
Compile-time Detection of Uncaught Exceptions in
Standard ML Programs

Kwangkeun Yi?

AT&T Bell Laboratories

Abstract. We present a static analysis that detects potential runtime exceptions
that are raised and never handled inside Standard ML programs. This analysis
enhances the software safety by predicting, prior to the program execution, the
abnormal termination caused by unhandled exceptions.
Our analysis prototype has been implemented by using a semantics-based analyzer
generator and has been successfully tested with real Standard ML programs
consisting of thousand lines.
We introduce semantic sparse analysis to reduce the analysis cost without com-
promising the analysis accuracy. In this method, expressionswill only be analyzed
when their evaluations are relevant to our analysis.

1 Introduction

Exception handling facilities in programming languages allow the programmer to define,
raise and handle exceptional conditions. Exceptional conditions are brought (by a raise
expression) to the attention of another expression where the raised exceptions may be
handled.

Use of the exception facilities is not necessarily limited to deal with errors. The
programmer can use exceptions as a “control diverter” to escape any control structure
to a point where the corresponding exception is handled. Also, using the exceptions, the
programmer can tailor an operation’s results or effects to particular purposes in a wider
variety of contexts than would otherwise be the case.

The exception facilities, however, can provide a hole for the program safety. A
program can terminate abnormally when an exception is raised and never handled.

Our goal is to develop a compile-time tool to eliminate this safety hole. The tool will
detect, prior to the program execution, potential runtime exceptions that may be astray.
In this paper, we present one such tool for Standard ML (SML) [MTH90] programs.

1.1 Exception Mechanism in Standard ML

In SML, exceptions are treated just like any other value (until they are raised). They can
be passed as function arguments, returned as the results of function applications, bound
to identifiers, stored in locations and etc.

? kwang@research.att.com, AT&T Bell Laboratories, Rm 2A-421, 600 Mountain Av-
enue, Murray Hill, NJ 07974-0636, U.S.A.

An exception consists of exception name possibly paired with some argument values.
For example,

Error(‘‘at line 7’’)

constructs the Error exception with the string argument. The exception constructor
Error must be declared beforehand:

exception Error of string

An exception is raised by
raise e

where the expression e must evaluate to an exception. For example, raise !x, where
x is dereferenced for an exception value.

(A raised exception is called an exception packet. In this paper, when the context is
clear we will use exception, exception value, and exception packet interchangeably.)

Once an exception is raised, a handler is located by the dynamic means: by going
up the current evaluation chain to find potential handlers. During this process, one or
more levels of the currently active call chain are aborted, up to the function containing
the handler.

In SML, the syntax for an exception handler is:

e handle p1 => e1 j � � � j p

n

=> e2

Patterns p
i

’s are compared with raised exceptions from the subcomputation of e. When
the exception matches with pattern p

k

, the corresponding expression e
k

is evaluated. If
the match fails, the raised exception continues to propagate back along the evaluation
chain until it meets another handler, and so on.

1.2 Analysis Problems

Since SML exceptions are first-class objects, it is not straightforward from the program
texts whether a handler and a raise expression are paired properly to handle all potential
exceptions.

Consider the following program fragment:

f(x) = � � �raise x � � �

In order to find which exceptions are raised inside f, we must determine which excep-
tions are bound to x. We must also analyze which handlers are provided for expressions
that call f, in order to deactivate exceptions that can be handled. For another example
consider:

f(g) = � � �g(x) handle E => � � �

We must analyze which procedures are bound tog in order to determine which exceptions
g(x) can raise. As in the previous case, we must also analyze which handlers are
provided for expressions that invoke f, in order to deactivate exceptions that may
escape from the handler inside f.

Lastly, we must take the exception arguments into account. This is in order to catch,
for example, the escaping exception Error[1]2 in

(� � � raise Error[1] � � �) handle Error nil => 1

As an example of our analysis, consider the following program where exception
constructor and its argument are passed as function parameters3 .

exception ERROR of int list
exception EXIT of int list
fun f(n, x, y) =

if n<0 then raise (x [n]) (1)
else if n=0 then raise (y nil) (2)
else n

fun g(m, x, y) =
f(m, x, y) (3)
handle ERROR [a] => g(a+1, y, x) (4)

| EXIT nil => 0
fun main(c) = g(c, ERROR, EXIT)

When g is first called insidemain, raised exceptions ERROR [c] and EXIT nil
are handled by the handler inside g. Meanwhile, when g is called recursively (line
(4)), the two exception constructors are swapped. Hence, the raised exceptions EXIT
[a+1] and ERROR nil, at this time, cannot be handled by the handler. Our analysis
detects this situation.

Caveat One subtlety of the SML’s exception declaration is that it is generative. (This
is also true for the datatype declarations.) Each evaluation of the exception declaration
binds a new, unique name to the exception constructor. For example, in the following
incorrect definition of the factorial function, each recursive call to fact generates a
new instance of exception ZERO. Therefore, the handler in line (3), which can handle
exceptions declared only in its textual scope, does not handle the exception that is
raised inside the recursive call fact(n-1). Hence this function always stops with an
uncaught exception ZERO.

fun fact(n) =
let exception ZERO (1)
in if n <= 0 then raise ZERO (2)

else n * fact(n-1) handle ZERO => 1 (3)
end

Our analysis cannot analyze the programs that utilize the generative nature of the
exception (and the datatype) declarations. This limitation is not severe; exceptions (and
also datatypes) are largely declared at the global scope or at the structure4 level, or
we can hoist existing local declarations out to the global level without affecting the
“observational” semantics of the programs. Programs where this hoisting is impossible
cannot be analyzed correctly by our analysis.

2 [1] is the singleton list of 1.
3 We have found such cases in the source (in src/env/pickle.sml) of SML/NJ 1.01

compiler.
4 A structure in SML is a unit for modular programming; it corresponds roughly to a file in C

programming.

1.3 Analysis Methodology

We use the collecting analyzer generator Z1 [YH93, Yi93] in specifying and implement-
ing our analysis. The analysis specification is an abstract interpreter [CC77, CC92].
From this specification, Z1 generates an executable, collecting analyzer. The collecting
analysis computes, for each expression of the input program, a value that characterizes
the run-time states that occur at that expression. The program state, in our case, contains
the information about uncaught exceptions.

After the analysis, following information is conveyed to the programmer:

– Unhandled exceptions of global functions. The existence of such exceptions implies
that the program can terminate abnormally.

– Raised exceptions at each handle expression. Using this information the programmer
can check if the handler patterns are complete to cover all cases.

1.4 Implementation Status

Our analysis has been implemented by Z1 [YH93, Yi93] and has been successfully used
to analyze “real” SML programs such as SML/NJ libraries, ML-YACC, and ML-LEX.

At the moment, however, the analysis is not fast enough to be used interactively. For
example, the analysis prototype takes 6 hours for ML-LEX.5 In average, 38 iterative
evaluations for each expression are required to reach to the fixed-point (the analysis end
point).

We are working on several ways to improve the analysis speed. In Sect. 8 we will
present one idea (semantics-based sparse analysis) that will be embodied in our analysis.

1.5 Related Works

Guzmán and Suárez [GS94] reported an instrumented type-inference system to collect
unhandled exceptions for a simplified core ML. Their approach may not be strong
enough to deal with the realistic use of the SML exceptions. For example, they regarded
exceptions as just names, without argument values. To handle exceptions with argu-
ments, they may need an idea similar to the “regions” [TJ92] in order to approximate
the range of exception arguments.

On the other hand, type-inference or, in general, constraints-resolution based pro-
gram analysis [TJ92, TT94, LG88, JG91, Hei92] that uses unification as its computation
method, seems to have some appealing characteristics: relatively small analysis cost and
a natural support for separate analysis. We plan to have a comparative study of the two
analysis methods for the instance of the exception analysis.

In the conventional data flow analysis framework, Hennesey [Hen81] discussed
several optimization problems for the programs with exception handling facilities.

5 ML-LEX program has 1229 lines. After being translated in our intermediate language, it has
14,502 expressions, 8 exceptions, 8 handlers, and 47 raise expressions. The analysis result
shows that ML-LEX may have unhandled exceptions:Subscript, error andlex error.

2 The Language

Our analysis does not directly analyze the SML programs. We have an intermediate lan-
guage into which the SML programs are translated before the analysis begins. Figure 1
shows this intermediate language.

For brevity, we present a simplified version of the language. We have omitted
numbers, strings, records, primitive arithmetic operators, and memory operators (like
allocation, assignment and dereference).

expr
e ::= x bound name
j (fn x e) function
j (apply e e) application
j (con � e) datatype value
j (exn � e) exception value
j (decon e) datatype deconstruction
j (case x of [p e]

+) switch expr
j (fix f x e in e) recursive ftn binding
j (raise e) exception raise
j (handle e x e) exception handler

pattern
p ::= � constructor name
j wildcard

Fig. 1. (Simplified) Abstract Syntax of the Intermediate Language

The intermediate language is a call-by-value higher-order language (based on the
Lambda [App92] of the SML New Jersey (SML/NJ) compiler). Informally, the seman-
tics of the language is as follows. A datatype value (con � e) or an exception value
(exn � e) is constructed from a constructor name � and an expression e for its
argument value. The argument of a datatype or of an exception is recovered by the de-
construction expression (decon e). The case expression (case x of p1 e1 � � �)
branches to e

k

when the value of x has a constructor name that matches with the p
k

pat-
tern. The handle expression (handle e1 x e2), where e2 will typically be a case
expression, evaluates e1 first. When the result is a raised exception v, the exception value
v, not the exception packet v, is bound to x inside e2. Otherwise, e1’s value is returned.
Expression (fix f x e1 in e2) binds the recursive function f = �x.e1 inside e2.

2.1 Translation

The translation of the SML programs into their intermediate forms does the following
noteworthy things. (Note that, in this section, some examples in the intermediate form
are not supported by the abstract syntax in Fig. 1. For convenience, we use numbers,
for example.)

– When case patterns in an SML source are not complete enough to cover all cases,
the translation makes this situation manifest in the intermediate form. For example,

datatype t = A | B | C
case x

of A => 1
| B => 2

translate
=)

(case x
of A 1

B 2
(raise (exn MATCH)))

Note that the incomplete patterns for a datatype can be statically detected. Our
translation resorts to the SML/NJ compiler for this detection.
On the other hand, the handler patterns are always augmented with an extra raise
expression, in order to re-raise exceptions that are not caught:

e handle
ERROR => 1

| FAIL => 2

translate
=)

(handle e x
(case x

of ERROR 1
FAIL 2
(raise x)))

Note that the “x” has the exception value that was raised inside e. Hence the raise
expression “(raise x)” has the effect of propagating the exception packets that
cannot be handled by the current handler.
A translation example for a handler of an argument-carrying exception:

exception E of int list
� � �

e handle E NIL => 1

translate
=)

(handle e x
(case x

of E (apply (fn y
(case y
of NIL 1

raise x))
(decon x))

raise x))

– Functors in the SML module system are translated into ordinary functions. A
functor’s argument and result are represented as records (as explained in [App92]).
The record construct in our intermediate language is omitted for brevity in this
paper.

– Datatype or exception constructor that requires an argument is translated into a
function, which is �-reduced whenever appropriate. For example,

datatype t = T of int
� � � T, � � �

translate
=)

� � � (fn x (con T x)), � � �

– The input SML program is assumed to be type-correct. This condition is easily
supported in our case because the program translation occurs after the program
passes the type inference phase of the SML/NJ compiler.

3 Roadmap

We take the following steps to arrive at an abstract interpreter for the exception analysis.
We start from a standard semantics of the language. This standard semantics is natural

and simple, but is not desirable for the abstraction. Next, we tailor this semantics
into one (termed concrete semantics) that is easier to abstract. Finally, we abstract the
concrete semantics, resulting in an finite, approximate interpreter that is suitable for the
compile-time collecting analysis.

4 Standard Semantics

Let us first review some notations. A
?

is the lifted cpo: bottom and incomparable
elements of set A. For two cpos A and B, A + B is the coalesced sum (?

A

= ?

B

=

?

A+B

), A � B is the Cartesian product with the component-wise order, and A ! B

consists of strict, continuous functions with the point-wise order.
The standard evaluation function E returns a value of an expression for a given

environment:
E :Expr

?

! Env ! Value:

An environment
� 2 Env = Id

?

! Value

is a map from variables Id
?

to their values Value. Set Id consists of the names for
functions, arguments and exception binders (x’s in the handle expression (handle
e1 x e2)) A value v 2 Value is either a closure Closure, a datatype value Data , an
exception value Exn or an exception packet (a raised exception) Exn:

v 2 Value = Closure + Data + Exn + Exn:

The closure is, as usual, a pair of the function text and the environment at the function
definition. The datatype value is a pair of a constructor name and its argument (similarly
for the exception value):

Data = DataCon

?

�Value

Exn = ExnCon

?

�Value

An exception packet Exn is the same as an exception value except that we mark it with
the underline.

We do not include the standard semantics. It should be straightforward to derive the
formal semantics from these domain definitions and from the informal description in
Sect. 2.

5 Concrete Semantics

A semantics that is defined over recursively-defined domains is troublesome when we
derive from it a finite, abstract interpreter, because we must find the abstractions that
cut the reflexivity in order to achieve the finite domains. The standard semantics of the
previous section is of such a case; it has the recursively-defined value domain Value:

Value = Closure + Data + � � �

= (Expr

?

� (Id

?

! Value)) + (DataCon

?

� Value) + � � �

In this section, we will develop a new semantics (called concrete semantics) that
uses no recursively-defined domains hence becomes easier to abstract than the standard
semantics.

Our solution is to use the store6: a map from locations to values, upon which some
effects of the evaluation function are accumulated (i.e., the store is a part of both the
input and the output of the evaluation function):

E :Expr
?

! Env � Store ! Value � Store

When a value v needs to be bound to a variable x, a new location ` is allocated in the
store s 2 Store = Loc ! Value and the value is written in that location s[v=`]. The
environment � 2 Env = Id

?

! Loc then maps the identifier to the location �[`=x].
Thus, for example, the argument of a function is mapped to different locations, one for
each invocation of the function. When variable x’s value is needed, x’s location e(x) is
fetched from the current environment e and the store entry s(e(x)) of the location has
the value of x.

By using the locations and the stores, the value domain can be defined non-
recursively. The domain for the closure is defined without the Value domain, because
the environment component is now a map from identifiers to locations. The domains for
the datatype values and exceptions use, for the argument component, the locationLoc in
place of the Value domain. That is, when a datatype value (a pair 2 DataCon �Value

in the standard semantics) is constructed, a new location is allocated in the current store
to hold the argument value, and this new location (rather than the argument value itself)
is paired with the constructor name.

The concrete semantics is shown in Fig. 2.

5.1 Expressing the SML Exception Convention

To express the exception convention, we use the “letx” notation

“letx v = []1 in []2”

as a shorthand for

“let v = []1 in if v 2 Exn then v else []2.”

That is, the evaluation of the “letx” bindings terminates with the first whose result is a
raised exception. This raised exception becomes the result in conclusion of the “letx”
expression. When no exception is raised, “letx” is the same as “let.” Note that in the
semantics we do not use the “letx” for the handle expression, because a handler is the
only way to stop the propagation of an exception.

6 Actually, in order to handle the allocation, assignment and dereference expressions, which are
included in the complete intermediate language, we need the store domain anyway.

s 2 Store = Loc ! Value store
� 2 Env = Id

?

! Loc environment
v 2 Value = Closure+ Data + Exn + Exn value

Closure = Exp
?

� Env closure
Data = DataCon

?

� Loc datatype value
Exn = ExnCon

?

� Loc exception value
Exn = Exn raised exception

l 2 Loc location
e 2 Expr set of expressions
� 2 DataCon set of datatype constructors
� 2 ExnCon set of exception constructors

Id set of variables

F = �E:�e:�h�; s0i: case e of
x : s0(�(x))
(raise e) : letx hv; s1i = E e h�; s0i

in hv; s1i

(handle e1 x e2) : let hv; s1i = E e1 h�; s0i

in if v = v

0

2 Exn (new `)
then E e2 h�[`=x]; s1[v

0

=`]i

else hv; s1i

(case x of p1 e1 � � � pn en) : E e

j

h�; s1i

(�
match
= p

j

, h�; `i = s1(�(x)))
(apply e1 e2) : letx hh(fn x e); �0i; s1i = E e1 h�; s0i

hv; s2i = E e2 h�; s1i

in E e h�

0

[`=x]; s2[v=`]i (new `)
(fn x e) : hh(fn x e); �i; s0i

(fix f x e1 in e2) : E e2 h�[`=f]; s0[h(fn x e); �[`=f]i=`]i
(new `)

([conjexn] � e) : letx hv; s1i = E e h�; s0i

in hh�; `i; s1[v=`]i (new `)
(decon e) : letx hh�; `i; s1i = E e h�; s0i

in hs1(`); s1i

We write f [y=x] to represent the function that is identical to f , except at x, where its value is y.

Fig. 2. Concrete Semantics for Exception Evaluation

6 Abstract Exception Evaluation

The abstraction of the concrete semantics is needed to make the resulting interpretation
computable at compile-time. The abstraction procedure consists of the abstractions of
the concrete domains and of the concrete evaluation function.

We require that the abstract domains be finite lattices. Each element x̂ 2 D̂ in an
abstract domain D̂ denote an ideal7

(x̂) � D of concrete values. The partial order

7 An ideal I of a cpoD is a subset ofD that is downwardly closed (x v y 2 I implies x 2 I) and

x̂ v ŷ in the abstract domain is when x̂’s information is more precise than ŷ

0

s, i.e.,
when
(x̂) �
(ŷ). The lattice structure ensures the existence of a safe element x̂ t ŷ

whose information
(x̂ t ŷ) is consistent with the others
(x̂) and
(ŷ).
The abstract evaluation function must be monotonic and upper approximate of its

concrete correspondence. A function f̂ : Â! B̂ is a upper approximation of its concrete
counterpart f :A ! B when the abstract result f̂ (x̂) over x̂ must include the concrete
result f(x) for every x meant by x̂. The monotonicity requires that f̂ ’s results for
consistent inputs be consistent.

The finiteness of the abstract domains and the monotonicityof the abstract evaluation
guarantee the termination of the induced program analysis. The upper approximate-ness
is necessary for the correctness.

6.1 Abstracting Locations

In abstract semantics, we use a single location for each allocation sites of the source
program. Note that new locations are allocated at four places. When a function is defined
(inside the fix expression), a new location for the function name is allocated to hold
the closure. When a function is applied, a new location to hold its argument. When a
handler is applied, a new location to hold, if any, exception value. When a datatype or
exception value is created, a new location to hold its argument.

We uniquely name the allocation sites of a program, and use these names for abstract
locations. Let Ln be the set of unique names for the allocation sites. An abstract location
� 2 Ln represents the set Allocated(�) of all concrete locations that are allocated at
site � during the execution of the program. Formally, the abstract location L̂ and its
abstraction map �

L

:Loc ! L̂ are:

L̂ = Ln

?

�

L

= �`:if ` = ? then ? else � such that ` 2 Allocated(�).

Generally, that a single abstract location ` represents multiple, concrete locations
can deteriorate the analysis accuracy. This is because storing a value to ˆ̀ must have the
effect of raising the location’s value in its lattice; we cannot overwrite the existing value
at the location.

This accuracy deterioration is not avoidable but can be reduced, to some extent. For
example, instead of using a single abstract location for each allocation site to represent
all locations allocated at that site, we can use multiple abstract locations each of which
represents an exclusive subset of those locations. One technique is to use the “abstract
procedure string” [Har89] that classifies the locations according to the procedural move-
ments (calls and returns) that they experience after their births. Depending on the abstrac-
tions of locations, we can achieve the effects of various cost-accuracy balances (such as
“call/single”, “dynamic/multiple” or “single/multiple” granularities [HDCM93]).

upwardly complete (every chain in I has the least upper bound inside I). Because each ideal
includes the bottom element of the concrete domain, when our concrete domain is a function
space whose bottom element represents non-termination, our abstract element cannot exclude
non-termination as a part of its meaning.

The abstraction of locations eliminates the use of the environment (a map from vari-
ables to locations) because only one abstract location is associated with each variable.
The elimination of environments immediately entails an abstraction of closures. An ab-
stract closure becomes a set of function definitions without the environment component.

The abstractions for other domains are straightforward.

6.2 Abstract Evaluation

Abstract interpreter for the exception analysis is shown in Fig. 3. Notations: f [y==x] =
f [f(x)ty=x]. x:D selectsD component ofx.x for h?; � � � ; x;? � � �i in proper contexts.
x : D casts x 2 D

0 into D (only when D and D

0 are equivalent except for names).
jv̂j is identical to v̂ except for jv̂j:X̂ = ? (raised exception component). For abstract
locations we use the program’s variable names (assuming that every variable is named
uniquely). When an allocation site has no variable (such as the datatype and exception
construction expressions), we use x

e

where the subscript can be the expression index.
Note that the abstract evaluation does not use the “letx” notation. That is, when an

exception is raised during a subcomputation, the remaining evaluation is not aborted.
Rather, the evaluation continues and its result, together with the exceptions raised during
the subcomputations, is collected in the value of the conclusion.

Consider the handle expression.

(handle e1 x e2) : let hv̂1; ŝ1i = Ê e1 ŝ0

hv̂2; ŝ2i = Ê e2 ŝ1[(v̂1:X̂ : X̂)==x]

in hjv̂1j t v̂2; ŝ1 t ŝ2i

We first evaluate the expression e1. The handler need to handle the raised exception
v̂1:X̂ , if any, during the evaluation. Hence we evaluate the second expression e2, which
is usually a case expression, with the store ŝ1[(v̂1:X̂ : X̂)==x] that holds the exception
value v̂1:X̂ : X̂ at x. The value in conclusion is either the value v̂1 after the evaluation
of e1, when this expression does not raise any exception, or the value v̂2 after the
handling, when the first expression raises some exceptions. These two possibilities are
accommodated by the join operation jv̂1j t v̂2. We do not return the raised exceptions
of v̂1, because they are considered inside the evaluation of e2. If the handler patterns of
e2 is not complete enough to handle all cases, the exceptions bound to x is re-raised,8

hence is captured inside v̂2.
Auxiliary operation

Screen(v̂; P;Q);

which is used for case expression, chooses among the data values v̂:D̂ and exceptions
v̂:X̂ those that matches with a pattern in P but not with a pattern in Q.

Suppose x below contains two exceptions fE, Fg.
(case x

E e1

(raise x))

8 Note that when an SML sourceprogram is translated into the intermediate language,appropriate
raise expressions added for non-complete matches – see discussions in Sect. 2.1.

ŝ 2 Ŝ = L̂! V̂ abstract store
ˆ̀
2 L̂ = Ln

?

abstract location
v̂ 2 V̂ = Ĉ � D̂� X̂ � X̂ abstract value

Ĉ = 2Expr abstract closure
D̂ = 2DataCon�Ln abstract datatype value
X̂ = 2ExnCon�Ln abstract exception value
X̂ = X̂ abstract raised exception

� 2 Ln set of allocation sites
DataCon set of datatype constructors
ExnCon set of exception constructors

e 2 Expr set of expressions

F̂ � �Ê :�e:�ŝ0: case e of
x : hŝ0(x); ŝ0i

(raise e) : let hv̂1; ŝ1i = Ê e ŝ0

in hv̂1:X̂ t (v̂1:X̂ : X̂); ŝ1i

(handle e1 x e2) : let hv̂1; ŝ1i = Ê e1 ŝ0

hv̂2; ŝ2i = Ê e2 ŝ1[(v̂1:X̂ : X̂)==x]
in hjv̂1j t v̂2; ŝ1 t ŝ2i

(case x of p1 e1 � � � pn en) :
G

1�i�n

Ê e

i

(ŝ0[Screen(ŝ0(x); fpig; fp1; � � � ; pi�1g)==x])

(apply e1 e2) : let hv̂1; ŝ1i = Ê e1 ŝ0

hv̂2; ŝ2i = Ê e1 ŝ1

in hv̂1:X̂ t v̂2:X̂; ŝ1 t ŝ2i t

G

1�i�n

Ê e

0

i

ŝ2[jv̂2j==xi]

where v̂1:Ĉ = f(fn x1 e

0

1); � � � ;(fn x
n

e

0

n

)g
(fn x e) : hf(fn x e)g; ŝ0i

(fix f x e in e

0) : Ê e0 ŝ0[f(fn x e)g==f]
([conjexn] � e) : let hv̂1; ŝ1i = Ê e ŝ0

in hfh�;x
e

ig; ŝ1[v̂1==xe]i
(decon e) : let hv̂1; ŝ1i = Ê e ŝ0

in h

G

1�i�n

ŝ1(�i); ŝ1i

(fh�1; �1i; � � � h�n; �nig = v̂1:D̂ [v̂1:X̂)

Fig. 3. Abstract Semantics for Exception Analysis

When we analyze the second branch (raise x), exception E should not be bound
to x because this exception matches with the first pattern. This effect is intended by the
Screen operation.

The correctness of our abstract semantics can be proven by the fixed-point induc-
tion [Sto77]. A part of the proof is in Appendix A.

Accuracy Concern: An Implementation Details The rule for the case expression
can have a bad effect on the accuracy, because the Screen result does not replace the
existing value of x in the store. Instead, the result is joined with the existing value of x
(remember the notation: f [y==x] = f [y t f(x)=x]). Therefore, even though the Screen
operation removes some values of x that are not relevant to each branch, the store value
for x still remains the same as before for each evaluation of the branches.

This problem is remedied, in our implementation, by using different location at each
branch. Each trimmed value of x for each branch is bound to a unique name for that
branch, instead of always to the same x. And the “x” inside each branch e

i

is replaced
by its unique name, say, “x

i

”, and the abstract evaluation rule becomes

(case x of p1 e1 � � � pn e

n

) :
G

1�i�n

Ê e

i

(ŝ0[Screen(ŝ0(x); fpig; fp1; � � � ; pi�1g)==xi])

7 Implementing the Analysis by Z1

Our analysis has been implemented by Z1 [YH93, Yi93].
The input to Z1 is a specification of the abstract interpreter F̂ of Fig. 3. Neither the

standard semantics nor the concrete semantics are processed by Z1. These non-abstract
semantics are only necessary for us to derive a safe abstract interpreter. The specification
language of Z1 is a strongly-typed applicative language with user-defined types. A user-
defined type is either a set or a lattice. The specification consists of four parts: lattice and
set definitions (for abstract domains), auxiliary functions, abstract syntax tree interface,
and the main interpreter definition.

The output from Z1 is a C program which becomes an executable analyzer when
linked with libraries and the target language9 parser. (This parser must be implemented
by the user.)

The specification has 426 lines. Generated C code has 6965 lines. The executable
size is 427 Kbytes.

The generated analysis computes a collecting analysis of a programP . The analysis
result is a pair of two tables T

X

and T
Y

that have, for each expression � 2 P , a pair of
a pre-state T

X

(�) and a post-state T
Y

(�) that describe run-time states that occur before
and after that expression, respectively. In our case, the pre-state is Ŝ (store) (input to the
abstract interpreter), and the post-state is V̂ � Ŝ (output of the abstract interpreter).

The reader may want to see [YH93, Yi93] for a detailed description of Z1.

7.1 Analysis in Action

Some snapshots of the analysis of the example program in Sect. 1.2 are shown in the
following table. This tables shows the raised exception and the store at the point right
after the call f(m,x,y) at line (3). The column “non fixpoint” shows the case when
f is called initially. It shows exception hERROR,`i and hEXIT,`0i are raised, whose

9 The target language is the language in which the programs to analyze are written. In our case,
the intermediate language in Sect. 2.

arguments (at locations ` and `0) has constructor CONS10and NIL, respectively. Location
` (respectively `

0) is the one allocated for “[n]” (resp. “nil”) in line (1) (resp. line
(2)). After the multiple calls tof (by recursive call to g), raised exceptions ERROR and
EXIT have both CONS and NIL (at locations ` and `

0) as the arguments. Among these
exceptions, hERROR,`0 i and hEXIT,`g escape the handler, which our analysis detects.

non-fixpoint fixpoint

v̂:X̂ fhERROR; `i; hEXIT; `0ig fhERROR; `i; hEXIT; `i; hERROR; `0i; hEXIT; `0ig

ŝ (x) f�x:(exn ERROR x)g f�x:(exn ERROR x); �x:(exn EXIT x)g

ŝ (y) f�x:(exn EXIT x)g f�x:(exn ERROR x); �x:(exn EXIT x)g

ŝ (`) fhCONS,�ig fhCONS,�ig
ŝ (`0) fhNIL,�ig fhNIL,�ig

8 Semantic Sparse Analysis

It is wasteful to trace all expressions of the input program, because only a small subset
of the expressions may generate the exception behavior (creating, raising and handling).
We need a sparse analysis technique like [DRZ92, CCF91, CFR+89, DGS94] that have
been developed in the conventional flow analysis framework.

We will informally outline a semantics-based sparse analysis11 technique for the
exception analysis. We will discuss at the level of the concrete semantics. Deriving an
abstract correspondence will be straightforward.

Proposition 1. Before we evaluate an expression, we can conservatively decide whether
the evaluation will have the exception behavior or not, by examining the expression text
with respect to the current environment and the store.

Before we evaluate an expression e

E e h�; si

we can collect all values that might be used during this evaluation. These values consist
of those that are “reacheable” from the free variables FV (e) of e. This reacheable set
R is constructed as follows. First, it is initialized with the values fs(�(x))jx 2 FV (e)g

of the free variables of e. For each closure value he0; �0i in R, we add to R the values
fs(�

0

(x

0

))jx

0

2 FV (e

0

)g of the closure’s free variables, and so on. The final, transitively
closed set R will contain the reacheable values during the evaluation of e.12

Conservative conditions under which the evaluation “E e h�; si” may cause excep-
tion behavior are as follows: (We consider, for brevity, that the expression e is also
included in R as a closure he; �i.)

10 List cell constructor.
11 The conventional sparse analysis methods are problematic when applied to “higher-order”

languages like SML, because the SML program’s flow graph, which is a prerequisite of the
conventional methods, is not available prior to the analysis.

12 This process of constructing the R set is analogous to the mark phase of the garbage collection.
The root set of our case is the free variables of the expression e.

– When there exists a closure in R whose body has a raise, handle or exn
expression.

– When there is an expression that receives a exception value, manipulates it and
returns it, without raising, handling nor creating a new exception. That is, when
there exists a closure in R whose type has the exception type or a polymorphic
type.13

– When the current expression e occurs during the computation of an exception
argument. This is because our analysis must take the exception arguments into
account during the handler matches.

When we evaluate an expression, we check the above conditions. If any one of the
conditions holds, we evaluate the expression. Otherwise, we skip the evaluation. This
method will reduce the analysis cost, assuming that the time spent computing R is less
than the time to evaluate unnecessarily many expressions.

The computation cost of R for every expression may offset the gain we expect. In
this case, we may apply the sparse evaluation rule only for, say, the function applications.

9 Conclusion

We have presented a static analysis that detects exceptions that are raised and never be
handled inside Standard ML programs. This analysis improves the software safety by
predicting, before the program execution, the abnormal termination caused by potentially
unhandled exceptions.

The analysis is a collecting analysis based on an abstract semantics of an intermediate
language, into which Standard ML programs are translated before the analysis. The
analysis has been implemented by using Z1 [YH93, Yi93] and has been successfully
used to analyze SML/NJ Libraries, ML-YACC and ML-LEX programs.

We have proposed a semantics-based sparse analysis technique that analyzes an
expression only when the expression generates the exception behavior.

Acknowledgement

I thank Lal George, Carl Gunter, Lorenz Huelsbergen, Dave MacQueen, John Reppy,
Jon Riecke and Zhong Shao for discussions and helps during this work. In particular,
my thanks to Dave for his support and encourgement. Also, thanks to the program
committee for their helpful comments.

References

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

13 Note that the intermediate expression can have the type information imported from the type
inference phase (of the SML/NJ compiler) for its SML source.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In Con-
ferenceRecord of the 4th ACM Symposium on Principles of Programming Languages,
1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal of
Logic Computation, 2(4):511–547, 1992. Also as a tech report: Ecole Polytechnique,
no. LIX/RR/92/10.

[CCF91] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of sparse
data flow evaluation graphs. In Proceedings of the Annual ACM Symposium on
Principles of Programming Languages, pages 55–66, 1991.

[CFR+89] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently computing
static single assignment form and control dependence graph. In Proceedings of the
Annual ACM Symposium on Principles of Programming Languages, 1989.

[DGS94] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Reducing the cost of data
flow analysis by congruence partitioning. In International Confererenceon Compiler
Construction, April 1994.

[DRZ92] D. Dhamdhere, B. Rosen, and F. Zadeck. How to analyze large programs efficiently
and informatively. In Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, 1992.

[GS94] Juan Carlos Guzmán and Ascánder Suárez. A type system for exceptions. In Pro-
ceedings of the ACM SIGPLAN Workshop on ML and its Applications, June 1994.

[Har89] Williams L. Harrison III. The interprocedural analysis and automatic parallelization
of scheme programs. Lisp and Symbolic Computation, 2(3/4):179–396, 1989.

[HDCM93] Pascal Van Hentenryck, Olivier Degimbe, Baudouin Le Charlier, and Laurent
Michel. The impact of granularity in abstract interpretation of prolog. In Patrick
Cousot, Moreno Falaschi, Gilberto File, and Antoine Rauzy, editors, Lecture Notes
in Computer Science, volume 724. Springer-Verlag, proceedings of the third interna-
tional workshop on static analysis edition, 1993.

[Hei92] Nevin Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
October 1992.

[Hen81] John Hennessy. Program optimization and exception handling. In Proceedings of the
Annual ACM Symposium on Principles of Programming Languages, pages 200–206,
1981.

[JG91] Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and ef-
fects. In Proceedings of the Annual ACM Symposium on Principles of Programming
Languages, 1991.

[LG88] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Proceed-
ings of the Annual ACM Symposium on Principles of Programming Languages, pages
47–57, 1988.

[MTH90] Robin Milner, Mads Tofte, and Robert Haper. The Definition of Standard ML. MIT
Press, 1990.

[Sto77] Joseph E. Stoy. Denotational Semantics: the Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1977.

[TJ92] Jean-Piere Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference.
Journal of Functional Programming, 2(3):245–271, July 1992.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value �-
calculus using a stack of regions. In Proceedings of the Annual ACM Symposium on
Principles of Programming Languages, January 1994.

[YH93] Kwangkeun Yi and Williams Ludwell Harrison III. Automatic generation and man-
agement of interprocedural program analyses. In Proceedings of the Annual ACM

Symposium on Principles of Programming Languages, pages 246–259 (also as CSRD
Report No. 1260), January 1993.

[Yi93] Kwangkeun Yi. Automatic Generation and Management of Program Analyses. PhD
thesis, University of Illinois at Urbana-Champaign, August 1993. Report UIUCDCS-
R-93-1828.

A Correctness Proof

The correctness of the abstract semantics fixF̂ (in Figure 3) with respect to the concrete semantics
fixF (in Figure 2) is stated as

�

Y

� fixF v fixF̂ � �

X

:

The �
X

(respectively, �
Y

) is the abstraction function of the pre-state Env � Store (respectively,
the post-state Value � Store). Abstraction functions for domains are as follows:

�

L

: Loc ! L̂ = �`:if ` = ? then ? else � where ` 2 Allocated(�)
�

C

: Closure ! Ĉ = �c:if c = ? then fg else feg where c = he; �i

�

D

: Data ! D̂ = �d:if d = ? then fg
else fh�; �ijd = h�; `i ^ ` 2 Allocated(�)g

�

X

: Exn ! X̂ = �x:if x = ? then fg
else fh�; �ijx= h�; `i ^ ` 2 Allocated(�)g

�

X

: Exn ! X̂ = �

X

�

V

: Value ! V̂ = �v:if x = ? then ? else h?; � � � ; �
?

(v);?; � � �i for v 2 ?

�

S

: Store ! Ŝ = �s:�

ˆ̀
:

F

�

L

(`)v

ˆ̀ �V (s(`))

We prove the correctness by means of the fixed-point induction method [Sto77]. The assertion
Q(f; g)

14 that we will prove is

Q(f; g) = �

Y

� f v g � �

X

:

We must show Q(?;?) holds, which is trivial, and show that Q(E; Ê) implies Q(F(E); F̂(Ê)).
Then, by the fixed-point induction,Q(fixF ;fixF̂) holds.

We will sketch the proof of the second part, Q(E; Ê)) Q(F(E); F̂(Ê)), for the handle
expression. Proofs for other expressions can be done similarly.

– (handle e1 x e2).

let hv; s1i = E e1 h�; s0i

in if v = v

0

2 Exn

then E e2 h�[`=x]; s1[v
0

=`]i

(new `)
else hv; s1i

k

let hv̂1; ŝ1i = Ê e1 ŝ0

hv̂2; ŝ2i = Ê e2 ŝ1[(v̂1:X̂ : X̂)==x]
in hjv̂1j t v̂2; ŝ1 t ŝ2i

By the induction hypothesis Q(E; Ê), �(hv; s1i) v hv̂1; ŝ1i. Clearly, when v is not a raised
exception, the concrete result �(hv; s1ii) is subsumed by the abstract part hjv̂1j; ŝ1i. On the
other hand, when v = v

0

2 Exn,

�(h�[`=x]; s1[v : Exn=`]i) v ŝ1[(v̂1:X̂ : X̂)==x]:

Hence, again by Q(E; Ê),

�(E e2 h�[`=x]; s1[v
0

=`]i) v hv̂2; ŝ2i = Ê e2 ŝ1[(v̂1:X̂ : X̂)==x]:

14 The assertion must be inclusive, which is the case here, in order to apply the fixed-point
induction.

