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Abstract. We present a static analysisthat detects potential runtime exceptions
that are raised and never handled inside Standard ML programs. This analysis
enhancesthe software safety by predicting, prior to the program execution, the
abnormal termination caused by unhandled exceptions.

Our analysis prototype has beenimplemented by using asemantics-based analyzer
generator and has been successfully tested with real Standard ML programs
consisting of thousand lines.

We introduce semantic sparse analysis to reduce the analysis cost without com-
promising the analysisaccuracy. In this method, expressionswill only be analyzed
when their evaluations are relevant to our analysis.

1 Introduction

Exception handlingfacilitiesin programming | anguages all ow the programmer to define,
raise and handle exceptional conditions. Exceptiona conditionsare brought (by araise
expression) to the attention of another expression where the raised exceptions may be
handled.

Use of the exception facilities is not necessarily limited to deal with errors. The
programmer can use exceptions as a “control diverter” to escape any control structure
to apoint where the corresponding exception is handled. Also, using the exceptions, the
programmer can tailor an operation’sresults or effects to particular purposesin awider
variety of contexts than would otherwise be the case.

The exception facilities, however, can provide a hole for the program safety. A
program can terminate abnormally when an exception israised and never handled.

Our goal isto devel op acompile-timetool to eliminatethissafety hole. Thetool will
detect, prior to the program execution, potentia runtime exceptions that may be astray.
In this paper, we present one such tool for Standard ML (SML) [MTH90] programs.

1.1 Exception Mechanism in Standard ML

In SML, exceptions are treated just like any other value (until they are raised). They can
be passed as function arguments, returned as the results of function applications, bound
to identifiers, stored in locations and etc.
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An exception consistsof exception name possibly paired with someargument val ues.
For example,
Error(‘‘at line 7'")

congtructs the Er r or exception with the string argument. The exception constructor
Er r or must be declared beforehand:

exception Error of string

An exception israised by
raise e

where the expression e must evaluate to an exception. For example, r ai se ! x, where
x isdereferenced for an exception value.

(A raised exception is called an exception packet. In this paper, when the context is
clear we will use exception, exception value, and exception packet interchangeably.)

Once an exception israised, a handler islocated by the dynamic means. by going
up the current evaluation chain to find potential handlers. During this process, one or
more levels of the currently active call chain are aborted, up to the function containing
the handler.

In SML, the syntax for an exception handler is:

e handle py => ey |-++| pn => €2

Patterns p;’s are compared with raised exceptions from the subcomputation of e. When
the exception matches with pattern pg, the corresponding expression ey, isevauated. If
the match fails, the raised exception continues to propagate back along the evaluation
chain until it meets another handler, and so on.

1.2 AnalysisProblems

Since SML exceptions are first-class objects, it is not straightforward from the program
textswhether a handler and araise expression are paired properly to handleall potential
exceptions.

Consider the following program fragment:

f(x) = ---raise x---

In order to find which exceptions are raised insidef , we must determine which excep-
tionsare bound to x. We must also analyze which handlers are provided for expressions
that call f , in order to deactivate exceptions that can be handled. For another example
consider:

f(g) = ---g(x) handle E =>-...

Wemust analyzewhich proceduresareboundto g in order to determinewhich exceptions
g(x) can raise. As in the previous case, we must also analyze which handlers are
provided for expressions that invoke f, in order to deactivate exceptions that may
escape from the handler insidef .



Lastly, we must take the exception argumentsinto account. Thisisin order to catch,
for example, the escaping exception Er r or [ 1] 2in

(--- raise Error[1] ---) handle Error nil =>1

As an example of our analysis, consider the following program where exception
constructor and its argument are passed as function parameters®.
exception ERROR of int |ist
exception EXIT of int |ist
fun f(n, x, y) =

if n<O then raise (x [n]) (1)
else if n=0 then raise (y nil) (2)
else n

fun g(m x, y) =
f(m x, vy) (3)

handl e ERROR [a] => g(a+l, vy, x) (4)
| EXIT nil =>0
fun main(c) = g(c, ERROR EXIT)

When g isfirst called insidenai n, raised exceptionsERROR [ ¢c] andEXI T ni |
are handled by the handler inside g. Meanwhile, when g is caled recursively (line
(4) ), the two exception constructors are swapped. Hence, the raised exceptions EXI T
[ a+1l] and ERROR ni | , at thistime, cannot be handled by the handler. Our analysis
detects this situation.

Caveat One subtlety of the SML's exception declaration is that it is generative. (This
isalso true for the datatype declarations.) Each evauation of the exception declaration
binds a new, unigque name to the exception constructor. For example, in the following
incorrect definition of the factoria function, each recursive call to f act generates a
new instance of exception ZERQO. Therefore, the handler in line ( 3) , which can handle
exceptions declared only in its textual scope, does not handle the exception that is
raised insidetherecursive cal f act ( n- 1) . Hence this function always stops with an
uncaught exception ZERO.
fun fact(n) =

| et exception ZERO (1)
inif n <=0 then raise ZERO (2)

else n * fact(n-1) handle ZERO => 1 (3)
end

Our analysis cannot anayze the programs that utilize the generative nature of the
exception (and the datatype) declarations. This limitationis not severe; exceptions (and
aso datatypes) are largely declared at the global scope or at the structure® leve, or
we can hoist existing local declarations out to the globa level without affecting the
“observational” semantics of the programs. Programs where this hoisting isimpossible
cannot be analyzed correctly by our analysis.

21 1] isthesingleton list of 1.

3 We have found such cases in the source (in src/ env/ pi ckl e. sm ) of SML/NJ 1.01
compiler.

4 A structure in SML is a unit for modular programming; it corresponds roughly to afilein C
programming.



1.3 AnalysisMethodology

We usethe collecting analyzer generator Z1 [YH93, Yi93] in specifying and i mplement-
ing our analysis. The analysis specification is an abstract interpreter [CC77, CC92].
From this specification, Z1 generates an executable, collecting analyzer. The collecting
analysis computes, for each expression of theinput program, a value that characterizes
the run-time states that occur at that expression. The program state, in our case, contains
the information about uncaught exceptions.

After theanalysis, following information is conveyed to the programmer:

— Unhandled exceptions of global functions. The existence of such exceptionsimplies
that the program can terminate abnormally.

— Raised exceptionsat each handl e expression. Usi ng thisinformati on the programmer
can check if the handler patterns are complete to cover all cases.

1.4 Implementation Status

Our analysishas been implemented by Z1 [YH93, Yi93] and has been successfully used
to analyze “real” SML programs such as SML/NJlibraries, ML-YACC, and ML-LEX.

At the moment, however, the analysisisnot fast enough to be used interactively. For
example, the analysis prototype takes 6 hours for ML-LEX .S In average, 38 iterative
evaluationsfor each expression are required to reach to the fixed-point (the analysisend
point).

We are working on several ways to improve the analysis speed. In Sect. 8 we will
present oneidea (semantics-based sparse anaysis) that will beembodied inour anaysis.

1.5 Related Works

Guzman and Suéarez [GS94] reported an instrumented type-inference system to collect
unhandled exceptions for a simplified core ML. Their approach may not be strong
enough to deal with therealistic use of the SML exceptions. For example, they regarded
exceptions as just names, without argument values. To handle exceptions with argu-
ments, they may need an idea similar to the “regions’ [TJ92] in order to approximate
the range of exception arguments.

On the other hand, type-inference or, in general, constraints-resol ution based pro-
gramanalysis [TJ92, TT94, LG88, JG91, Hei 92] that uses unification asitscomputation
method, seemsto have some appealing characteristics: relatively small analysis cost and
anatura support for separate analysis. We plan to have a comparative study of the two
analysis methods for the instance of the exception analysis.

In the conventional data flow analysis framework, Hennesey [Hen81] discussed
several optimization problemsfor the programs with exception handling facilities.

5 ML-LEX program has 1229 lines. After being translated in our intermediate language, it has
14,502 expressions, 8 exceptions, 8 handlers, and 47 raise expressions. The analysis result
showsthat ML-LEX may have unhandled exceptions: Subscri pt, error andl ex_error.



2 ThelLanguage

Our analysis does not directly analyze the SML programs. We have an intermediatelan-
guage into which the SML programs are trans ated before the analysis begins. Figure 1
shows thisintermediate language.

For brevity, we present a simplified version of the language. We have omitted
numbers, strings, records, primitive arithmetic operators, and memory operators (like
allocation, assignment and dereference).

expr
e =X bound name

| (fn x e) function

| (apply e €) application

| (con & €) datatype value

| (exn & €) exception value

| (decon e€) datatype deconstruction

| (case x of [p e]t) switchexpr

| (fix f x e in e) recursiveftnbinding

| (raise e€) exception raise

| (handle e x €) exception handler
pattern
pPIi=kK constructor name

| - wildcard

Fig. 1. (Smplified) Abstract Syntax of the Intermediate Language

The intermediate language is a call-by-value higher-order language (based on the
Lambda [App92] of the SML New Jersey (SML/NJ) compiler). Informally, the seman-
tics of thelanguage isas follows. A datatypevalue(con k e) or an exception value
(exn « e) is congtructed from a constructor name « and an expression e for its
argument value. The argument of a datatype or of an exception is recovered by the de-
congtructionexpression (decon e) . Thecaseexpression(case x of p; e;---)
branchesto e when the value of x has a constructor name that matches with the py, pat-
tern. The handle expression (handl e e; x e) , where e, will typically beacase
expression, evaluatese; first. When theresult isarai sed exception v, the exception value
v, Not the exception packet v, isboundto x insidee,. Otherwise, e1’svalueisreturned.
Expresson(fix f X e1 in ep) bindstherecursivefunctionf = Ax.e; insidees.

2.1 Trandation

The trandation of the SML programs into their intermediate forms does the following
noteworthy things. (Note that, in this section, some examples in the intermediate form
are not supported by the abstract syntax in Fig. 1. For convenience, we use humbers,
for example.)




— When case patternsin an SML source are not complete enough to cover al cases,
the trandl ation makes this situation manifest in the intermediate form. For example,

datatype t = A| B| C (case x
case X translate of A1l
of A=>1 — B 2
| B=>2 _ (raise (exn NMATCH)))

Note that the incomplete patterns for a datatype can be statically detected. Our
trang ation resorts to the SML/NJ compiler for this detection.
On the other hand, the handler patterns are always augmented with an extra raise
expression, in order to re-raise exceptions that are not caught:

(handl e e x

e handl e translate (case x
ERROR => 1 — of ERROR 1
| FAIL => 2 FAIL 2

_(raise x)))

Note that the “x” has the exception vaue that was raised inside e. Hence theraise
expression “(r ai se x) " hasthe effect of propagating the exception packets that
cannot be handled by the current handler.

A trandation example for a handler of an argument-carrying exception:

(handl e e x

(case x
exception E of int I|ist of E (apply (fny
tran:sl>ate (case y
e handle E NL => 1 of NILl.
raise x))
(decon x))
_raise x))

— Functors in the SML module system are trandated into ordinary functions. A
functor’ sargument and result are represented as records (asexplained in [App92]).
The record construct in our intermediate language is omitted for brevity in this
paper.

— Datatype or exception constructor that requires an argument is trandated into a
function, which is 8-reduced whenever appropriate. For example,

dat at ype = T of int trandate
.. :

ST . .-« (fn x (con T x)),

— The input SML program is assumed to be type-correct. This condition is easily
supported in our case because the program trandation occurs after the program
passes the type inference phase of the SML/NJ compiler.

3 Roadmap

Wetakethefollowing stepsto arrive at an abstract interpreter for the exception analysis.
We start from a standard semantics of the language. This standard semantics is natural



and simple, but is not desirable for the abstraction. Next, we tailor this semantics
into one (termed concrete semantics) that is easier to abstract. Finally, we abstract the
concrete semantics, resultingin an finite, approximate interpreter that is suitablefor the
compile-time collecting analysis.

4 Standard Semantics

Let us first review some notations. A, is the lifted cpo: bottom and incomparable
elements of set A. For two cpos A and B, A + B isthecoalesced sum (L4 = 1g =
La+B), A x B isthe Cartesian product with the component-wise order, and A — B
consists of strict, continuous functions with the point-wise order.
The standard evaluation function £ returns a value of an expression for a given
environment:
E: Ezpr| — Env — Value.

An environment
o € Fnv = Id, — Value

isamap from variables Id, to their values Value. Set Id consists of the names for
functions, arguments and exception binders (x’s in the handle expression ( handl e
e1 X e2))Avaluev € Value isether aclosure Closure, a datatype value Data, an
exception value Ezn or an exception packet (araised exception) Ezn:

v € Value = Closure + Data + Fzn + EFzn.

The closure s, as usual, a pair of the function text and the environment at the function
definition. The datatypevaueisapair of aconstructor name and itsargument (similarly
for the exception value):

Data = DataCon, x Value
Ezn = ErnCon x Value

An exception packet Ezn isthe same as an exception value except that we mark it with
the underline.

We do not include the standard semantics. It should be straightforward to derive the
formal semantics from these domain definitions and from the informal description in
Sect. 2.

5 Concrete Semantics

A semantics that is defined over recursively-defined domains is troublesome when we
derive from it a finite, abstract interpreter, because we must find the abstractions that
cut the reflexivity in order to achieve the finite domains. The standard semantics of the
previous section is of such a case; it has the recursively-defined value domain Value:

Value = Closure + Data + - - -
= (Ezpr | x (IdL — Value)) + (DataCon, x Value) + - --



In this section, we will develop a new semantics (called concrete semantics) that
uses no recursively-defined domains hence becomes easier to abstract than the standard
semantics.

Our solutionisto use the store®: a map from locationsto val ues, upon which some
effects of the evaluation function are accumulated (i.e., the store is a part of both the
input and the output of the evaluation function):

& Ezpr, — Env X Store — Value x Store

When a value v needs to be bound to a variable x, anew location £ is alocated in the
store s € Store = Loc — Value and the value is written in that location s[v/£]. The
environment o € Env = Id; — Loc then maps the identifier to the location o[£/x].
Thus, for example, the argument of afunction is mapped to different locations, one for
each invocation of the function. When variable x’s valueisneeded, x’slocation e(x) is
fetched from the current environment e and the store entry s(e(x)) of the location has
thevalue of x.

By using the locations and the stores, the value domain can be defined non-
recursively. The domain for the closure is defined without the Value domain, because
the environment component isnow amap fromidentifiersto locations. The domainsfor
the datatype val ues and exceptions use, for the argument component, thelocation Loc in
place of the Value domain. That is, when adatatypevalue (apair € DataCon x Value
in the standard semantics) is constructed, a new location isalocated in the current store
to hold the argument value, and this new location (rather than the argument valueitself)
is paired with the constructor name.

The concrete semanticsis shownin Fig. 2.

5.1 Expressingthe SML Exception Convention

To express the exception convention, we use the “letx” notation
“letx v = [J1in]]2”
as a shorthand for
“letv = [J1inif v € Eznthenv ese]y”

That is, the evaluation of the “letx” bindings terminates with the first whose result isa
raised exception. This raised exception becomes the result in conclusion of the “letx”
expression. When no exception israised, “letx” is the same as “let” Note that in the
semantics we do not use the “letx” for the handle expression, because a handler is the
only way to stop the propagation of an exception.

6 Actually, in order to handle the allocation, assignment and dereference expressions, which are
included in the complete intermediate language, we need the store domain anyway.



s € Sore = Loc — Value store

o € Env =IdL — Loc environment

v € Value = Closure+ Data + Exn + Exn value
Closure = Exp, x Env closure
Data = DataCon, x Loc datatype value
Exn = BExnCon, x Loc exception value
Exn = Bxn raised exception

I €loc location

e € Expr set of expressions

x € DataCon  set of datatype constructors

£ € ExnCon set of exception constructors

Id set of variables

F = A€.Xe.A{o, 50). Case e Of

X : so(o(x))

(raise e) : letx {v, s1) = € e{o,s0)
in {v,s1)

(handle e1 x e2) : let (v,s1) = € e1 {0, 50)

in ifv=9'"¢€ Ezn (newi)
then £ ez {o[£/X], s1[v"/£])
else (v, s1)
(case x of piei---pnen) : Ee;{o,s1)

(s "= pj, (5, £) = 51(o(x)))
=fe;

(apply e e) : letx ({((fn x e),0'),s1) {o, 50)
(v, s2) = € ez {0, 51)
in Ee(c'[L/x],s2[v/L]) (new £)
(fn x e) : {{(fnxe), o}, so)
(fix f X e1 in ex) :Eex{o[£/f],s0[{(fN X €),c[£/f]}/L])
(new £)
([conlexn] & e) : letx {v, s1) = € e{o,s0)
in (%, £), s1fo/4]) (new )
(decon e) : letx {{x,£),s1) = € e {0, s0)
in <51(l),31

We write f[y/z] to represent the function that is identical to f, except at z, whereits valueisy.

Fig. 2. Concrete Semantics for Exception Evaluation

6 Abstract Exception Evaluation

The abstraction of the concrete semantics is needed to make the resulting interpretation
computable at compile-time. The abstraction procedure consists of the abstractions of
the concrete domains and of the concrete evaluation function.

We require that the abstract domains be finite lattices. Each element 2 € D in an
abstract domain D denote an ideal” v(#) C D of concrete values. The partial order

" Anideal I of acpo D isasubset of D thatisdownwardly closed(z C y € I'impliesz € I) and



z C g inthe abstract domain is when z's information is more precise than ¢'s, i.e.,
when v(2) C y(g). The lattice structure ensures the existence of a safe element z LI §
whose informationy(z L §) is consistent with the othersy(z) and (7).

The abstract evaluation function must be monotonic and upper approximate of its
concrete correspondence. A function f: A — B isaupper apprOX|mat|0n of itsconcrete
counterpart f: A — B when the abstract result f(2) over & must include the concrete
result f(z) for every z meant by Z. The monotonicity requires that f's results for
consistent inputs be consi stent.

Thefinitenessof theabstract domainsand themonotonicity of theabstract evaluation
guarantee the termination of theinduced program anaysis. The upper approxi mate-ness
is necessary for the correctness.

6.1 Abstracting L ocations

In abstract semantics, we use a single location for each allocation sites of the source
program. Notethat new locationsare alocated at four places. When afunction isdefined
(inside thef i x expression), a new location for the function name is allocated to hold
the closure. When a function is applied, a new location to hold its argument. When a
handler is applied, a new location to hold, if any, exception value. When a datatype or
exception valueis created, a new location to hold its argument.

We uniquely name the all ocation sites of a program, and use these names for abstract
locations. Let Ln bethe set of uniquenames for theallocation sites. An abstract location
¢+ € Ln represents the set Allocated(:) of al concrete locations that are allocated at
site . during the execution of the program. Formally, the abstract location L and its
abstraction map ap: Loc — Lae

f/ = LTZ,J_
ar = M.if £ = 1L then | elses suchthat £ € Allocated(s).

Generally, that a single abstract location £ represents multiple, concrete |ocations
can deteriorate the analysis accuracy. Thisis because storing avalueto Z must have the
effect of raising thelocation’svalueinitslattice; we cannot overwrite the existing value
at thelocation.

Thisaccuracy deterioration is not avoidable but can be reduced, to some extent. For
example, instead of using a single abstract location for each allocation site to represent
all locationsallocated at that site, we can use multiple abstract |ocations each of which
represents an exclusive subset of those locations. One technique is to use the “abstract
procedure string” [Har89] that classifies thelocations according to the procedural move-
ments(callsand returns) that they experienceafter their births. Depending onthe abstrac-
tions of locations, we can achieve the effects of various cost-accuracy balances (such as
“call/single”, “dynamic/multiple’ or “single/multiple” granularities [HDCM93)).

upwardly complete (every chain in I has the least upper bound inside I). Because each ideal
includes the bottom element of the concrete domain, when our concrete domain is a function
space whose bottom element represents non-termination, our abstract element cannot exclude
non-termination as a part of its meaning.



The abstraction of locations eliminatesthe use of the environment (amap from vari-
ables to locations) because only one abstract location is associated with each variable.
The eimination of environmentsimmediately entails an abstraction of closures. An ab-
stract closure becomes a set of function definitionswithout the environment component.

The abstractions for other domains are straightforward.

6.2 Abstract Evaluation

Abstract interpreter for the exception analysisis shown inFig. 3. Notations: f[y//z] =
flf(z)Uy/z]. z.D selects D componentof z.z for {L,-- -, z, L ---) inproper contexts.
z : Dcastsz € D' into D (only when D and D' are equivalent except for names).
4| isidentical to % except for |5].X = L (raised exception component). For abstract
locations we use the program’s variable names (assuming that every variableis named
uniquely). When an alocation site has no variable (such as the datatype and exception
construction expressions), we use x, Where the subscript can be the expression index.

Note that the abstract evaluation does not use the “letx” notation. That is, when an
exception is raised during a subcomputation, the remaining evaluation is not aborted.
Rather, the eval uation continuesand itsresult, together with the exceptionsrai sed during
the subcomputations, is collected in the value of the conclusion.

Consider the handle expression.

(handl e e; x e) :let(dy, 81y =Eersy
<1fz, .§2> =Cfe .5:\1[(15\1& . X)//X]
in <|15\1| Ll vy, §1|_|§2>

We first evaluate the expression e;. The handler need to handle the raised exception
41X, if any, during the eval uation. Hence we eval uate the second expression e, which
isusually acase expression, withthe store 1[(v1.X : X)//x] that holds the exception
value v”l.X © X a x. Thevauein conclusion is either the value v, after the evaluation
of e1, when this expression does not raise any exception, or the value v, &after the
handling, when the first expression raises some exceptions. These two possibilitiesare
accommodated by the join operation |9 U v2. We do not return the raised exceptions
of v1, because they are considered inside the evaluation of e,. If the handler patterns of
e, is not complete enough to handle all cases, the exceptions bound to x isre-raised,®
hence is captured inside v5.
Auxiliary operation
Screen(?, P, Q),

whichisused for case expression, chooses anong the data values 3.D and exceptions
2.X those that matches with a pattern in P but not with a patternin Q.
Suppose x below contains two exceptions {E, F}.
(case x
E e
_ (raise x))

8 Notethat when an SML sourceprogramistranslatedinto theintermediatelanguage, appropriate
r ai se expressions added for non-complete matches — see discussionsin Sect. 2.1.



5e8 =LV abstract store
fel =Lny abstract location
bevV = C x D x X x X abstract value
¢ = 2B abstract closure
D = pbataConxLn abstract datatype value
X = pBaConxLn abstract exception value
X =X abstract raised exception
L €Ln set of alocation sites

DataCon  set of datatype constructors
ExnCon set of exception constructors
e € Expr set of expressions

F= )\é.)\e.)\sAo. case e of

X (50(x), s0)
(raise e): let {(v1, 51) = € e so
in (v1.X U (d1.X : X),51)
(handl e e X 62) s et < Al, SA1> =€fe; sAo
< Az, SA2> =E&e sAl[(’l;l X X)//X]
in (|91] U 62, 51 LI §2)

(case x of piei---pnen) :

|_| é €; (SAO[&:reen(sAO(X)y {pi}7 {p17 ce ’p,'_]_})//X])

1<i<n .
(appl y e1 62) . let <’l;1, SA1> = €61 80
(v2,82) = Ee1 51
in (GLXudX,5108) U || €eislldal//xi]
1<i<n
where51.C = {(fn x1 €}),---,(fn Xn eh)}
(fn x e) : ({(fn x e)},s0)
(fix f xeine): e s[{(fn x e }//f]
([conlexn] = e) : let (¥1,51) = Eeso
in {{{r,Xe)}, s1[v1//Xe])
(decon e) : let {(v1, 51) = € e so
in < Al(l,,'),s’l)
1<i<n

Fig. 3. Abstract Semanticsfor Exception Analysis

When we analyze the second branch ( r ai se x) , exception E should not be bound
to x because this exception matches with the first pattern. This effect isintended by the
Screen operation.

The correctness of our abstract semantics can be proven by the fixed-point induc-
tion [Sto77]. A part of the proof isin Appendix A.



Accuracy Concern: An Implementation Details The rule for the case expression
can have a bad effect on the accuracy, because the Screen result does not replace the
existing value of x in the store. Instead, the result isjoined with the existing val ue of x
(remember the notation: fly//z] = fly U f(z)/z]). Therefore, even though the Screen
operation removes some val ues of x that are not relevant to each branch, the store value
for x still remains the same as before for each evaluation of the branches.

Thisproblemisremedied, in our implementation, by using different location at each
branch. Each trimmed value of x for each branch is bound to a unique name for that
branch, instead of alwaysto the same x. And the “x” inside each branch e; is replaced
by itsunique name, say, “X;”, and the abstract eval uation rule becomes

(case x oOf p1 e - pn €n) : |_| € e (so[Screen(so(x), {w:}, {p1, -+, pic1})//Xi])
1<i<n

7 Implementing the Analysisby Z1

Our analysis has been implemented by Z1 [YH93, Yi93].

Theinputto Z1 is a specification of the abstract interpreter F of Fig. 3. Neither the
standard semantics nor the concrete semantics are processed by Z1. These non-abstract
semantics are only necessary for usto derive asafe abstract interpreter. The specification
language of Z1 isastrongly-typed applicative language with user-defined types. A user-
defined typeiseither aset or alattice. The specification consists of four parts: latticeand
set definitions (for abstract domains), auxiliary functions, abstract syntax treeinterface,
and the main interpreter definition.

The output from Z1 is a C program which becomes an executable analyzer when
linked with libraries and the target language® parser. (This parser must be implemented
by the user.)

The specification has 426 lines. Generated C code has 6965 lines. The executable
sizeis 427 Kbytes.

The generated analysis computes a collecting analysis of aprogram P. The analysis
resultisapair of two tables Tx and Ty that have, for each expression o € P, apair of
apre-state Tx (o) and apost-state Ty (o) that describe run-time states that occur before
and after that expression, respectively. In our case, the pre-stateis § (store) (input to the
abstract interpreter), and the post-stateis VxS (output of the abstract interpreter).

The reader may want to see [YH93, Yi93] for a detailed description of Z1.

7.1 Analysisin Action

Some snapshots of the analysis of the example program in Sect. 1.2 are shown in the
following table. This tables shows the raised exception and the store at the point right
after thecall f (m x, y) at line( 3) . The column “non fixpoint” shows the case when
f is cdled initidly. It shows exception (ERROR/{) and (EXI T,#') are raised, whose

9 The target language s the language in which the programs to analyze are written. In our case,
the intermediate languagein Sect. 2.



arguments (at locations£ and £') has constructor CONS'%and NI L, respectively. Location
£ (respectively £') isthe one alocated for “[ n] " (resp. “ni | ") inline (1) (resp. line
(2)). Afterthemultiplecalstof (by recursivecall to g), raised exceptions ERRORand
EXI T have both CONS and NI L (at locations £ and £') as the arguments. Among these
exceptions, (ERROR,¢') and (EXI T £} escape the handler, which our analysis detects.

| [non-fixpoint [fixpoint |
9. X [{{ERROR, £), (EXI T, £)}[{(ERRCR, £), (EXI T, £), (ERROR, £), (EXI T, £)}|
§ (xX) {Az.(exn ERRR z) } |{Az.(exn ERROR z),Xz.(exn EXIT z)}
s(y){Az.(exn EXIT z)} |[{hz.(exn ERROR z),Xz.(exn EXIT z)}
s (£) [{(0ONs,—)} {(caNs,—)}

SN} (N L}

8 Semantic Sparse Analysis

It iswasteful to trace all expressions of the input program, because only a small subset
of the expressionsmay generate the exception behavior (creating, raising and handling).
We need asparse analysistechniquelike [DRZ92, CCF91, CFR* 89, DGS94] that have
been devel oped in the conventional flow anaysis framework.

We will informally outline a semantics-based sparse analysis™! technique for the
exception analysis. We will discuss at the level of the concrete semantics. Deriving an
abstract correspondence will be straightforward.

Proposition 1. Beforewe eval uate an expression, we can conser vatively decide whether
the eval uation will have the exception behavior or not, by examining the expression text
with respect to the current environment and the store.

Before we evaluate an expression e
€ e {o,s)

we can collect all values that might be used during this eval uation. These values consist
of those that are “reacheable” from the free variables FV (e) of e. This reacheable set
R isconstructed asfollows. First, itisinitialized with thevalues {s(a(x))|x € FV (e)}
of the free variables of e. For each closure value (¢, ¢') in R, we add to R the values
{s(c'(x"))|x" € FV(e')} of theclosure' sfreevariables, and so on. Thefinal, transitively
closed set R will contain the reacheable values during the evaluation of e.*?

Conservative conditionsunder which theevduation“€ e (o, s)” may cause excep-
tion behavior are as follows: (We consider, for brevity, that the expression e is also
included in R asaclosure (e, ¢).)

10 | ist cell constructor.

1 The conventional sparse analysis methods are problematic when applied to “higher-order”
languages like SML, because the SML program’s flow graph, which is a prerequisite of the
conventional methods, is not available prior to the analysis.

2 This processof constructing the R set is analogousto the mark phase of the garbage collection.
Theroot set of our caseis the free variables of the expression e.



— When there exists a closure in R whose body has ar ai se, handl e or exn
expression.

— When there is an expression that receives a exception value, manipulates it and
returns it, without raising, handling nor creating a new exception. That is, when
there exists a closure in R whose type has the exception type or a polymorphic
type.t®

— When the current expression e occurs during the computation of an exception
argument. This is because our analysis must take the exception arguments into
account during the handler matches.

When we evaluate an expression, we check the above conditions. If any one of the
conditions holds, we evaluate the expression. Otherwise, we skip the evaluation. This
method will reduce the analysis cost, assuming that the time spent computing R isless
than the time to eval uate unnecessarily many expressions.

The computation cost of R for every expression may offset the gain we expect. In
thiscase, we may apply the sparse evaluationruleonly for, say, thefunction applications.

9 Concluson

We have presented a static analysis that detects exceptions that are raised and never be
handled inside Standard ML programs. This analysis improves the software safety by
predicting, beforetheprogram execution, theabnormal termination caused by potentially
unhandled exceptions.

Theanaysisisacollecting analysisbased on an abstract semanticsof anintermediate
language, into which Standard ML programs are trandated before the analysis. The
analysis has been implemented by using Z1 [YH93, Yi93] and has been successfully
used to analyze SML/NJLibraries, ML-YACC and ML-LEX programs.

We have proposed a semantics-based sparse analysis technique that analyzes an
expression only when the expression generates the exception behavior.
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A Correctness Proof

The correctness of the abstract semantics fix# (in Figure 3) with respect to the concrete semantics
fixF (in Figure 2) is stated as .

oy O fIX_'F E le.'FO oax.
The ax (respectively, ay) is the abstraction function of the pre-state Env x Store (respectively,
the post-state Value x Store). Abstraction functions for domains are as follows:

ar:Loc—» L = ALif£= 1 then | else. where£ € Allocated(:)
ac : Closure— C = Ac.if ¢ = L then {} else {e} wherec = (e, o)
ap :Data— D = Ad.ifd = L then{}

else {(,1)|d = (x,£) A £€ Allocated(s)}

ax BXn— X =Azifz= Lthen{}
else{{x, )|z = (x,£) A £ € Allocated(:)}
ax BExn —» X =ax
av:Value— V= dv.ifec = Lthen Lelse(L, -, ax(v), L, ) forv €«
as:Sore— § = As.Af.UaL(l)Ezav(s(l))

We prove the correctness by means of the fixed-point induction method [Sto77]. The assertion
Q(f,9)™ that we will proveis

Q(f,9) =avofCgoax.

We must show @(_L, 1) holds, which istrivial, and show that Q(€, €) implies Q(F (&), F(€)).
Then, by the fixed-point induction, Q(fixF, fix_’f-') holds.

We will sketch the proof of the second part, Q(€, £) = Q(F (&), F(€)), for the handl e
expression. Proofsfor other expressions can be done similarly.

— (handl e e1 X e2).

let (v, s1) = € e1 {0, s0)

in ifv =v' € Ezn let (v1, 51) = € e1 50
then € ez (o[¢/x], s[v'/2]) | (62, 52) = € e2 1[(61.X : X)//X]
(new £) in {Ju1| U 92, §1 LI 82)
else (v, s1)

By the induction hypothesis Q(€, &), a({(v, s1)) T (¥4, 51). Clearly, when v is not araised
exception, the concrete result a.({w, s1}}) is subsumed by the abstract part {|71|, §1). On the
other hand, when» = »’ € Exn,

a((o[t/x], s1[v : Exn/4])) C si[(61.X : X)//x].
Hence, again by Q(¢, €),
a(€ ex {o[L/x], sl[v'/l]» C {02, 82) = Eer sAl[('uAl.; : )A()//X]

4 The assertion must be inclusive, which is the case here, in order to apply the fixed-point
induction.



