Automatic Generation and Management of
Interprocedural Program Analyses™

Kwangkeun Yi and Williams Ludwell Harrison II1
(kwanglharrison) @csrd.uiuc.edu
Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
465 CSRL, 1308 West Main St., Urbana, IL 61801-2307

Abstract

We have designed and implemented an interprocedural program an-
alyzer generator, called system Z. Our goal is to automate the gener-
ation and management of semantics-based interprocedural program
analysis for a wide range of target languages.

System Z is based on the abstract interpretation framework. The
input to system Z is a high-level specification of an abstract in-
terpreter. The output is a C code for the specified interprocedural
program analyzer. The system provides a high-level command set
(called projection expressions) in which the user can tune the analy-
sis in accuracy and cost. The user writes projection expressions for
selected domains; system Z takes care of the remaining things so
that the generated analyzer conducts an analysis over the projected
domains, which will vary in cost and accuracy according to the
projections.

We demonstrate the system’s capabilities by experiments with a
set of generated analyzers which can analyze C, FORTRAN, and
SCHEME programs.

1 Introduction

Semantic analysis, and especially interprocedural analysis, is an im-
portant component of compilers for modern computer systems. Our
goal is to automate the generation of such global program analyses
and shorten the cycle time of designing, experimenting, and re-
designing. We have designed and implemented the system Z which
automates the generation and management of interprocedural pro-
gram analyses. The system is based on the abstract interpretation
framework [6, 7]. The user specifies an abstract interpreter in a
specification language. The system compiles the specification into
a C code, which becomes an executable interprocedural program
analyzer when linked with a target language parser. The speci-
fication language has a high-level command set (called projection
expressions) by which the user can tune the analysis in accuracy and
cost. By this facility, he can quickly try several design choices and
experiment with the resulting analyses. The specification language
is general enough to express a large class of global analyses for a
wide range of target languages, and abstract enough to specify an

*This work was supported in part by the U.S. Department of Energy
under Grant No. DE-FG02-85ER25001 with additional support from NSF
under Grant No. NSF CCR 90-24554.

To appear in The Twentieth Annual ACM Symposium on Prin-
ciples of Programming Languages, January, 1993.

analysis succinctly.

Similar tools [18, 14, 8, 24] have been reported in the literature,
but they have several shortcomings relative to system Z. They do
not support interprocedural analysis specification, are limited to
specific target languages and a class of simple analyses (e.g. bit-
vector representation of the data flow values), require substantial
amount of code from the user, and have no high-level facility to tune
the analysis in cost and accuracy. Data flow analysis specifications
in these systems are similar to production rules in YACC. They
add analysis actions to an attribute grammar and use a parsing
procedure or a fixed number of traversals of an attribute syntax
tree to collect data flow information. All the value structures and
semantic actions at each attribute grammar node must be provided
in the implementation language by the user. Recently, Tjiang and
Hennessy [21] reported a similar tool to generate an analyzer for
a low-level intermediate language, with C++ as its specification
language. An interesting feature of this tool is that its fixpoint
computation procedure can be simplified by means of flow graph
reduction rules specified by the user. It is unclear, however, how
this feature can be used for the case where the flow graph of a
program cannot be determined before the analysis, which is the case
for languages in which a function call expression need not specify
(syntactically) which function it calls. Young [26] reported a library
that he used to implement several semantic analyses. Steffen [19]
reported a specification framework that uses modal logic formulae to
specify data flow analysis algorithms. The work most similar to ours
is by Venkatesh [22]. His specification language allows denotational
semantics to be augmented with a collecting mechanism for program
analysis. None of these tools provides a high-level facility to tune
the analysis in accuracy and cost.

1.1 System Overview

The overall configuration of system Z is shown in Figure 1. The
input to system Z is an abstract interpreter specification for a target
language. The user normally takes the following steps in arriving
to the specification of the abstract interpreter. He starts from a
standard interpreter of a target language. A standard interpreter
has nothing beyond what is necessary to interpret a program. To
the standard interpreter, he adds mechanisms to record data flow
information of interest, resulting in an instrumented interpreter. As
the last step, he approximates the instrumented interpreter into an
abstract interpreter. The abstract interpreter is suitable for use as a
compile-time analysis because it allows a simplified, approximate
interpretation, and because the induced program analysis is guaran-

User

Standard Interpreter of L |—‘l (

Instrumented Interpreter of L |

{

Parser of L
in C

Abstraction

Abstract Interpreter of L L . -
inZ Projection EW

Type Check;

Specification Check;

Generate C Modules;

Feedback

i

|

semantics.c

Vv

Integrate

Libr;

\

’ | Global Data Flow Analyzer Analysis Output |~

Figure 1: The System Z

teed always to terminate. This abstract interpreter specification is
the starting point for (input to) system Z.

From an abstract interpreter specification, system Z generates
three C modules: one for domain element management, one for
semantics operations, and one for fixpoint computation. These three
modules are linked with libraries and the target language parser into
an executable program analyzer. The inputto the generated analyzer
is a program in the target language. The output of the generated
analyzer is the result of the specified analysis of the program. The
analysisresultis a table that maps each program point to information
which describes the program states that can occur at that point during
execution. Depending on a command option, the analysis result (in
binary form) is dumped into a file, to be restored for subsequent
examination. The system provides all necessary run-time support
(e.g. garbage collector) and tools to trace the resulting analyses
(e.g. data type pretty printer).

After experiments with a generated analyzer, its cost and accu-
racy behavioris observed. An obvious way to modify the analysis is
to rewrite the entire specification again: to define new domains and
to change the interpreter functions accordingly. System Z provides
a simpler facility: projection expressions over the domains. The
user writes projection expressions for selected domains. System Z
then automatically generates an analysis which will process input

programs over the simplified domain structure. This suggests the
following approach to designing and experimenting with an analy-
sis. The user defines one detailed abstract interpreter at the outset.
Later, he write projections for selected domains. The system takes
care of the remaining things so that the generated analyzer conducts
an analysis over the projected domains, which will vary in cost and
accuracy according to the projections.

1.2 Why Abstract Interpretation?

The abstract interpretation framework [6, 7, 1] proposes that de-
signing a program analysis is equivalent to defining an interpreter
for the target language. The virtues of system Z comes from the
power of the abstract interpretation framework.

o The abstract interpretation framework solves problems that
compiler designers currently face.

Conventional data flow analysis methods (as summarized in
[17, 12]) have several limitations. First, they are restricted
to languages like FORTRAN where a program’s flow graph
can be (largely) determined from its text. Second, only with
difficulty can they be adapted to constructs that require detailed
semantic consideration. In languages like C or SCHEME a
procedure is not always invoked by its defined name, and not

all accessible memory locations are named explicitly when
they are accessed. For example, in

f(g) = -+ g(*x) ---

g can be bound to several different functions. Unless we
simulate (at compile-time) the parameter binding mechanism,
g’s flow graph must be connected to every function, which
will cause expensive and inaccurate analysis. The variable x
does not (syntactically) specify to which memory location it
points, because of unrestrained pointer manipulations, aliases,
or dynamically generated memory. Unless we interpret (again
at compile-time) those program constructs, we must assume
that x points to every memory location.

The abstract interpretation framework addresses these limita-
tions. It views an analysis as an abstract simulation of input
programs. It is driven by a formal semantics of the target
language. By forcing optimizing compiler designers to work
rigorously with the semantics of input programs, the frame-
work helps one to handle a detailed semantic analysis without
much difficulty, and to keep complicated analyses and radical
transformations from violating the original semantics of input
programs.

The abstract interpretation framework does not differentiate
interprocedural analysis from intra-procedural.

Under abstract interpretation, interprocedural analysis is no
more difficult than intra-procedural analysis. An approximate,
compile-time interpretation rule for procedure call expression
is all that is needed for interprocedural analysis. As defined
in this rule, the analysis will bind the parameters and inter-
pret the body. This approach is different from conventional
ones [5, 15, 23, 2] in two aspects. First, aliases (due to refer-
ence parameters) and recursive calls, which were considered
two principal problems of interprocedural analysis, are treated
by simulating directly the language construct that causes them
(in this case, call expression). Second, the program’s call
graph is not assumed as given prior to the analysis. As we
discussed above, this is important when the target language al-
lows procedures as first-class objects. Accuracy improvement
by clever representations of the call graph [5, 15] may still
be applicable in abstract interpretation, if the improvement is
applied as a post-analysis process, when the call graph has
been constructed.

The abstract interpretation framework makes it feasible to
generate compile-time analyses from high-level specifications
automatically.

Designing a program analysis is equivalent to designing an
abstract interpreter. Thus an appropriate formalism for in-
terpreter specification provides a comfortable ground for au-
tomatic generation of a global program analysis. In deno-
tational semantics [20], abstract interpreters are defined by
domain equations together with semantics equations over the
domains. For a useful class of domains these specifications
can automatically be made executable. When linked with a
fixpoint algorithm, this gives a program analyzer.

The abstract interpretation framework suggests simple ways
to tune the analyses.

In the abstract interpretation framework, the efficiency and
accuracy of an analysis is determined largely by the degree of

abstraction of the analysis. This means that a command to
control the degree of abstraction is a good specification method
for tuning the analysis. The more abstract the interpreter, the
less accurate the analysis will be, but the less time and space
it will cost. The designer can measure the gain in information
accuracy against the cost of the analysis.

Note that the abstract interpretation approach does not necessar-
ily mean more accurate analysis than the conventional data flow
approach. For languages and analysis problems to which the con-
ventional approachis well suited, it can give an equally accurate and
faster analysis than a corresponding abstract interpretation. What
we claim is that abstract interpretation is needed to achieve the re-
sults of data flow analysis for more difficult and dynamic language
constructs. By abstract interpretation, we can design comfortably a
correct, detailed semantic analysis (whether it be interprocedural or
intra-procedural) for a broad class of target languages.

1.3 Organization

In Section 2, we discuss how an abstract interpreter definition is
understood by system Z as a specification for a program analysis.
In Section 3, we present the abstract interpreter specification lan-
guage Z. In this section we introduce projection expressions. In
Section 4, we demonstrate the system’s capabilities by experiments
with generated analyzers for ANSI C, FORTRAN, and SCHEME
programs. We show how projection expressions can change an
analysis in accuracy and cost. We also present the performance of
generated analyzers for a set of C and FORTRAN programs. In
Section 5, we discuss future work and conclude. In Appendix A,
we include parts of the abstract interpreter definitions used for the
experiments in Section 4.

2 Program Analysis From an Abstract Inter-
preter Definition

System Z generates a global program analysis from a high level
specification of an abstract interpreter. In this section, we show
how the system compiles an abstract interpreter definition into a
corresponding program analysis. The user must understand this
process in order to specify an analysis that behaves as he intends.

2.1 Collecting Analysis Induced by an Abstract Inter-
preter

Z generates a program analyzer which computes, for each program
point, information which describes the possible program states at
that point during execution. We call this a collecting analysis [13].

How can an interpreter definition be a specification of a collect-
ing analysis? An interpreter is a function that defines, for each
language construct, its evaluation rule. Each evaluation rule is a
state transformer: a function from a pre-state to a post-state. An ab-
stract interpreter T of a target language is thus defined as a function
of type

Ix-X—-Y
where T is the set of program points, X and Y are lattices of pre-

states and post-states,respectively. An abstractinterpreter definition
looks like:

T = Mo .\T. case(o) of
o an assignment: /; (0, T)
o a procedure call: I,(o, T)

o aconstant: I,(0o,T)

where ;s usually involve recursive calls of .

The program points of a program P are the nodes of P’s abstract
syntax tree. The nodes of an abstract syntax tree are the language
constructs as defined in abstract syntax of the language. Let Xp be
the set of program points of a program P.

The collecting analysis of a program P from the interpreter def-
inition 7 is the computation of

Tabulate(F5,Xp,To) (see Figure 2),

where F5 is the associated functional' of the recursive definition of
T and 7 is the starting pre-state of the program. The analysis result
is two tables Tx and Ty. The tables have, for each program point
o, apair of a pre-state Tx (o) € X and a post-state Ty (o) € Y that
describe states that occur before and after that point during execu-
tion. Figure 2 shows a basic algorithm to compute the collecting
analysis. In reality, we use an optimized version which iterates
only for a subset of program points whose T'x and Ty entries were
changed by the previous iteration.

Note that by means of a separate fixpoint computation driver
(Tabulate), an abstract interpreter definition, which include neither
a fixpoint operator nor a property-collecting mechanism, becomes
a collecting analysis specification.

2.2 Designing an Abstract Interpreter

It is the user’s job to define an abstract interpreter for input to system
Z. To define an abstract interpreter is to define abstract value spaces
and to write, for each language construct, an abstract evaluation
rule that operates over the abstract values. One question is: how
do we write a correct abstract interpreter? This question reduces to:
what does each abstract value mean? The denotational semantics
formalism provides us with an answer to this question [4, 3].

In denotational semantics [20], domains are used to give math-
ematical meaning to types. In the abstract interpreters given to
Z, a data value is understood as denoting an ideal of the corre-
sponding domain in the concrete, instrumented interpreter. (The
concrete, instrumented interpreter is defined in the denotational se-
mantics formalism.) An ideal J of a domain is a subset which is
downward closed (y E z € J implies y € J) and upward complete
(every chain of J has its least upper bound in J). The relation be-
tween an abstract value T and its meaning () is described by the
adjoined pair:

@) = (s
a(z) = T

Each space of abstract data values is structured into a finite-
height lattice ordered by set inclusion of ideals. The finite-height
requirement guarantees the termination of the induced analysis.

Each evaluation rule of an abstract interpreter is required to be
monotonic: it returns no lower a value when given a higher input.
This requirement, with the finite-height of lattices, guarantees the

IFor a recursive definition f = Az.--- f - - -, the associated functional

termination of the induced program analysis. In addition, every
abstract operation f must be a upper approximation of the corre-
sponding f in the instrumented interpreter:

f(z) € v(f(7) Vz e ().

This requirement guarantees the correctness of an abstract inter-
preter with respect to its concrete correspondent.

System Z provides a set of constructs to declare abstract do-
mains and operations to manipulate abstract domain elements. The
user is responsible for defining a correct abstract interpreter in the
sense that we have discussed above. The concrete, instrumented
interpreter is neither seen nor processed by system Z.

3 Specification Language of the Abstract In-
terpreter

In this section, we present the specification language Z in which we
specify an abstract interpreter. We give the language the same name
as the system. An abstract interpreter specification in Z is compiled
into a C program that computes the specified collecting analysis as
outlined in Section 2.

Z is a strongly-typed applicative language with user-defined
types. Expressions are evaluated eagerly (that is, Z is not a lazy
language). A user-defined type is either a set or a domain. A do-
main is a finite-height lattice. The user can define an enumerated
set, an integer range set, an index set, or a product set. Similarly,
the user can define a lifted domain, a powerset domain, a product
domain, and a function domain. Z requires that the domains have
finite height. Together with monotonic operations over the domains,
this guarantees the termination of the specified program analysis.
This requirement implies that Z cannot accept reflexive type defini-
tions. A reflexive type is one that is defined recursively. A reflexive
type results in an infinite-height lattice, which is unacceptable for
compile-time analysis.

Interestingly, the language Z does not provide a user-visible fix-
point operator. As we will see, the absence of an embedded fixpoint
operator, the absence of reflexive domains, and its eager evaluation
semantics do not restrict significantly the language constructs that
Z is able to analyze.

One interesting capability of Z is a high-level facility to tune the
analysis in costand accuracy. This is done by projection expressions
applied to abstract domains. The user writes projection expressions
for selected domains; system Z then generates an analysis which
will analyze over the simplified domain structures.

To present the language Z, we will show side by side two forms
of the language. One is its real look and the other is its definition in
conventional mathematical notation. We use typewriter style
for reserved words of Z, and italic style for nonterminal symbols.
Among nonterminal symbols, “z” is used for bound names, and
“r” for types (domains or sets), specifically, “D” for domains, “S”
for sets. “e” stands for expressions with “ze” for integer valued
expressions. “f” stands for function expressions or defined function
names, “z” for integers, and “r” for natural numbers. “{}” is for

[yt

grouping, “a®” or “a - - - a” for one or more “a”s.

An abstract interpreter specification in Z consists of type defini-
tions and the interpreter function definition. Type definitions may
contain projection expressions.

flo:Z,2: X):Y /* applied at recursive calls of the interpreter */
begin

ifz [Z Tx (o) then Tx (o) = Tx (o) Uz;

return Ty (o);
end

Tabulate(F: (2 - X - Y) =X — X =Y, Lp:2% 20 X):void
Tx,T%:Zp — X; /* program point to pre-state */
Ty, Ty:Xp — Y, /* program point to post-state */

begin
VGEZP:Tx(O)ZLy, Ty(d):J_y;
Tx (00) = zo; /* pre-state at the program entry point */
repeat

(T%,Ty) = {Tx, Ty); /* remember the program state of the previous iteration */
foreacho €Xp /* for each program point */
Ty(o) =Ty(oc) U F(f,0,Tx(0)); /*evaluate and join */

until (TX C T)/() AN (Ty C T{/)
end

/* repeat until no movement */

Figure 2: Collecting Analysis from an Abstract Interpreter Functional #’

3.1 Type Definitions

User-defined types are in two categories: set or domain. A domain
is a finite-height lattice. There exist two pre-defined set types:
the set of abstract syntax nodes, syntree, and the set of integers,
number. When we say “two types are same” we mean that they are
name-equivalent or in a synonym relation; structural equivalence
does not count.

Types are defined by

(types typedefT)

3.1.1 Sets

A set .S can be defined in five ways.

(set S (elements ¢1---1n)) (1)

(set S (range z1 22)) (2)

(set S (index p)) (3)

(set S (* S1---Sp)) (4)

(set S’ (synonym S)) (5)
(1) enumerated set S={u,...,tn}
(2) integer range set S={i€Z|zn<i<zn}
(3) index setboundby p() S={i€Z|0<:1<p()}
4)

4) product set S=5 %% 5,
(5) an equivalent set except in name

All set types must be named uniquely. The element names of
enumerated sets must be distinct. A range set’s z; must be less
than or equal to z;. An index setdefinition is used for an index set
{0, 1,...} whose bound is determined by an input program. p must
be a name of a C procedure which returns a non-negative integer.
For example, p() may return the number of identifiers in a program.
The synonym set definition is used when S’ and S are to be
components of a product set. Since Z uses the set name as the
component selector, Z requires that set component names be distinct.
For example, in order to define a product set P = .S x .S, we must
introduce a synonym set S’ of S, and write P = .S x S’

3.1.2 Domains

A domain is a finite-height lattice. A domain can be defined in five
ways.

(domain D (flat S5)) (1)
(domain D (2~ S)) (2)
(domain D (* Di---Dyn)) (3)
(domain D (-> Dy D»)) (4)
(domain D' (synonym D)) (5)

(1) lifted domain of a set D=5S]

(2) powerset domain of aset D = 2°

(3) product domain D=D,x---x D,

(4) atomic function domain D = D) »D,

(5) equivalent domain except in name

All domains are named uniquely. The use of the synonym domain
definition is the same as for sets. A domain or a set cannot be
defined recursively; this forces the domains to have finite height.

An element immediately above the bottom element is called
an atom. Note that all atoms are incomparable. Henceforth,
atoms(D) will be the set of atoms of a lattice D.

The Partial Order and Join Operation: For a flat domain S| ,
all atoms € S are incomparable. For a powerset domain, the par-
tial order is set inclusion and the join operation is set union. For
a product domain A x B, the partial order and join operation are
component-wise: {(a,b) C {(a’,b') iff a T a’ A b C b, and simi-
larly for LI. For a function domain A - B, the partial order and join
operation are point-wise: f C f'iff f(z) C f'(z) for all z € A,
and similarly for LI.

Atomic Function Domain: An atomic function domain
D+ D, is a strict and distributive function domain where D is
an atomic domain. An atomic domain is one such that every non-
bottom element z is the join of a representation set rep () of atoms.
The rep(z) is defined to be the maximal such set. For example, S |
is an atomic domain with rep(T) =5 and rep(atom z) = {z}.

Note that, by distributivity, every element f of an atomic function
domain D; » D, satisfies

f(l‘) = ‘—lxierep(x)f(xi) Vz € D.

Therefore, every element of an atomic function domain D D>
can be represented as a function from atoms(D1) to D». Z repre-
sents functions in D - D, as functions in atoms (D) — D», and
the user treats the functions as though in atoms(D;) — D, also.

Example 1 For example, let f € D) ~Dpandlet D; =2 or S|
with S = {a,b}. Z uses an element of S — D, to represent a
function in Dy - D,. Probing f’s value at z € D is expressed as

'—'xzerep(r)f(zi)-

Thus, instead of f({a,b}), we write f(a)U f(b). Updating f’s
value atz € D by y € D, canbe expressed, among several possi-
bilities, as

f[f(xz) [} y/xi]zierep(x) or f[y/zi]z,Erep(:r)s

depending on the semantics of the operations being mod-
eled. Thus, instead of f[y/{a,b}], we write f[y/a][y/b] or
flf(a)Uy/a]lf(b) Uy/b]. O

The definition of the atomic function domain implies the follow-
ing:

Property 1 The atomic function domain D - D, is isomorphic to
the product domain D3 where « is the number of atoms |atoms(D1)|
0fD|.

Element Height and Depth: Domain element height and depth
are used in projection expressions. We define the height (respec-
tively depth) of an element z to be the length of a maximal chain
from bottom (respectively top) to z. A chain between two ele-
ments is maximal when it cannot be extended to include any more
elements. In general, there exists more than one maximal chain be-
tween two elements. One immediate question is: are their lengths
all same? The answer is yes, for every domain in Z; thus our
definition of an element height/depth is not ambiguous.

Property 2 For each domain in Z, every maximal chain between
any two elements is of the same length.

Proof. This property (Jordan-Holder theorem [16]) follows when
all the constructed lattices are modular and finite. We know that
all of our lattices are of finite cardinality. All we need to show
is that every constructed lattice is modular, which we can prove
inductively. O

Property 3 ForeachdomaininZ, an element’s height (respectively
depth) can be defined inductively on the domain structure.

Proof. The height of bottom k(L) is zero. Every atom’s height is
1. For a flat lattice (ST), h(T) is 2. For other cases, we can easily
compute an element’s height from its domain structure. Since every
maximal chain from L to z is of the same length, we can pick any
maximal chain and compute its length, which is the height k(z).

Forz = {z1,...,2,} € 2°, h(z) = |z| since a maximal chain
from L to z is

PC {1} C{z1, 2} C...C {z1,...,zn}

whose length is |z].

For z = (z1,22) € D1 x Dy, h(z) = h(z1) + h(z2) since a
maximal chain from L to z is, with maximal chains {a;} of length
n for z; and {b;} of length m for z»,

1 c <a|aJ-> cC---C (a"aJ—> c (a"ab|> cC---C <a"abm>
whose length is n + m.

For an atomic function feD Dy,
R(f) = h(f(z1))+ -+ h(f(zn)) with {z;} = atoms(D)),
since Dy - D> is isomorphic to D5 with « = |atoms(D,)| (Prop-
erty 1). O

The above property is important, because using it we can easily
compute the heights (respectively depths) of domain elements for
use in projections.

3.2 Projections

As we mentioned above, Z provides a simple mechanism to tune an
analysis: projections of domains.

Definition 1 A map 6: D — D is a projection if 8 is monotonic,
idempotent (¢ = § 0 8), and Id C 6.

Projections allow us to tune an analysis without changing any se-
mantic operations used in defining the abstract interpreter. We can
express projections independently of the semantic definition. We
design “large”, or maximal abstract domains and define the abstract
interpreter function over these domains. After that, when we want
to trim the domain structure, we define projections. Z arranges that
the semantics operate over the projected domain space.

How can we compute an analysis over the projected domains?
Suppose we have projections 8 4 and 5 for abstract domains A
and B. For each semantic operation f: A — B, we wrap f with
those projections: 8 o f 0 6.4. Thisis correct: f E 0p o fofa,
because all functions are monotonic and projections are at least as
safe as the identity function (/d C). Because of the idempotency
of projections, it’s enough to apply each projection only once (per
application of f). In reality, Z uses a more sophisticated method
that insures that only elements in the projected domain occur, by
projecting at the moment that domain elements are created.

Example 2 Let D be a powerset domain D = 2°. We can project
it into several simplified domains. Suppose we regard elements
whose cardinality is larger than 1 as being useless for an analysis.
Then we may use a simplified domain of D) in which all elements
above the singleton set elements are projected to the top element.
This projection § is

0 = \p. { T, ifh(z).: |z > 1;
z, otherwise.

0

Example 3 Suppose we have an abstract domain D = Dy x D,.
Suppose we find all the pairs (T p,, “any”) are no more useful than
T =(Tp,, Tp,). Then, we can use a projection § to avoid all such
elements during analysis:

B T, ifd; = TDI;
g =)\(dl, d2> { <d|, d2>’ otherwise.

Z provides a limited set of projections: all projections project to
the top element. A projection is expressed as

(project D pcond)

All elements of D that satisfies the condition pcond are projected
to Tp. Note that this operation is qualified as a projection (see
Definition 1). Abstractsyntax of a projection condition is as follows.

pcond = top? (1)
| (height> n) (2)
| (depth< n) (3)
| (*—and pcond, ---pcond,) (4)
| (*—or pcond, ---pcond,) (5)
| (->all pcond) (6
| (->exists pcond) (7

)
)

Each projection condition represents a predicate as follows.

(
(2) height(z) > n?

(3) depth(z) < n? (dual of height)

4z €D x--xDpVie{l,...,n}: pcond,(z | 1)
(5)z €Dy x---xDp3ie{l,...,n}: pcond,(z | 1)
(6) z € D|»D,.Vatoma € D, : pcond(z(a))

(7) z € Dy »Ds.Jatoma € D, : pcond(z(a))

3.3 Interpreter Functions

After types (sets and domains) are defined, the semantic definition
follows. A semantics definition is a sequence of function decla-
rations and definitions. The main interpreter function is called the
semantic function. All other functions are called auxiliary functions.
Only one semantic function can be defined.

The type of each function must be declared before it is used:

(f (from 71---Tn) (to 7))

The semantic function is defined with a reserved word
semantics:

(semantics f (z1---Zn) €)

The first argument z; ’s type should always be syntree. A start
declaration (optional)

(start ey ---en)

specifies the pre-state that holds at the program entry point. Note
that a pre-state consists of the arguments of the semantics function
excluding its first argument of type syntree. Each e; should
match with its corresponding argument type 7; of the semantics
function. Without the start declaration, L ;,’s are assumed for
the starting pre-state.

Auxiliary function definitions are of three kinds:

(function f (zi---zn) e) (1)

(mfunction f (z1---Zn) €) (2)

(tfunction f (from S;---Sp) (to 7)
{(er- - en e)}T) 3)

(1) function specifies a usual function. Given an input pair,
evaluate the function body and returns its result.

(2) mfunction specifies a memoized function. All ever-
computed pairs of input and output are recorded in order to bypass

the computation whenever the function is applied to a previous in-
put set. (Garbage collection is used to recover space in these tables
periodically.)

(3) tfunction specifies a tabularized function. Before the
analysis, the whole graph of the function is recorded in an array.
Every function call is an array access to the corresponding entry.
Z requires that the argument types of a tabularized function be sets
whose size can be determined independent of the input program.

Abstract syntax of Z for semantics expression part is shown in
Figure 3. Every semantics expression denotes a value of a unique
type 7. A type is a user-defined type, a pre-defined type (syntree
or number), or one described by a function expression. Integers (of
type number) are also used as boolean values: O for false, others
for true.

User-defined types and the pre-defined types constitute the basic
types. The type of every function expression is from a number of
basic types to a basic type. For each basic type, Z provides a set
of constants and primitive operations over its values. Certainly,
the expression constructs shown in Figure 3 are not defined for all
types of values. The reader may want to see [25] for their formal
semantics and type rules.

3.4 Defining the Abstract Syntax of a Target Language

As might be noted, Z does not provide any construct to specify
the abstract syntax of a target language. System Z does not gen-
erate the syntax tree, nor does it provide any operator to access
its nodes. The user must write C procedures for those operations
and declare them inside Z. Declaring those C procedures in Z is
done in the same way as for other Z functions. Because no foreign
types are allowed in Z, two reserved type names, syntree and
number, may be used to declare the types of those procedures.
The correspondence between C types and these two Z types must
be defined in a C header file (user.h). As an example, suppose
the user has a C procedure isP1lus, which returns true when it’s
argument is a plus node. Inside Z, the user declares it, before
its use, as “(isPlus (from syntree) (to number))”.
Inside user.h, syntree and number are defined as,
for example, “typedef struct node* syntree” and
“typedef int number”.

Currently, we have implemented ANSI C, FORTRAN,
and SCHEME front-ends for an intermediate language MIL
(MIPRAC [11, 10, 9] Intermediate Language), along with a set of
routines to access MIL programs, so that Z may be used to analyze
programs in these source languages.

4 Experiments

In this section, we present examples to demonstrate system Z’s
capabilities, focusing on the projection facility. We first present cost
and accuracy variations depending on projections. Even though it is
usually true that projections reduce the analysis cost at the expense
of accuracy, there are some cases in which they reduce only the cost
without any change in accuracy. We present one such case below.
We have designed two analyses in Z: constant propagation anal-
ysis and alias analysis. The target language is MIL [11, 10]. Since
we have parsers from ANSI C and FORTRAN into MIL, we can
use C and FORTRAN programs as test suites. The two analyses are
embodied in a single abstract interpreter definition. The interpreter
is defined over a couple of expensive domain structures (e.g., the

be

tag

ze

bop
rop

D | S |number | syntree
(lambda (from 71:--Tn)
defined function name

T ze)
bottom)
top)

€)

L
T
(
(
(
(
(

B

6]"'6n)

7 (each z e))
|
|

e m--mE)
e T]"'Tn)
e 6]"'6n)
€] €2)
€1 €2)

[l e)

in e; e2)

join e1...en)

mapjoin f e)

[/] e (by e1, e1) - (by €n, €n,))

map[/] e f e1)
om e)

nth e ze)
foer-

if ze e 62)

switch {ze e}+ default e)
begin bet e)

error

ze

(
(!
(!
(@
(<
(=
(
(
(
(join (for =z ze; zey e))
(
(
(
(d
(
(
(
(
(

(let = tag e)
(let (- z 1) tag (for 1 ze; zey €))
(let (- z z) tag e

(- z 1) tag (for 1 ze; zey €3))

i T

emply

T

z

(and ze; zez) | (or ze; zez) | (not ze)
(rop zer zez) | (bop zey zey)

(bop (for 1 ze; zey ze3))

el R
=|<>[<=]>=

(to 1) (z1---

types

Tn) €)

enumerated set element

bound name

indexed bound name z ..

J—T

TT

type cast

powersetelmt {ey, -+, e}, or
product set/lattice elmt {e1, - -+, €n)r
ftn lattice elmt [Az.€] -

elmni-- | ng

elm--|m™

e(er)- -~ (en)

erC e

equivalence

cardinality |e| of a powerset elmt e
e €e

etd---Ueyp

Uzei<agze, €

Ll;rEef(l‘)

ele,/en] - -leny/en]
e[f(z)/zr]see,

{z]e(x)# L},

ze-th elmt of a powerset elmt e
function apply f(er, -, en)
conditional

switch to the first true branch
sequential bindings and body
semantics error

integer (also boolean) valued expression
bindingz = e

indexed binding z; = e for ze; <1 < zey
indexed binding with initialization

z; = ey for ze; <1< zep withz, = ¢

bound name
integer constant

ze,
= zel €3

integer binary operation
integer relation

bop:

Figure 3: Abstract Syntax of Semantics Expressions in Z

abstract integer is a powerset domain of an integer range set), which
is trimmed later by series of projection expressions. The definition
has 667 lines. Due to space limitation we show only parts of the
definition in Appendix A.l. (The reader may want to see [25] for
the complete definition.) The generated C code for the analysis has
12K lines. Its executable binary size is 463K bytes.

4.1 Cost Variations Depending on Projections

Tables in Figure 4 show the cost variations depending on the
projections. The generated analyzers are compiled using gcc
and are executed on a SPARCstation 2. The four test programs
are wator.c (C), which simulates a simple ecological system,
gauss. f (FORTRAN), which is a Gaussian elimination program,
amoeba . £, which optimizes a nonlinear function of multiple vari-
ables, and simplex. £, which optimizes a system of linear con-
straints. Sizes of the programs after translated into MIL are:

wator.c: 45 procedures, 3467 exprs, 166 vars.

gauss. f: 54 procedures, 4710 exprs, 172 vars.

amoeba. f£: 36 procedures, 6062 exprs, 221 vars.

simplex. f: 44 procedures, 8739 exprs, 250 vars.

We tried three projections:

e (project Z (height> 1)): domain Z is the abstract
integer defined as a powerset domain of an integer range set.
By this projection, Z’s elements which are higher than the
singleton sets are projected to top. This is the domain used in
conventional constant propagation analysis.

e (project Z (height> 2)): Z’s elements higher than
the two-element sets are projected to top.

e (project Gs (height> 0)): domain Gs is used to
differentiate instances of local variables. The projection col-
lapses all the abstract instances into a single one. An instance
of a variable is a memory portion allocated for the variable
by a new activation of its owner procedure (which has the
variable as a parameter or a local variable). The projection
specifies that there be only one abstract instance.

Memory consumption and the amount of garbage reclaimed are the
average amounts (in mega bytes) after a garbage collection. As
expected, the analysis cost decreases as we project the domains
into simpler ones. The shortened heights of the projected domains
reduce the number of iterations required to reach a fixpoint. Note
that the times are on the order of several minutes. Currently, system
Z does not perform any optimization of the input specification. The
system might include a phase to analyze the input specification and
manipulate it into a simpler one.

While projections reduce the cost of analysis, they decrease its
accuracy. This is because projections map a domain element into a
higher one (in our case, into top) which is a less accurate value. In
the next section we illustrate how projections decrease the accuracy
of the analysis.

4.2 Accuracy Variations Depending on Projections

We will show, for an example program, how a projection expression
changes the analysis in accuracy. Let us consider the left-hand side
C program in Figure 5. It is written to have several aliases and
interesting constant properties. Note that the variable n can have
only two values: 0 or 1. Note that the formal arguments x and y of
the procedure g points to i or j.

Firstly, we project the abstract integer domain Z using
(project Z (height> 1)).

This projection expression makes the powerset domain
(domain Z (2" setZ)) becomes equivalent to the flat do-
main (domain Z (flat setZ)) used in conventional con-
stant propagation analysis. The analysis result at the program end
point is in the left hand side of Figure 6. We use the output of the
display routines generated by the system. The format rule is simple.
The first column has element’s domain name. A function domain
element f is printed as [z9 —> f(z0)]- - [zn —>f(zn)] forde-
fined entries {zo, ..., zn}. A powerset domain element is printed
in enumerated set notation. A product domain element « is printed
as <z | 0,...,2 | n>. The bottom (respectively top) element is
printed as _(respectively).

Note that the value of n (“Id 8->") is the top integer, and each
value of x (“Id 12->")and y (“Id 13->")is alocation of i or
5 ({5, 6.

Next, we project the Z domain using
(project Z (height> 2)).

This projection expression gives a richer structure than the previous
one. Between singleton sets and the top value exist two-element
sets. When a two-element set is obtained we can retain to it instead
of projecting it to top as in the previous case. The result is the
right hand side of Figure 6. The analysis output becomes sharper.
It can detect that n is a two-valued (“{0, 1}”) variable instead of
an all-valued (Ty) variable. This result also sharpens the alias
information, that x and y are pointing to only one location: x to i
({5} and y 10 (*{6}").

4.3 Projection Without Loss of Accuracy

As second example, we consider an analysis to find procedures
whose arguments are all constants. When a procedure is called
always with the same actual parameters we can remove code for the
parameter passing. This example is a case in which a projection
expression reduces the analysis cost without a loss of accuracy.
Due to space limitation we show only parts of the definition in
Appendix A.2. (The reader may want to see [25] for the complete
definition.) The definition has 696 lines.

Domain Q records, for each procedure, abstract integer values
bound to its arguments:

(domain Q (-> Proc Arg)) (1)
(domain Arg (-> Id 2)) (2)

(1) maps each procedure € Proc to a value € Arg
(2) maps each parameter € Id to a value € Z

Suppose that whenever one of a procedure’s arguments is bound
to distinct values, we wish not to consider the other arguments. For
example, such a procedure might be disqualified for the planned
optimization; if we suppose that having only one parameter of a
procedure bound to varying values is as useless to us as having
every parameter bound to changing values. Thus, we project every
element of Arg whose entry contains the T into the TArg:

(project Arg (—->exists top?)).

This projection will not affect our optimization but will reduce the
analysis cost.

| Cost Variations (wator. c: 45 procedures, 3467 exprs, 166 vars in MIL) |

Projections Iterations | CPU sec | MemUse(Garbage)(M) | #GC
h(z) > 1 340,978 529.21 6.14 (5.27) 94
h(z) > 1 157,678 112.76 7.01(5.19) 4
h(Gs) >0
h(2z) > 2 291,349 241.75 6.12 (5.24) 18
h(Gs) >0

Cost Variations (gauss.f: 5

4 procedures, 4710 exprs, 172 vars in MIL)

Projections Iterations | CPU sec | MemUse(Garbage)(M) | #GC
h(z) > 1 376,660 782.29 6.22 (5.29) 186
h(2) > 1 248,721 258.78 6.11(5.28) 18
h(Gs) >0
h(z) > 2 271,922 283.74 6.01(5.28) 21
h(Gs) >0

| Cost Variations (amoeba . £: 36 procedures, 6062 exprs, 221 vars in MIL) |

Projections Iterations | CPU sec | MemUse(Garbage)(M) HGC
h(z) > 1 784,270 | 3,647.19 6.72(5.34) | 1,115
h(2z) > 1 541,199 519.55 6.42 (5.32) 57
h(Gs) >0
h(z) > 2 572,296 530.38 6.36 (5.30) 53
h(Gs) >0

| Cost Variations (simplex. £: 44 procedures, 8739 exprs, 250 vars in MIL) |

Projections Iterations | CPU sec | MemUse(Garbage)(M) HGC
h(z) > 1 1,084,662 | 6,134.81 7.01(5.35) | 1,998
h(2z) > 1 751,400 969.17 6.42 (5.31) 84
h(Gs) >0
h(2z) > 2 779,247 997.14 6.47 (5.32) 93
h(Gs) >0

Figure 4: Analysis Cost Variations Depending on Projections

Consider the program in the right hand side of Figure 5. Its anal-
ysis outputs (with/without the projection) at the program end point
are shown in Figure 7 (the right hand side is with the projection).
Both analysis results will have same effect on our optimization:
both detect that function h is called with constant arguments and
the others with varying values.

5 Conclusion and Future Work

In this paper we have presented system Z which automates the
generation and management of interprocedural program analyses.
The system provides a high-level facility (projection expressions)
by which the user can tune the analyses in accuracy and cost. We
demonstrated the system’s capabilities by experiments with a set of
generated analyzers which can analyze ANSI C, FORTRAN, and
SCHEME programs. We show how we can use the projections to
change an analysis in accuracy and cost. We have designed the
specification language to be general enough to specify a large class
of global analyses for a wide range of target languages, and to be
abstract enough to specify an analysis succinctly. Whether this
claim is substantiated remains to be seen as we try other analyses
than those presented in this paper; we plan to expand the language if
necessary. The system provides the run-time supports (e.g. garbage
collection) and other extra routines (e.g. data type pretty printers,
dump/restore routines for the computed fixpoint) needed to debug an
abstract interpreter specification and to examine the analysis result.
We can summarize this paper’s contributions as follows:

e By System Z, we showed that many aspects of the gener-

10

ation and management of interprocedural program analyses
can be automated. It is possible to generate an analysis from
a high-level abstract interpreter definition, and to tune it us-
ing projection expressions over the types (value spaces) of the
interpreter.

We presented a simple high-level specification language in
which we can specify detailed semantic analyses for languages
like C which is considered hard to analyze. System Z is to be
used as a fast prototyping tool for such analyses.

System Z can facilitate the use of abstract interpretation in
designing an analysis for imperative as well as functional
programming languages.

There are several extensions worth trying.

More general projection expressions. Currently, all projec-
tions project to the top element. This set of projections is
shown to be useful, but more elaborate projection expressions
are needed for some cases. For example, we may want to
project a domain D such that the elements below an z € D
are projected to z and those above z to top.

Theorem generator. Here, a program analysis is a data collec-
tion procedure. As a next step after the collection, we usually
need an analysis of the result: we must derive information
which summarizes the collected data in a suitable form for
an intended optimization. The system might provide a spec-
ification language in which the user can write rules for data
analysis.

/*
* Constant Propagation and Alias Analysis
* Demo Input

*/

void f(int *x) {
if (*x <= 0) *x = 1;
else *x = 0;

}

void g(int *x, int *y) {
*x 1;
*y = 2;

}

#define BOUND 100000
void main () {
int i, Jj, k, n;
int *a, *b;

/*
* For constant propagation analysis.

* Note the value of n across iterations.

*/

for (k=0; k<BOUND; k++)
f(&n);

/*

* For alias analysis.
* Note the parameter bindings of g.

/*
* Constant Call Analysis Demo Input
*/

void f(int x, int y, int z) {
if (x <vy) hiy, 2z);
else h(z-10,y+10);

}

void h(int 1, int m) {
int i, sum = 0;
for (i=1; i<m; i++) sum++;

}

void g(int p, int q) {
int i, prod = 1;
for (i=p; i<qg; i++) prod *= 1i;

}

#define BOUND 100000

void main() {
int 1i;
/*

* First loop calls f, which calls h.
* Note that h’s params are all constants.
* Second loop calls g or h.
* Still, h’s params are all constants.
* All others have varying parameters.
*/
for (i=0; i<BOUND; i++) {
£(i, 10, 20);
}
for (i=0; 1<BOUND; i++) {
if (1 < 100) g(i,i+i);
else h(10,20);
}
}

Figure 5: Input C programs (expository purposes)

o User specified fixpoint computation optimization. We have
used a general fixpoint computation method. Depending on
target languages, however, we can improve its performance.
For example, for a language which enables us to determine,
before the analysis starts, the control flow graph of an input
program, the fixpoint computation method can be tailored for
the control flow graph. Asin [21], system Z can provide a
facility by which the user can specify such optimizations when
possible.

e Optimization of the generated analysis. There are ways in
which we can further improve the performance of the gen-
erated C code. For example, currently domain elements are
manipulated through the limited set of interface procedures of
the domain module. The generated analysis could be made
more efficient, by allowing it to manipulate the representations
of domain elements more directly. The system might also in-
clude a phase to analyze the input specification and manipulate
it into a simpler one.

References

[1] Samson Abramsky and Chris Hankin, editors. Abstract Inter-
pretation of Declarative Languages. Ellis Horwood Limited,
1987.

[2] Jeffrey M. Barth. An interprocedural data flow analysis algo-
rithm. In Conference Record of the Annual ACM Symposium
on Principles of Programming Languages, pages 119-131,
January 1977.

11

(3]

(4]

(5]

(6]

(71

(8]

(9]

Geoffrey L. Burn. Abstract Interpretation and the Parallel
Evaluation of Functional Languages. PhD thesis, Department
of Computing, Imperial College, University of London, March
1987.

Geoffrey L. Burn. Lazy Functional Languages: Abstract
Interpretation and Compilation. The MIT Press, 1991.

David Callahan. The program summary graph and flow-
sensitive interprocedural data flow analysis. In SIGPLAN
Conference on Programming Language Design and Imple-
mentation, pages 47-56, 1988.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Conference Record
of the 4th ACM Symposium on Principles of Programming
Languages, 1977.

Patrick Cousot and Radhia Cousot. Systematic design of pro-
gram analysis frameworks. In Conference Record of the An-
nual ACM Symposium on Principles of Programming Lan-
guages, pages 269-282, 1979.

Harald Ganzinger and Robert Giegerich. A truly generative
semantics-directed compiler generator. In Proceedingsof SIG-
PLAN ’82 Symposium on Compiler Construction, volume 17
of SIGPLAN Notices, pages 172—184, 1982.

Williams Ludwell Harrison III. Generalized iteration space
and the parallelization of symbolic programs (extended ab-
stract). In Proceedings of the workshop on compilation of
(symbolic) languages for parallel computers, October 1991.

Figure 7: Accuracy Invariation for Some Projections

n ———>> Id 8-> Id 8-> <<--—'n
SS SS
[[
G D—> G D—>
v < v <
L . L .
C _r c —r
value of n ——->> Z ~>] Z {0,1}>11] <<--- value of n
[[
x of g ———>> Id 12-> Id 12-> <<--- x of g
SS SS
[[
G D—> G D—>
v < v <
L < L <
x is alias to 1(5) or j(6)-——>> Ids {5,6}, Ids {5}, <<--- x 1s alias to i (5)
P P
[[
Proc 2-> Proc 2->
Gs {D}1>, Gs {D}1>,
C —r c —r
Z {0}>1] Z {0}>1]
[[
y of g ———>> Id 13-> Id 13-> <<--- y of g
SS SS
[[
G D—> G D—>
v < v <
L < L <
y is alias to 1i(5) or j(6)-——>> Ids {5,6}, Ids {6}, <<--- y is alias to j (6)
P P
[[
Proc 2-> Proc 2->
Gs {D}1>, Gs {D}1>,
C — c —r
Z {0}>1] Z {0}>1]
Figure 6: Accuracy Variations Depending on Projections
Q
[
Proc 6—> <<--- g
Arg
[
Id 9-> <<--- param p
Z]
0 [
[Id 10—> <<---— param q
g -—-—>> Proc 6—> z 1
Arg "] L
[Proc 7-> <<---—h
h --->> Proc 7-> Arg [
Arg [Id 14-> <<--— param 1
param 1 ——-->> Id 14—> z [(10}]
z [(10}] Id 15-> <<-—-— param m
param m ———->> Id 15-> z [(20171
z [{20111 Proc 8-> <<-——= f
f --->> Proc 8-> Arg [
Arg 7l Id 19-> <<--— param x
Z]
[
Id 20-> <<--- param y
Z {10}]
[
Id 21-> <<--— param z
Z {20111

12

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

Williams Ludwell Harrison III. Semantic Analysis of Symbolic
Programs for Automatic Parallelization. Book in preparation,
1992.

Williams Ludwell Harrison III and Zahira Ammarguellat. A
program’s eye view of miprac. In D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel
Computing (Also as a UIUC CSRD Report 1227). MIT Press,
August 1992.

Matthew S. Hecht. Flow Analysis of Comptuer Programs.
Elsevier North-Holland, Inc., 1977.

Paul Hudak and Jonathan Young. Collecting interpretations of
expressions. ACM Transactions on Programming Languages
and Systems, 13(2):269-290, April 1991.

Kai Koskimies, Otto Nurmi, Jukka Paakki, and Seppo Sippu.
The design of a language processor generator. Software-
Practice and Experience, 18(2):107-135, 1988.

Eugene W. Myers. A precise inter-procedural data flow algo-
rithm. In Conference Record of the Annual ACM Symposium
on Principles of Programming Languages, pages 219-230,
1981.

D.E. Rutherford. Introduction to Lattice Theory. Hafner Pub-
lishing Company, New York, 1965.

Barbara G. Ryderand Marvin C. Paull. Elimination algorithms
for data flow analysis. ACM Computing Surveys, 18(3):277—
316, September 1986.

Masataka Sassa. Rie and jun: Towards the generation of
all compiler phases. In Lecture Notes in Computer Science,
volume 477, pages 56-70. 1990.

Bernahard Steffen. Data flow analysis as model checking.
In Lecture Notes in Computer Science, volume 526, pages
346-364. 1991.

Joseph E. Stoy. Denotational Semantics: the Scott-Strachey
Approach to Programming Language Theory. MIT Press,
1977.

Steven W. K. Tjiang and John L. Hennessy. Shatrlit - a tool for
building optimizers. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 82-93,
June 1992.

G. A. Venkatesh. A framework for construction and evaluation
of high-level specifications for program analysis techniques.
In SIGPLAN Conference on Programming Language Design
and Implementation, pages 1-12, 1989.

William E. Weihl. Interprocedural data flow analysis in the
presence of pointers, procedure variables, and label variables.
In Conference Record of the Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 83-94, 1980.

Reinhard Wilhelm. Global flow analysis and optimization in
the mug2 compiler generating system. In Steven S. Muchnick
and Neil D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 5. Prentice-Hall, 1981.

Kwangkeun Yi and Williams Ludwell Harrison III. Z: In-
terprocedural data flow analysis specification language (in
preparation). Technical report, Center for Supercomputing
Research and Development, University of Illinois at Urbana-
Champaign, 1992.

13

[26] Jonathan H. Young. The Theory and Practice of Semantic
ProgramAnalysis for Higher-Order Functional Programming
Languages. PhD thesis, Yale University, May 1989.

A Abstract Interpreter Definitions in Z

The abstract interpreter definitions which have been used for the
experiments in Section 4 are presented in this appendix. We include
the type definitions and only the procedure call interpretation part.
The target language is MIL [11, 10].

A.1 Parts of Constant Propagation and Alias Analysis
Specification

Type definitions:

(types
(domain PRE (* E S

P)) i pre state
(domain POST (* S V)

)

)

)

;i post state
; store = identifier -> substore
; substore = instance -> value

(domain S (-> Id SS
(domain SS (-> Gs V,

(domain V (* L C 2) ; value = location X closure X integer

(domain L (* Ids P)) ; location = identifiers X instance-indicator
(domain C (* Procs E)) ; closure = procedure-indices X environment

(domain P (-> Proc Gs)) ; instance-indicator = procedure-index -> movements
(domain E (synonym P)) ; E=P

(domain Ids (2" setId)) ; powerset identifier

(domain Id (flat setId)) ; flat identifier

(domain Z (2" setZ)) ; integer (project Z (height> 1))
(domain T (flat setB)) ; boolean

(domain Procs (27 setProc)) ; powerset procedure index

(domain Proc (flat setProc)) ; flat procedure index

(domain Gs (2 G)) ; procedure string (project Gs (height> 0))
(set G (elements EPS D DD U UU UD)) ; set of procedure strings

(set setId (index NumOfPlaces)
(set setProc (index NumOfProcs))
(set setB (elements True False))
)
)

; set of identifier indices

; set of procedure indices

; set of boolean values

; set of finite range integers

)

)

)
(set setZ (range -999999 999999))

N ; set of procedural movements (call, return)

(set movement (elements UP DOWN))

Declaring the functions to access source program’s astract syntax
tree: (the user must define these functions in C)

(NumOfsub (from syntree) (to number))

(NumOfParam (from setProc) (to number))

(NumOfLocal (from setProc) (to number))

(NthSubexpr (from syntree number) (to syntree))
(NthParam NthLocal (from setProc number) (to setId))
(Body (from setProc) (to syntree))

(isProc isClosure (from syntree) (to number))

The interpretation function: (we include only the procedure call

part.)

The semantic function

(NthParam
(Body

(from setProc)
(isProc isClosure

NthLocal

(from setProc number) (to setId))
(to syntree))
(from syntree) (to number))

The interpretation function:(we include only the procedure call

(Eval (from syntree E S P) (to POST)) (start (zeroP) (S bottom) (zeroP))
(semantics Eval (x e s p) part.)
(switch
(or (isCall x) (isApply X))
(begin ;iii The semantic function
(let n (NumOfSub x)) (Eval (from syntree E S P Q) (to POST)) (start (zeroP) (S bottom) (zeroP) (Q bottom))
(let num_actual (- n 1)) (semantics Eval (x e s p q)
iiii evaluate the parameters (switck.]
(let (_post 1) (Eval (NthSubexpr x 1) e s p) (or (isCall x) (isApply x))
(_post i) (for i 2 n (begin
(Eval (NthSubexpr x i) (let n (NumOfSub x)) (let num_actual (- n 1))
e iiii evaluate the parameters
(! (post (- i 1)) S) (let (_post 1) (Eval (NthSubexpr x 1) e s p q)
p))) (post i) (for i 2 n
(let (_v i) (for i 1 n (! (_post i) V))) ; closure and actual params (Eval (NthSubexpr x i) e (! (_post (- i 1)) 8) p
(let sl (! (_post n) S)) (! (post (- i 1)) Q)))
(let ¢ (! (v 1) ©)) closure value = <procs, env> (let (v i) (for i 1 n (! (_post i) V))) ; closure and actual params
(let procs (! c 1)) procedure indices (let sl (! (_post n) S))
(let £ (! c 2)) ; environment (let g (! (post n) 0))
;iii apply procedures (let c (! (v 1) Q) ; closure value = <procs, env>
(mapjoin (let procs (! c 1)) ; procedure indices
(lambda (from setProc) (to POST) (alpha) (let £ (! c 2)) ; environment
(begin iiii apply procedures
(let mom (Body alpha)) ; procedure body (mapjoin
(let pl (moveP p alpha DOWN)) ; record procedural movement (lambdé (from setProc) (to POST) (alpha)
(let envl (moveP f alpha DOWN)) ; record procedural movement in environment (begin
(let s1 (moveS sl alpha DOWN)) ; record procedural movement in store (let mom (Body alpha)) procedure body
(let num_param (NumOfParam alpha)) (let pl (moveP p alpha DOWN)) record procedural movement
(if (< num_actual num_param) (let envl (moveP f alpha DOWN)) record procedural movement in env
(POST bottom) (let sl (moveS sl alpha DOWN)) ; record procedural movement in store
(begin (let argl (@ g (Proc alpha)))
(let params :Ids (join (for i 1 num_param (let num_param (NumOfParam alpha))
(Ids (NthParam alpha i))))) (if (< num_actual num_param) (POST bottom)
(let (_s2 0) sl ;77 bind parameters (begin (let params :Ids (join (for i 1 num_param
(_s2 i) (for i 1 num_param (Ids (NthParam alpha 1i)))))
(begin iii; record the arguments value in Q = Proc —> Arg
(let param :setId (nth params i)) (let (_arg2 0) argl
(let ss (slashSs (@ (_s2 (- i 1)) (Id param)) (_arg2 i) (for i 1 num_param
(v (+ 1 1)) ([/1 (Larg2 (- i 1))
(@ envl (Proc alpha)))) (by (Id (nth params 1i))
([/] (s2 (= i 1)) (by (Id param) ss))))) (ConstArg (_ v (+ i 1)))))))
(let num_local (NumOfLocal alpha)) (let g2 (join g ([/] q (by (Proc alpha) (_arg2 num_param)))))
(let locals :Ids (join (for i 1 num_local (let (_s2 0) sl iiii; bind parameters
(Ids (NthLocal alpha i))))) (_s2 i) (for i 1 num_param
(let (_s3 0) (_s2 num_param) jiii initialize local variables (begin
(_s3 i) (for i 1 num_local (let param :setId (nth params 1i))
(begin (let ss (slashSs (@ (_s2 (- i 1)) (Id param))
(let local :setId (nth locals 1i)) (v (+ 1 1))
(let ss (slashss (@ envl (Proc alpha))))
(@ (Ls3 (- 1 1)) (Id local)) ([/1 (s2 (= i 1)) (by (Id param) ss)))))
(V (L bottom) (let num_local (NumOfLocal alpha))
(C bottom) (let locals :Ids (join (for i 1 num_local
(Z (setZ 0))) (Ids (NthLocal alpha i)))))
(@ envl (Proc alpha)))) (let (_s3 0) (_s2 num_param) iiii initialize local variables
([/] (s3 (= i 1)) (by (Id local) ss))))) (_s3 i) (for i 1 num_local
(Eval mom envl (_s3 num_local) pl) ;i:; evaluate the procedure body (begin (let local :setld (nth locals i))
1)) (let ss (slashsSs
procs (@ (Ls3 (-1 1)) (Id local))
)) (V. (L bottom)
)) (C bottom)
(z (setz 0)))
(@ envl (Proc alpha))))
([/1 (Ls3 (- i 1)) (by (Id local) ss))))
A.2 Parts Of Constant-call Analysis Speciﬁcation (Eval mom envl (_s3 num_local) pl g2) ;;;; evaluate the procedure body
1))
procs

Type definitions:

))

(types
(domain PRE (* E S P Q)) ; pre state
(domain POST (* S V Q)) ; post state
(domain S (-> Id S8)) ; store = identifier -> substore
(domain S5 (=> Gs V)) substore = instance -> value
(domain V (* L C 7)) ; value = location X closure X integer
(domain L (* Ids P)) location = identifiers X instance-indicator
(domain C (* Procs E)) closure = procedure-indices X environment
(domain P (-> Proc Gs)) instance-indicator = procedure-index -> movements
(domain E (synonym P)) E =P
Q and Arg are for constant-call analysis
(domain Q (-> Proc Arg)) Q = procedure-index -> arguments
(domain Arg (-> Id 2)) arguments = identifier -> integer
(project Arg (—>exists top?))
(domain Ids (2" setId)) powerset identifier
(domain Id (flat setId)) flat identifier
(domain Z (2" setZ)) ; integer
(domain T (flat setB)) ; boolean
(domain Procs (2" setProc)) ; powerset procedure index
(domain Proc (flat setProc)) flat procedure index
(domain Gs (27 G)) ; procedure string
(set G (elements EPS D DD U UU UD)) ; set of procedure strings
(set setId (index NumOfPlaces)) i set of identifier indices
(set setProc (index NumOfProcs)) ; set of procedure indices
(set setB (elements True False)) ; set of boolean values
(set setZ (range -999999 999999)) ; set of finite range integers
(set movement (elements UP DOWN)) ; set of procedural movements (call, return)

Declaring the functions to access source program’s abstract syn-
tax tree: (the user must define thses functions in C)

(NumOfsub (from syntree) (to number))
(NumOfParam (from setProc) (to number))
(NumOfLocal (from setProc) (to number))
(NthSubexpr (from syntree number)

(to syntree))

14

