 %m plate
Layer

I
[[1

End User Simply typed Untyped .
Layer [System F] [Iambda-calcu\us] [Iambda-ca\culus]

Fig. 4. A simplified modular structure overview of GMETA.

— DGP Layer: The core DGP infrastructure is defined at the top-most layer.
The main component is a universe that acts as a generic language that the
lower-level modules use to define the infrastructure lemmas and definitions.

— Representation Layer: This layer is where the generic infrastructure lemmas
and definitions for particular first-order representations are defined. GMETA
currently supports locally nameless and de Bruijn representations. However,
the DGP library can be extended to cover locally-named approaches (McK-
inna and Pollack 1993; Sato and Pollack 2010) and other representations.

— Isomorphism Layer: This layer provides simple module signatures for iso-
morphisms that serve as interfaces between the object language and its rep-
resentation in the generic language. The adequacy of the object language
representation follows from the isomorphism laws.

— Templates Layer: This layer provides templates for the basic infrastruc-
ture lemmas and definitions required by particular meta-theoretical devel-
opments. Templates are ML-style functors parameterized by isomorphisms
between the syntactic sorts of object languages and their corresponding rep-
resentations in the generic language. In Figure 4 we show only LNTemplate
and dBTemplate, which are the fundamental templates providing reuse for
the general infrastructure.

— End User Layer: End users will use GMETA’s libraries to develop metathe-
ory for particular object languages, for example, the simply typed lambda
calculus (STLC) or System F.. used in our case studies.

The two top layers will be discussed in detail in Sections 4 and 5. They are
the most interesting from a technical point of view. More information about
other layers and a tutorial are available in GMETA’s webpage.

3.1 Making GMETA Convenient to Use

To provide convenience to the user, GMETA employs several techniques. Al-
though DGP plays a fundamental role in the definition of the core libraries
of GMETA (at the DGP and representation layers), end users should not need

fsubstiermxterm : N — term — term — term

fsubstiermxterm k U t = toterm ([k — (fromierm)] (fromuerm t))

bsubstiermxterm : N — term — term — term

bsubstiermxterm k U t = torerm ({k — (fromierm u)} (fromierm t))

fsubstiermxtype : N — type — term — term

fsubstiermxtype k U t = toterm ([k — (fromuype u)] (fromeerm t))

bsubstiermxtype : N — type — term — term

bsubstiermxtype k U t = toterm ({k — (fromuype w)} (fromierm t))

bsubstiypextype : N — type — type — type

bsubstypextype k U t = toype ([— (fromuype u)] (fromuype t))

Wierm : term — Prop

Wype : type — Prop

thbfsubst_perm_core : V(¢ : term) (u, v : type) (m k : N),

Wype U = bSubStiermxtype k (bsUbStiypextype M U V) (fsubstiermxtype M U t)

= fsubstiermxtype M U (bSUbStiermxtype k v t)

Fig. 5. Some representations of a template with two sorts: terms and types.

knowledge about DGP for uses of GMETA. However, this is not trivial to achieve
because, among other things, end-user proofs generally require unfolding in-
frastructure operations like substitution, and those operations are written in a
datatype-generic way, in a form which is alien to users that do not know about
DGP.

Automatically generated isomorphisms GMETA uses automatically gener-
ated isomorphisms between the user-defined object language and a correspond-
ing representation of that language of the generic universe. Since information
about the binding structure of the language is required to generate isomor-
phisms, GMETA uses a small annotation language. (see Figure 2 for an example
of the annotation language).

Templates GMETA uses templates to solve the problem of interfacing with the
infrastructure DGP libraries.

As already illustrated in Figure 1, a simple language with two syntactic sorts
(terms and types) needs two isomorphisms (fromierm, t0term) and (fromuype, totype)
between the generic language and the object language. What we mean by isomor-
phism is explained in the next paragraph about special tactics. In Figure 5, it is
demonstrated how the two isomorphisms are used to get an instantiation where
several variants of substitution, and well-formedness in the locally nameless style
become available for free. The templates include also many lemmas about the
operations and some of the lemmas may be true only for well-formedness expres-
sions. For example, the lemma thbfsubst_perm_core describes a permutability of
two kinds of substitutions where well-formed types (wfype) are involved.

The general form of parameter substitution in the locally nameless template
is as follows:

Module LNTemplate (isos, : Iso, isos, : Iso).

fsubsts, s, :N—=S5—-5 =5,
fsubsts,xs, k u t = tos, {k — (froms, u)} (froms, t))

Essentially, S; and S, are supposed to be the types of the syntactic sorts used
in object language. These types come from the isomorphisms isos, and isos,,
which are the parameters of LNTemplate. Definitions like {- — -} - are simply
using the isomorphism (through the operations tos,, tos,, froms, and froms,) to
interface with generic operations like {- — -} - (see Figure 9) defined in the
representations layer.

Because of the isomorphisms between the user’s object language and the
representation of that language in the universe, users do not need to interact
directly with the generic universe. Instead, all that a user needs to do is to
instantiate the templates with the automatically generated isomorphisms. In
Section 1.1, we already described how this technique is used to generate the
infrastructure for System F...

Special tactics When proving lemmas for their own formalizations, users may
need to unfold operations which are defined in terms of corresponding generic
operations. For example, the following lemma is a core lemma in formalization
of in the solution to the POPLMark challenge by Aydemir et al. (2008).

Lemma typing_subst :YE F U t T z u,
(E++(z,U0):: F)Ft: T==FFu:U=
(E++F)F ([z = ulrt): T.

Proof.

intros; dependent induction H; gsimpl.
grewrite tbfsubst_permutation_var_wf; eauto.

Qed.

The details of the Coq proof are not relevant. What is important to note is: 1) the

key difference to the original proof by Aydemir et al. (2008) is that two different
tactics (gsimpl and grewrite) are used; and 2) the lemma tbfsubst_permutation_var_wf
and the operation [— ‘]p - are provided by GMETA’s templates.

If the user would try to use simpl (the standard Coq tactic to unfold and
simplify definitions) directly, the definition of [[— |7 - would be unfolded and
he would be presented with parts of the definition of [— -] - (See Figure 9).
However, this is clearly undesirable since the expected definition at this point is
one similar to a manually defined operation for the object language in hand.

Our solution to this problem is to define some Coq tactics (such as gsimpl
and grewrite) that specialize operations and lemmas such as [—]r - and
thfsubst_permutation_var_wf using the isomorphisms provided by the user, and
the isomorphism and adequacy laws shown in Figure 6.

tos, (froms, t) =t
froms, (tos, t) =t
froms, ([k — u]rt) = [k — (froms, u)] (froms, t)

Fig. 6. Isomorphism and adequacy laws.

4 DGP for Datatypes with First-Order Binders

This section briefly introduces DGP using inductive families to define universes
of datatypes, and shows how to adapt a conventional universe of datatypes to
support binders and variables. In our presentation we assume a type theory
extended with inductive families, such as the Calculus of Inductive Constructions
(CIC) (Paulin-Mohring 1996) or extensions of Martin-Lof type-theory (Martin-
Lof 1984) with inductive families (Dybjer 1997).

4.1 Inductive Families

Inductive families are a generalization of conventional datatypes that has been
introduced in dependently typed languages such as Epigram (McBride and McK-
inna 2004), Agda (Norell 2007) or the Coq theorem prover. They are also one of
the inspirations for Generalized Algebraic Datatypes (GADTSs) (Peyton Jones
et al. 2006) in Haskell.

We adopt a notation similar to the one used by Epigram to describe inductive
families. For example we can define a family of vectors of size n as follows:

A x n : Nat
DATA ———————————— WHERE
Vectoryg n :

n : Nat a: A as : Vectorg n

vz : Vectory z vs a as : Vectoryg (s n)

In this definition the type constructor for vectors has two type arguments.
The first argument specifies the type A of elements of the vector, while the
second argument n is the size of the vector. We write parametric type arguments
in type constructors such as Vector4 using a subscript. Also, if a constructor is
not explicitly applied to some arguments (for example vs a as is not applied to
n), then those arguments are implicitly passed.

4.2 Datatype Generic Programming

The key idea behind DGP is that many functions can be defined generically
for whole families of datatype definitions. Inductive families are useful to DGP
because they allow us to define universes (Martin-Lof 1984) representing whole
families of datatypes. By defining functions over this universe we obtain generic
functions that work for any datatypes representable in that universe.

10

DATA Rep=1| Rep+ Rep | Rep X Rep | K Rep | R

7,5 : Rep s : Rep v [s]
DATA ———— WHERE
[s]r:* O: 1] kv:[K s]-
s1,82 : Rep v [s1]r s1,82 : Rep v: [s2]r
it v [s1+ s2]- i2 v [s1+ s2]r
s1,52 : Rep v1 : [s1])r va @ [s2]r v r]
(v1,v2) : [s1 X s2]~ ro: [R]-
:R :R : s
DATa o1 TeP WHERE i e':p v ls]
[s] : * inv:[s]

Fig. 7. A simple universe of types.

A Simple Universe The universe that underlies GMETA is based on a sim-
plified version of the universe for regular tree types by Morris et al. (2004).
Morris et al.’s universe is expressive enough to represent recursive types using
u-types (Pierce 2002). However, the presentation of the universe of regular tree
types is complicated by the use of telescopes (Altenkirch and Reus 1999; McBride
and McKinna 2004) for managing p binders. For presentation purposes and to
avoid distractions related to the use of telescopes (which are orthogonal to our
purposes), we will use instead a simplified version of regular tree types in which
only a single top-level recursive type binder is allowed. This precludes the ability
to encode mutually recursive datatypes, which is possible in Morris et al.’s uni-
verse. Nevertheless, we have experimental versions of GMETA (both in Coq and
Agda) on our online webpage that use the full universe and do support mutually
recursive datatypes.

Figure 7 shows the simple universe that is the basis for GMETA. The datatype
Rep (defined using the simpler ML-style notation for datatypes) describes the
“srammar” of types that can be used to construct the datatypes representable in
the universe. The three first constructs represent unit, sum and product types.
The K constructor allows the representation of constants of some representable
type. The R constructor is the most interesting construct: it is a reference to the
recursive type that we are defining. For example, the type representations for
naturals and lists of naturals are defined as follows:

RNat : Rep RList : Rep
RNat=1+R RList =1+ K RNat x R

The interpretation of the universe is given by two mutually inductive fam-
ilies [-]- and [-], while the data constructors of these two families provide the
syntax to build terms of that universe. The parametric type r in the subscript
in [-],, is the recursive type that is used when interpreting the constructor R.
For illustrating the data constructors of terms of the universe, we first define the
constructors nil and cons for lists:

11

DATA Rep=... | E Rep | B Rep Rep
Q:* (* Binder type *) Vix (* Variable type *)
: R :R : :R : : r
Dara 22 Ghpre L 2P v sl 51,52) TEP 4:Q)
[s]r: ev: [E s]- As; gt [B st os2]r
s p s : Rep v:V
Data WHERE _—

[s] : * var v : [[s]

Fig. 8. Extending universe with representations of binders and variables.

nil : [RList] cons : [RNat] — [RList] — [RList]

nil =in (i1 ()) cons n ns = in (i (k n,r ns))

When interpreting [RList], the representation type r in [-], stands for 1 4+
K RNat x R. The constructor k takes a value of some interpretation for a type
representation s and embeds it in the interpretation for representations of type r.
For example, when building values of type [RList], k is used to embed a natural
number in the list. Similarly, the constructor r embeds list values in a larger list.
The in constructor embeds values of type [r], into a value of inductive family [r],
playing the role of a fixpoint. The remaining data constructors (for representing
unit, sums and products values) have the expected role, allowing sum-of-product
values to be created.

Generic Functions The key advantage of universes is that we can define
(generic) functions that work for any representable datatypes. A simple example
is a generic function counting the number of recursive occurrences on a term:

size :Y(r:Rep). [r] = N size :¥(r,s:Rep). [s]r = N
size (in t) = size t size () =0

size (k) =0

size (i1 t) = size t

size (ip t) = size t

size (t,v) = size t + size v

size (r t) =1+ size t
To define such generic function, two-mutually inductive definitions are needed.
Note that r and s (bound by V) are implicitly passed in the calls to size.

4.3 A Universe for Representing First-Order Binding

We enrich our universe to deal with binders and variables. Figure 7 is insuffi-
cient to define generic functions such as substitution and free variables requiring
structural information about binders and variables. Figure 8 shows the addi-
tional definitions required to support representations of binders, variables, and
also deeply embedded terms. The data constructor B of the datatype Rep pro-
vides the type for representations of binders. The type Rep is also extended with

12

a constructor E which is the representation type for deeply embedded terms.
This constructor is very similar to K. However, the fundamental difference is
that generic functions should go inside the terms represented by deeply embed-
ded terms, whereas terms built with K should be treated as constants by generic
functions.

The abstract types @ and V represent the types of binders and variables.
Depending on the particular first-order representations of binders these types
will be instantiated differently.

We illustrate the instantiations of @ and V for 4 of the most popular first-
order representations in a table. The last column of the table shows how the
lambda term Az. x y can be encoded in the different approaches. For the nominal
approach there is only one sort of variables, which can be represented by a
natural number. In this representation, the binders hold information about the
bound variables, thus the type @ is the same type as the type of variables V.
In the de Bruijn style, the variables
are denoted positionally with respect Ql V
to the current enclosing binder. Thus N
the type () is just the unit type
and the type V is a natural number.
The locally nameless approach can be
viewed as a variant of the de Bruijn
style. The difference to the de Bruijn
style is that parameters and (bound) variables are distinguished. Therefore in
the locally nameless style the type V is instantiated to a sum of two natural
numbers. Finally, in the locally named style, there are also two sorts of variables
and bound variables are represented as in the nominal style. Thus the type @ is a
natural number and the type V is a sum type of two naturals. Note that we cur-
rently do not support the locally named and nominal style approaches in GMETA
as these styles would require special care with issues like alpha-equivalence.

Az. Ty
N Ax. xy
De Bruijn 1| N |[A01
Locally nameless| 1[N+ N/A. 0y
Locally named |N|N+ N z. z a

Nominal

The inductive family [-], is extended with two new data constructors. The
constructor e is similar to the constructor k and is used to build deeply embedded
terms. The other constructor uses the standard lambda notation \g, ¢.v to denote
the constructor for binders. The type representation s; is the representation of
the syntactic sort of the variables that are bound by the binder, whereas the type
representation s is the representation of the syntactic sort of the body of the
abstraction. We use s; = R to denote that the syntactic sort of the variables to
be bound is the same as that of the body. This distinction is necessary because
in certain languages the syntactic sorts of variables to be bound and the body of
the abstraction are not the same. For example, in System F, type abstractions
in terms such as AX.e bind type variables X in a term e.

The inductive family [-] is also extended with one additional data constructor
for variables. This constructor allows terms to be constructed using a variable
instead of a concretely defined term.

13

Instantiation of @ and V: @ =1 and V =N+ N.

Heterogeneous substitution for (bound) variables:

{ = } -:V(ri,72 :Rep). N = [r;] = [rz] = [r2]

{k — u} (int) =in ({k = u}t)

{k — wu} (var (inl z)) = var (inl z)

{k — wu} (var (inry)) =if r; = 1o A k = y then u else (var (inr y))
{- = -} -:VY(ri,r2,s:Rep). N = [ri] = [s]r. — [$]r.

{k = u} =0
{k — u} (k) =kt
{k — u} (et) =e({k — u}t)
{k = u}(int) =i ({k = u}?)
{k — u} (i2t) =i ({k = u}t)
{k — u} (t,v) ={k — u}t,{k — u}v)
{k = u} (A\y1t) =if (rs=RATI =12)V(rs ZRA T =13)
then A\, 1.({(k+1) — u}t)else \;1.{k — u}t)
{k — u}(rt) =r {k — u}t)

Heterogeneous substitution for parameters in the following form are similarly defined:
[=] -:V(rs r2:Rep). N = [ri] = [re] — [r2]

Example of a heterogeneous lemma:
subst_fresh :¥(ri,r2 1 Rep) (t: [re]) (w:[re]) (m:N), m & (fv,, t) =[m = u] t=1

Fig. 9. Generic definitions for the locally nameless approach.

5 Generic Operations and Lemmas

This section shows how generic operations and lemmas defined over the universe
presented in Section 4 can be used to provide much of the basic infrastructure
boilerplate for the languages representable in the universe.

5.1 Locally Nameless

Figure 9 presents generic definitions for the locally nameless approach. In this
approach binders do not bind names, and (bound) variables and parameters
(free variables) are distinguished. Thus, as discussed in Section 4.3, the types @
and V are, respectively, the unit type® and a sum of two naturals. Using these
instantiations for @ and V, the operation for instantiating a (bound) variable
with a term can be defined in a generic way. Also, generic lemmas can be defined
using the generic operations. The statement for subst_fresh — which states that
if a parameter does not occur in a term, then substitution of that parameter is
the identity — is shown as an example of such generic lemmas.

As explained in Section 4, generic operations are defined over terms of the
universe by two mutually-inductive operations defined over the [-] and [-],

5 For convenience, we use 1 for both the unit type and the unique term of that type.

14

(mutually-)inductive families. Note that our generic definition for substitution®
effectively deals with all the possible combinations for defining a substitution in
a multi-sorted syntax.

In the definition of substitutions the most interesting cases are variables
and binders. In the case of variables, the condition r; = rp is necessary to
check whether the parameter (or variable) and the term to be substituted have
the same representation. Note the use of (=) to compare type representations:
the universe supports decidable equality, which is crutial for the definition of
operations. The subscript r3 keeps the information about which kind of variables
is to be bound. When r3 = R, the binding is homogeneous, that is, the variable to
be bound and the body of the binder have the same representation. For example,
the term-level abstraction in terms (Ax : T.e) of System F' is homogeneous. An
example of heterogeneous binding is the type-level abstraction in terms (AX.e)
of System F'. In this case ry is the representation for System F types. Variable
substitution happens when the bound variable and the terms to be substituted
have the same representation. Note that, in the case of homogeneous binding
(rs = R), we compare r; with rg, not with rz, because the bound variable and
the body of the binder have the same representation rs.

The main advantage of representing the syntax of languages with our generic
universe is, of course, that all generic operations are immediately available. For
instance, the 8 substitution operations mentioned in Section 1 can be recovered
through suitable instantiations of the type representations 71, 79,73 in the two
generic substitutions presented in this section.

5.2 De Bruijn

A key advantage of our modular approach is that we do not have to commit to
using a particular first-order representation. Instead, by suitably instantiating
the types @ and V', we can define the generic infrastructure for our own favored
first-order representation. For example we can use GMETA to define the generic
infrastructure for de Bruijn representations. In de Bruijn representations, binders
do not bind any names, therefore the type @ is instantiated with the unit type.
Also, because there is only one sort of (positional) variable, the type V is instan-
tiated with the type of natural numbers. The implementation of heterogeneous
generic shifting follows a pattern similar to that used in the generic operations
for the locally nameless style for dealing with homogeneous and heterogeneous
binders. The variable and binder cases implement the expected behavior for the
de Bruijn indices operations and all the other cases are limited to traversal code.
For more details we refer to the GMETA homepage.

6 Discussion and Evaluation

In this section we present the results of the case studies that we conducted.
The discussion of these results is done in terms of three criteria proposed by

5 Note that the notation for substitutions follows Aydemir et al. (2008).

15

Definitions|Infrastructure Core Overall

(lemma + def.) |(lemma + def.)||inf. overhead [total|ratio
STLC Aydemir et al. 11 13+ 3 440 17 31 [55%
(locally nameless) | GMETA 7 4+0 4+0 1 15 [™%
System F. Aydemir et al. 20 48 + 7 17+1 60 93 [65%
(locally nameless) | GMETA 13 26 + 1 17+ 1 25 58 [43%
System F.. Vouillon 27 2440 5040 41 101 [41%
(de Bruijn) GMETA 12 1+0 52 +0 3 65 | 5%

Fig. 10. Formalization of POPLmark challenge (part 1A4+2A) and STLC in Coq using
locally nameless approach and de Bruijn approach with and without GMETA.

Aydemir et al. (2005) (reasonable overheads, cost of entry and transparency) for
evaluating mechanizations of formal metatheory.

Reasonable Overheads The biggest benefit of GMETA is that it significantly
lowers the overheads required in mechanical formalizations by providing reuse of
the basic infrastructure. Figure 10 presents the detailed numbers obtained in our
case studies. We follow Aydemir et al. by dividing the whole development into
three parts: definitions, infrastructure and core. The numbers on those columns
correspond to the number of definitions and lemmas used for each part. The def-
initions column presents the number of basic definitions about syntax, whereas
the core column presents the number of main definitions and lemmas of the for-
malization (such as, for example, progress and preservation). The infrastructure
column is the most interesting because this is where most of the tedious boiler-
plate lemmas and definitions are. The column boilerplate counts the number of
such definitions and lemmas across the formalizations. Although, for the most
part, boilerplate comes from the infrastructure part, some boilerplate also exists
in the definitions part. This explains why GMETA is able to reduce the number
of definitions and lemmas in the two parts. The numbers in bold face are the
numbers that were presented by Aydemir et al. (2008). However those numbers
did not reflect the real total number of definitions and lemmas in the solutions.
For example, in the infrastructure part only the lemmas were counted. Since
we are interested in all the boilerplate, our numbers reflect the total number of
definitions and lemmas in each part.

In comparison with Aydemir et al.’s reference solutions, the proofs in our
approach follow essentially the structure of the original proofs. One minor dif-
ference is that instead of some standard Coq tactics, a few more general tactics
provided by GMETA should be used. Because this is the only significant dif-
ference, the proofs in the GMETA solution and Aydemir et al.’s solution have
comparable sizes. This means that most proofs will still be comparable in size
although a small number of proofs will be either shorter or longer.

Cost of entry One important criterion for evaluating mechanical formalizations
of metatheory is the associated cost of entry. That is, how much does a user need
to know in order to successfully develop a formalization? We believe that the
associated cost of entry of GMETA is comparable to first-order approaches like
the one by Aydemir et al. (2008).

16

One aspect of GMETA that (arguably) requires less knowledge when com-
pared to Aydemir et al. (2008) is that the end-user does not need to know how to
prove many basic infrastructure lemmas, since those are provided by GMETA’s
libraries.

Finally, we should mention that one advantage of generative approaches such
as LNgen (Aydemir and Weirich 2009) is that the cost-of-entry, in terms of using
the lemmas and definitions provided by LNgen, is a bit lower than in GMETA.
This is because the generated infrastructure is directly defined in terms of the
object language and the lemmas and definitions can be used as if they had
been written by hand. In GMETA, the end-user, while not required to know
about DGP, still needs to be aware of some special simplification tactics and,
occasionally, he may need to apply adequacy lemmas by hand.

Transparency The transparency criterion is intended to evaluate how easy it
is for humans to understand particular formalization techniques. The issue of
transparency is largely orthogonal to GMETA because it usually measures how
particular representations of binding (such as locally nameless or de Bruijn),
and lemmas and definitions using that approach, are easy to understand by
humans. Since we do not introduce any new representation, transparency remains
unchanged (the same representation, lemmas and definitions are used).

7 Related Work

Generative Approaches Closest to our work are generative approaches like
LNgen, which uses an external tool, based on Ott (Sewell et al. 2010) speci-
fications, to generate the infrastructure lemmas and definitions for a particu-
lar language automatically. One advantage of generative approaches is that the
generated infrastructure is directly defined in terms of the object language. In
contrast, in GMETA, the infrastructure is indirectly defined in terms of generic
definitions. This is not entirely ideal, but it is possible to handle the situation
in a reasonably effective way in GMETA using tactics (see Section 3.1).

There are two main advantages of a DGP approach over generative ap-
proaches: wverifiability; and extensibility. Although a generator allows defining
once-and-for all the infrastructure, it would not be a simple task to verify once-
and-for all that the generator always generates correct (well-typed) infrastruc-
ture. With a generator, we can only verify whether each particular generated
set of infrastructure is correct. Another advantage of a libary-based approach
is that it is easy to extend. If we wanted to add a new lemma, we would just
need to extend a module with a new generic function. With a generator, this
would amount to directly changing the generator code. Although there is also a
cost to extending libraries, we believe that it is usually easier than changing the
generator code.

It is also interesting to compare GMETA and LNgen in terms of which types
of infrastructure they can reuse and how hard it is to reuse such infrastructure.
The main advantage of LNgen is that dealing with inductive relations is easy.

17

In GMETA, lemmas involving well-formedness require some more effort to be
reused. A solution for this problem would be to extend the isomorphism gener-
ator to deal with inductive relations as well. On the other hand, the strength of
GMETA lies in its extensibility. For example, sometimes there are domain-specific
infrastructure lemmas like thbfsubst_perm_core in Figure 5. Dealing with such a
infrastructure is in conflict with the general-purpose nature of LNgen.

DGP and Binding DGP techniques have been used before for dealing with
binders using a well-scoped de Bruijn index representation (Altenkirch and Reus
1999; McBride and McKinna 2004). Chlipala (2007) used an approach inspired by
proof by reflection techniques (Boutin 1997) to provide several generic operations
on well-typed terms represented by well-scoped de Bruijn indices. Licata and
Harper (2009) proposed a universe in Agda that permits definitions that mix
binding and computation. The obvious difference is that GMETA works with
traditional (non-well-scoped) first-order representations instead of well-scoped
de Bruijn indices. This difference of representation means that the universes and
generic functions have to deal with significantly different issues and that they are
quite different in nature. More fundamentally, Chlipala’s (2007) and Licata and
Harper’s (2009) work can be viewed as trying to develop new ways to formalize
metatheory in which many of the invariants hold by construction, that would
have to be proved otherwise. This is different from our goal: we are not proposing
new ways to formalize metatheory, rather we wish to make well-established ways
to formalize metatheory with first-order representations less painful to use.

DGP techniques have also been widely used in conventional functional pro-
gramming languages (Jansson and Jeuring 1997; Hinze and Jeuring 2003; Ro-
driguez et al. 2008), and Cheney (2005) explored how to provide generic oper-
ations such as substitution or collecting free variables using nominal abstract
syntax.

Our work is inspired by the use of universes in type-theory (Martin-Lof 1984;
Nordstrom et al. 1990). The basic universe construction presented in Figure 7 is a
simple variation of the regular tree types universe proposed by Morris et al. (2004,
2009) in Epigram. Nevertheless the extensions for representing variables and
binders presented in Figure 8 are new. Dybjer and Setzer (1999, 2001) showed
universe constructions within a type-theory with an axiomatization of induction-
recursion. Altenkirch and McBride (2003) proposed a universe capturing the
datatypes and generic operations of Generic Haskell (Hinze and Jeuring 2003)
and Norell (2008) shows how to do DGP with universes in Agda (Norell 2007).

Verbruggen et al. (2008, 2009) formalized a Generic Haskell (Hinze and Jeur-
ing 2003) DGP style in Coq, which can also be used to do generic programming.
This approach allows conventional datatypes to be expressed, but it cannot be
used to express meta-theoretical generic operations since there are no represen-
tations for variables or binders.

Other Techniques for First-Order Approaches Aydemir et al. (2009) in-
vestigated several variations of representing syntax with locally nameless rep-
resentations aimed at reducing the amount of infrastructure overhead in lan-

18

guages like System F... One advantage of these techniques is that they are very
lightweight in nature and do not require additional tool support. However, while
the proposed techniques are effective at achieving significant savings, they re-
quire the abstract syntax of the object language to be encoded in a way different
from the traditional locally nameless style, potentially collapsing all syntactic
sorts into one. In contrast, GMETA allows the syntax to be encoded in the tra-
ditional locally nameless style, while at the same time reducing the infrastructure
overhead through its reusable libraries of infrastructure.

Higher-order Approaches and Nominal Logic Approaches based on higher-
order abstract syntax (HOAS) (Pfenning and Elliot 1988; Harper et al. 1993) are
used in logical frameworks such as Abella (Gacek 2008), Hybrid (Momigliano
et al. 2008) or Twelf (Pfenning and Schiirmann 1999). In HOAS, the object-
language binding is represented using the binding of the meta-language. This
has the important advantage that facts about substitution or alpha-equivalence
come for free since the binding infrastructure of the meta-language is reused. It
is well-known that in Coq it is not possible to use the usual HOAS encodings,
although Despeyroux et al. (1995) and Chlipala (2008) have shown how weaker
variations of HOAS can be encoded in Coq. Popescu et al. (2010) investigate how
formalizations using HOAS can avoid standard problems by being encoded on
top of first-order representations. Approaches like GMETA or LNgen are aimed
at recovering many of the properties that one expects from a logical framework
for free.

Nominal logic (Pitts 2003) is an extension of first-order logic that allows
reasoning about alpha-equivalent abstract syntax in a generic way. Variants of
nominal logic have been adopted in the Nominal Isabelle (Urban 2005). However,
because Coq does not have a nominal variant, this approach cannot be used in
Coq formalizations.

8 Conclusion

There are several techniques for formalizing metatheory using first-order repre-
sentations, which typically involve developing the whole of the infrastructure by
hand each time for a new formalization. GMETA improves on these techniques
by providing reusable generic infrastructure in libraries, avoiding the repetition
of definitions and lemmas for each new formalization. The DGP approach used
by GMETA not only allows an elegant and verifiable formulation of the generic
infrastructure which is appealing from the theoretical point of view, but also
shows itself useful for conducting realistic formalizations of metatheory.

Acknowledgements We are especially grateful to Sungwoo Park, which has
provided us with many useful comments and suggestions. We thank Hugo Herbe-
lin, Randy Pollack, Stephanie Weirich, the members of ROPAS and the anony-
mous reviewers for their useful comments and suggestions.

19

References

T. Altenkirch and C. McBride. Generic programming within dependently typed
programming. In IFIP TC2/WG2.1 Working Conference on Generic Pro-
grammiang, 2003.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms using gen-
eralized inductive types. In CSL ’99, 1999.

B. Aydemir, S. Weirich, and S. Zdancewic. Abstracting syntax. Technical Report
MS-CIS-09-06, University of Pennsylvania, 2009.

B. E. Aydemir and S. Weirich. LNgen: Tool Support for Locally Nameless
Representations, 2009. Unpublished manuscript.

B. E. Aydemir, A. Bohannon, M. Fairbairn, N. Nathan Foster, B. C. Pierce,
P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mech-
anized Metatheory for the Masses: The POPLmark Challenge. In TPHOLs
’05, 2005.

B. E. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. En-
gineering formal metatheory. In POPL 08, 2008.

S. Boutin. Using reflection to build efficient and certified decision procedures.
In TACS’97, 1997.

J. Cheney. Scrap your nameplate (functional pearl). In ICFP 05, 2005.

A. Chlipala. A certified type-preserving compiler from lambda calculus to as-
sembly language. In PLDI ’07, 2007.

A. Chlipala. Parametric higher-order abstract syntax for mechanized semantics.
In ICFP 08, 2008.

The Coq Development Team. The Coq Proof Assistant Reference Manual, Ver-
sion 8.2, 2009. Available at http://coq.inria.fr.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the church-rosser
theorem. Indagationes Mathematicae (Proceedings), 75(5):381-392, 1972.

J. Despeyroux, A. P. Felty, and A. Hirschowitz. Higher-order abstract syntax in
coq. In TLCA 95, 1995.

P. Dybjer. Inductive families. Formal Aspects of Computing, 6:440-465, 1997.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive defini-
tions. In TLCA 799, 1999.

P. Dybjer and A. Setzer. Indexed induction-recursion. In PT'CS 01, 2001.

A. Gacek. The Abella Interactive Theorem Prover (System Description). In
IJCAR 08, 2008.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,
40(1):143-184, 1993.

R. Hinze and J. Jeuring. Generic Haskell: Practice and Theory. In Generic
Programmaing 03, 2003.

P. Jansson and J. Jeuring. PolyP—a polytypic programming language extension.
In POPL ’97, 1997.

D. R. Licata and R. Harper. A universe of binding and computation. In ICFP
’09, 2009.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

20

C. McBride and J. McKinna. The view from the left. J. Funct. Program., 14
(1):69-111, 2004.

J. McKinna and R. Pollack. Pure type systems formalized. In TLCA 93, pages
289-305. Springer-Verlag, 1993.

A. Momigliano, A. J. Martin, and A. P. Felty. Two-level hybrid: A system for
reasoning using higher-order abstract syntax. Flectron. Notes Theor. Comput.
Sci., 196:85-93, 2008.

P. Morris, T. Altenkirch, and C. McBride. Exploring the regular tree types. In
TYPES ’04, 2004.

P. Morris, T. Altenkirch, and N. Ghani. A universe of strictly positive families.
Int. J. Found. Comput. Sci., 20(1):83-107, 2009.

B. Nordstrom, K. Peterson, and J. M. Smith. Programming in Martin-Lof’s
Type Theory: An Introduction. Oxford Unversity Press, 1990.

U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

U. Norell. Dependently typed programming in Agda. In Advanced Functional
Programming 08, 2008.

C. Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation a diriger les recherches, Université Claude Bernard
Lyon I, 1996.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-
based type inference for GADTs. In ICFP ’06, 2006.

F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88, 1988.

F. Pfenning and C. Schiirmann. System description: Twelf - a meta-logical
framework for deductive systems. In CADE ’99, 1999.

B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

A. M. Pitts. Nominal logic, a first order theory of names and binding. Inf.
Comput., 186(2):165-193, 2003.

A. Popescu, E. L. Gunter, and C. J. Osborn. Strong Normalization for System
F by HOAS on top of FOAS. In LICS, pages 31-40, 2010.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S.
Oliveira. Comparing libraries for generic programming in Haskell. In Haskell
’08, 2008.

A. Rossberg, C. V. Russo, and D. Dreyer. F-ing modules. In TLDI ’10, 2010.

M. Sato and R. Pollack. External and internal syntax of the lambda-calculus.
J. Symb. Comput., 45(5):598-616, 2010.

P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and
R. Strnisa. Ott: Effective tool support for the working semanticist. J. Funct.
Program., 20(01):71-122, 2010.

C. Urban. Nominal techniques in Isabelle/HOL. In CADE ’05, pages 38-53,
2005.

W. Verbruggen, E. de Vries, and A. Hughes. Polytypic programming in COQ.
In WGP 08, 2008.

W. Verbruggen, E. de Vries, and A. Hughes. Polytypic properties and proofs in
Coq. In WGP 09, 20009.

J. Vouillon. Poplmark solutions using de bruijn indices, 2007. Available at
https://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/.

