
E�cient Computation of Fixpoints that Arise in Complex

Program Analysis

�

Li-Ling Chen Williams Ludwell Harrison III

y

Kwangkeun Yi

z

University of Illinois University of Illinois AT&T Bell Laboratories

Abstract

This paper proposes a model for studying the computation of �xpoints that arise in com-

plex program analysis based on abstract interpretation, and presents an e�cient algorithm

for computing �xpoints based on the model. Abstract interpretation provides a uni�ed

framework for handling interprocedural analysis of programs with unrestricted pointer ma-

nipulation, higher-order functions, and continuations. In the general case, the structure of

the �xpoint computation is not known before analysis; that is, the
ow graph cannot be

determined from the syntax of a program. Abstract interpretation handles this situation

easily.

In our algorithm, the entailment graph, representing the structure of the �xpoint com-

putation, is developed during analysis. The strategies for determining the evaluation order,

which underlie the algorithm, are described. Based on the strategies, local knowledge of the

entailment graph at each node is exploited to determine dynamically an e�ective order of

evaluation. The algorithm behaves like those based upon interval analysis of a
ow graph,

but without requiring the interprocedural control
ow graph to be given a priori. The algo-

rithm has been implemented, and experiments have been conducted to compare it to other

iterative algorithms for solving such problems. The results show that the algorithm is
exi-

ble, e�cient, and consistently better than the others.

Index Terms: �xpoint computation, abstract interpretation, interprocedural analysis, e�-

cient data
ow analysis, and dynamic
ow graph.

To appear in The Journal of Programming Languages, Chapman & Hall, U.K.

�

This project is supported by the U.S. Department of Energy under contact DE-FG02-85ER25001 and the IBM

Corporation.

y

llchen@csrd.uiuc.edu, Center for Supercomputing Research and Development, Urbana, IL 61801, U.S.A.

z

kwang@research.att.com, AT&T Bell Laboratories, Murray Hills, NJ 07974, U.S.A.

1 Introduction

Abstract interpretation [1, 2, 3] is a powerful and promising framework for constructing program analy-

ses, especially in the presence of di�cult language constructs, such as pointers [4], higher-order functions

[5, 6], and continuations; an example analysis is given in Section 3.3. In contrast, conventional data
ow

analysis methods have not adapted well to these language constructs. It is unclear how conventional

data
ow analysis handles higher-order functions and continuations. As to pointers, conventional data
ow

analysis is often restricted to limited pointer manipulation (e.g., no arithmetic operations on pointers).

Unfortunately, abstract interpretation often gives rise to complex functionals whose least �xpoints (so-

lutions to analysis problems), if approached naively, are very expensive to compute. To be practical, it

is necessary to �nd e�cient algorithms for computing these least �xpoints.

There are several methods for solving for a related but simpler class of �xpoint problems e�ciently

in conventional data
ow analysis. In these problems, monotonic functions are associated with the edges

of a control
ow graph [7]. These functions are initially unknown; they are the variables to be solved for

in the data
ow problem. They are given an initial value and are computed iteratively [8, 9, 10] or by

elimination [11, 12, 13] until they are stable (that is, until a �xpoint is reached). Because the relation

between the unknowns is given as an input to the problem in the form of the control
ow graph, it is

possible to solve for the unknowns e�ciently. This is the purpose of interval analysis [14]: to consider

the unknowns of the data
ow problem in an order that will allow their �nal values to be determined

most quickly; the order can be obtained by examination of the control
ow graph, which is therefore a

prerequisite for conventional data
ow analysis methods.

In the general case of abstract interpretation, we do not know the structure of the �xpoint com-

putation (the relation among the unknowns) a priori. For programs with higher-order functions (e.g.,

pointers to functions in C and lambda expressions in Lisp), it is not always possible to determine the

ow graph by examining the syntax of a program. Rather, the structure emerges only as the �xpoint

itself is computed; that is, the
ow graph is determined while analysis proceeds. In this setting, the

methods obtained for data
ow analysis which require the control
ow graph as a prerequisite are not

applicable. In [16], it is pointed out that higher-order functions are the major obstacle for program

analysis of functional programming languages because the
ow graphs for performing data
ow analysis

depend on the results of data
ow analysis.

For instance, the examples in Figures 1 and 2 have
ow graphs (like the interprocedural control
ow

graphs of [17]) that cannot be precisely determined before analysis. Figure 1 is an example that we may

imagine as the invocation of virtual functions in C++; the control
ow graph of this program, which

depends on the
ow analysis information of x and i, is not evident from its syntax. In the example of

Figure 2, X and Y are procedure-valued variables, which are passed by reference as actual arguments

and modi�ed in the procedure f ; therefore, the procedures they refer to are not obvious without some

extent of analysis.

1

A[1] := &f

1

� � �

A[n] := &f

n

� � �

p := A

call A[x� 7]

call �(p+ i)

Figure 1: Function pointers

procedure f(x; y) �x := y;

procedure g(z) call z();

main()

Procedure Variable X, Y

call f(&X;&f) ;

call X(&Y;&g) ;

call Y (&g) ;

end

Figure 2: Procedure-valued variables

Our work was motivated by the abstract interpretation used in MIPRAC [18] and the analyzer

generator Z1 [19]. MIPRAC analyzes and compiles an intermediate language, MIL, which includes �rst-

class functions, dynamic allocation, and unrestricted pointer manipulation. Fortran, C, and Scheme

programs can be transformed into MIL. The compiler has successfully performed complex analyses, for

example, side e�ects and object life time. However, its e�ciency is poor because of the time spent

computing the least �xpoint. Z1 [19], an analyzer generator based on MIPRAC, provides a speci�cation

language for users to describe an analysis, and automates the generation and management of semantics-

based, interprocedural program analysis. The method for �xpoint computation presented in this paper

is applicable to any abstract interpretation over domains of �nite height. This includes complex analyses

like those of MIPRAC, as well as those written using Z1 (the method is being used in Z1), and analyses

like those found in [3, 20]

In this paper we �rst propose an entailment model for solving �xpoint problems that arise in abstract

interpretation in the presence of unlimited pointer manipulation, dynamic allocation, and higher-order

functions, and then present an algorithm to e�ciently compute the �xpoints based on the entailment

model. Our algorithm makes use of the entailment relation of a program as guidance for dynamically

ordering the evaluations as analysis proceeds. We call the strategies for determining an e�ective order,

waiting for all successors, leading node �rst, suspended evaluation, and back edge �rst. It takes advantage

of the principles of minimal function graph presented in [22] and dynamic ordering based on the local

knowledge of the entailment graph to minimize redundant work. Our algorithm behaves like those based

upon interval analysis of a
ow graph when applied to a problem in the domain of interval analysis,

but without requiring the control
ow graph to be given a priori. Experiments have been conducted to

demonstrate that the guided-entailment algorithm is e�cient,
exible, and consistently better than the

others that are applicable to the same problem.

The rest of the paper is organized as follows. Related work is discussed in Section 2. Section 3

introduces abstract interpretation and least �xpoints, and gives an example analysis in the presence of

pointers to locations and pointers to procedures, based on abstract interpretation. Section 4 de�nes

entailment relation and gives a basic algorithm for computing least �xpoints based on the entailment

relation. Section 5 presents the strategies for determining an e�ective order and the guided-entailment

2

model for e�cient �xpoint computation. The guided-entailment algorithm based on these strategies

for dynamic ordering is given in Section 6. Section 7 describes and discusses the experimental results.

Section 8 presents the conclusions.

2 Related Work

Control
ow graphs are commonly used in data
ow analysis [23, 7], but are ine�cient in the computation

of analyses. To alleviate the ine�ciency, def-use chains, which allow to avoid propagating information

through irrelevant nodes, were proposed as a means to improve the performance of program analysis

[7]. However, def-use chains are limited to analyses of relatively simple variable references. For example,

the static single assignment (SSA) form [24] is applicable primarily to scalar variables with transparent

reference properties (i.e., no aliasing or pointers). The presence of pointers and higher-order functions

greatly complicates the obtaining of def-use chains. We cannot use the def-use information to accelerate

the analysis, because for the simple reason that the def-use information is precisely what we want to

obtain as an output from the analysis.

Many representations have been proposed to cope with the ine�ciency of control
ow graphs. A

program dependence graph [25, 15, 26] represents both data and control dependences. A dependence

ow graph [27], combining the virtues of many representations, provides a representation for rapid

traversal to gather the dependence information and itself is a program that can be executed. A sparse

evaluation graph [28] directly connects the nodes that generate and use information; it is designed for

forward and backward data
ow problems with the advantages of the SSA form, without using bit vectors.

Basically, these representations incorporate the def-use information and propagate information through

only relevant nodes. Therefore they have the same limitations as def-use chains. It is not obvious how to

represent a general class of programs with complicated constructs for accessing memory, by using these

forms.

Several methods have been proposed for computing the �xpoints that arise in abstract interpreta-

tion. In particular, the frontiers algorithm presented in [29, 30, 31] is an e�cient means of computing

analysis problems over binary lattices, for example, strictness analysis [32]. However, this algorithm is

suitable only for the binary lattice; for general lattices, it is unclear how to de�ne frontiers. In addition,

the minimal function graph [22] was proposed to handle the class of applicative programs where the

information of interest is limited to the set of values a function may be called with in the program being

analyzed (as opposed to the complete set of possible input values). To our knowledge, how to improve

the e�ciency of abstract interpretation in general cases in practice has not yet been addressed.

3

3 Program Analysis Framework

This section introduces abstract interpretation and least �xpoints, and gives an example to illustrate

the idea of abstract interpretation in the presence of pointers to locations and pointers to locations.

3.1 Abstract Interpretation

Abstract interpretation is a semantics-based approach to static program analysis [1, 2, 3]. The basic

idea is as follows. Every programming language has a concrete interpretation (semantics) that gives a

meaning to a program and de�nes the correctness of subsequent abstract semantics. Using the concrete

semantics, it is able to answer certain questions of interest about programs correctly, for example,

constants, side e�ects, and object lifetimes; but the concrete semantics is not computable at compile

time. From the concrete semantics, we form an abstract interpretation of the language which answers

the questions approximately, but which is appropriate for compile-time analysis. That is, for a certain

property we are interested in, we can �nd information without having the exact answer or doing the

whole calculation (of the concrete semantics).

In short, abstract interpretation \simulates" program execution over abstract domains, representing

information of interest at compile time. This gives a general framework for handling interprocedural,

complicated analysis in a simple manner because procedure boundaries are eliminated. Many techniques

based on control-
ow and data-
ow analysis can be expressed as abstract interpretations. In addition,

we can tune the precision and complexity of a program analysis based on abstract interpretation by

controlling the abstraction maps it uses. Abstract interpretation also provides a basis for semantically

correct transformation [33].

Under abstract interpretation, an analysis problem is associated with a monotonic

1

function (an

abstract interpreter) I that gives an abstract semantics to the expressions (statements or basic blocks)

in a program. We begin with I, expressed as a recursive function. To solve the analysis problem is

to compute an equivalent non-recursive form of I . In general, an abstract interpreter is designed as a

general template for the whole language to be analyzed. For a particular input program, the interpreter

will be instantiated to give a particular interpretation function.

Let � be the set of expressions in a program. X and Y denote prestates and poststates respectively.

To ensure the termination of an analysis, we assume X and Y are domains of �nite height.

I : �! X ! Y

That is, I maps an expression and a prestate to a poststate. For example, X and Y might simply

be abstract stores (abstracted from the store in concrete interpretation), and the semantic function I

transforms one store to another store according to the meaning of each program expression.

1

A function f : A! B is monotonic i� 8x; y 2 A; x v

A

y) f(x)v

B

f(y).

4

The equivalent non-recursive form (the direct form, e.g., a table of inputs and outputs) of the semantic

function I is unde�ned (unknown) before analysis; that is, �n:�x:?

Y

. As the analysis proceeds, informa-

tion is collected and the direct form of I is de�ned incrementally from the unde�ned function to its �nal

value; that is, the semantic function is approximated by successive functions until stable. Therefore, a

semantic functional F that maps one approximation in �! X ! Y to another is employed to compute

the direct form of I, which is the least �xpoint of the functional F : (� ! X ! Y) ! (� ! X ! Y).

F might be written as

F = �I:��:�x: case � of

[[call]]: g

1

(I; �; x)

[[if]]: g

2

(I; �; x)

[[+]]: g

3

(I; �; x)

� � �

endcase

The de�nitions of the g

i

's depend upon the semantics of the language we analyze and the abstract

domains. Each g

i

is abstracted from the corresponding concrete interpretation function for each type

of expression. All g

i

's are monotonic. In general, the current approximation I is recursively called in

g

i

which computes a new postcontext for node � with prestate x (i.e., g

i

(�; x) = � � �I(�

0

; x

0

) � � �). For

examples of g

i

's, see the example in Section 3.3.

3.2 Least Fixpoints

Typically, the least �xpoint of a functional F : (X ! Y) ! (X ! Y) is computed iteratively, where

X and Y are domains of bounded height and F is monotonic. A domain is a complete partial ordering

and the function space X ! Y is the set of all continuous functions that map X to Y . It can be

shown that the least �xpoint of the functional F exists [34]. We begin with an initial approximation

f

0

= �x:?

Y

where ?

Y

is the least element of Y . F is repeatedly applied to the current approximation

until it produces an approximation the same as the previous one; that is,

F

0

? = f

0

= �x:?

Y

F

1

? = f

1

= F(f

0

)

� � �

F

i

? = f

i

= F(f

i�1

)

� � �

F

n

? = f

n

= F

n�1

?

The approximations F

i

?'s form an Ascending Kleene Chain [34]; that is, 8i F

i

? v F

i+1

?.

Formally, the least �xpoint, fix F , is de�ned as

F

fF

i

?ji � 0g where

F

is the least upper bound

operation on the set of functions in X ! Y . If f

n

= f

n+1

, then the least �xpoint fix F = f

n

.

Example 1 To illustrate how to compute the least �xpoint, we give a simple example.

f : fa; b; cg ! 2

fa;b;cg

is a recursive function. To compute the �nal values for its possible

5

arguments, a functional F is used.

f = �x: case x of

a : fag [f(b)

b : fbg [f(c)

c : fcg [f(c)

endcase

=)

F � �f

0

:�x: case x of

a : fag [f

0

(b)

b : fbg [f

0

(c)

c : fcg [f

0

(c)

endcase

The computation of the least �xpoint of F is as follows. ; is the least element of 2

fa;b;cg

.

f

0

f

1

f

2

f

3

f

4

a ; fag fa; bg fa; b; cg fa; b; cg

b ; fbg fb; cg fb; cg fb; cg

c ; fcg fcg fcg fcg

f

3

= f

4

; that is, the least �xpoint fix F = f

3

. 2

Example 2 This example demonstrates the computation of the least �xpoint of an analysis

problem. Consider the de�nedness problem for the following program segment; that is, we

want to know which variables may be de�ned after a statement (e.g., procedure call) is exe-

cuted. To simplify the computation, suppose there are no local variables and no parameters

for the procedures P , Q, and R, and there are only two global variables, a and b.

int a; b

procedure P ()

begin

if (� � �) then (n

0

)

call Q(); (n

1

)

else call R(); (n

2

)

end

procedure Q() begin b := a; end

procedure R() begin a := b+ 1; end

The abstract semantic function I associated with this problem will map a set (� 2 2

V

) of

de�ned variables to another set in 2

V

for each statement; that is, I : N ! 2

V

! 2

V

; where

V is the set of variables (here is fa; bg) and N is the set of statements in a program.

F = �I:�n:��: case n of

[[v := const]]: return fvg [�

[[v := w]]:

if (V ars(w) � �) then return fvg [� else return �� fvg

[[if e

1

then e

2

else e

3

]]:

�

1

 I([[e

1

]],�)

�

2

 I([[e

2

]],�)

return �

1

[�

2

[[begin n

1

; � � � ; n

k

end]]:

�

0

 �

�

i

 I(n

i

; �

i�1

) for i = 1 to k

[[call g()]]: I([[Bodyof(g)]],�)

� � �

endcase

where V ars(w) returns the set of variables appearing in the expression w.

6

Suppose we want to know the set of de�ned variables for the procedure P in a direct form.

For this particular problem, the abstract semantic function is de�ned as follows.

F = �I:�n:��: case n of

[[call P ()]]: /* that is, evaluate n

0

*/

�

1

 I([[call Q()]],�)

�

2

 I([[call R()]],�)

return �

1

[�

2

[[call Q()]]: return I([[b := a]],�) /* n

1

*/

[[call R()]]: return I([[a := b+ 1]],�) /* n

2

*/

endcase

The least �xpoint is computed using the typical iterative method shown previously. We will

show the approximate functions for n

0

, n

1

, and n

2

. Initially, at each statement, the semantic

function I

0

maps every input to ;, the least element of 2

V

. Next, apply F to the initial

approximation I

0

to obtain the second approximation I

1

:

n

0

: f; 7! ;, fag 7! ;, fbg 7! ; ,fa; bg 7! ;g

n

1

: f; 7! ;, fag7!fa; bg, fbg7! ;,fa; bg7!fa; bgg

n

2

: f; 7! ; , fag7! ;, fbg7! fa; bg,fa; bg7!fa; bgg

Then, apply F to the second approximation I

1

. The results for n

1

; n

2

remain the same in

the third approximation I

2

; for n

0

, we have

n

0

: f; 7! ;, fag7! fa; bg, fbg7! fa; bg,fa; bg7! fa; bgg.

Application of F to I

2

will not raise its value, so the least �xpoint is reached. 2

To turn the �xpoint computation into an algorithm for program analysis based on abstract inter-

pretation, we use two tables, T

X

: � ! X and T

Y

: � ! Y , to represent the prestate and poststate

for each expression respectively. In a monotonic analysis framework, we need keep only the highest

prestate and poststate for each expression. The two tables together represent the current approximation

I : �! X ! Y of I . Given a semantic functional F of an analysis problem, the least �xpoint (i.e., the

solution to the analysis problem) can be computed in this way:

FIXPOINT ::

8 i 2 � T

X

(i) = ?

X

T

Y

(i) = ?

Y

repeat

OldT

X

 T

X

OldT

Y

 T

Y

hT

X

; T

Y

i Apply F hOldT

X

; OldT

Y

i

until (hOldT

X

; OldT

Y

i = hT

X

; T

Y

i)

Whenever a prestate or a poststate is improved, the semantic functional I will be applied to the

current approximation again until none of the prestates and poststates are changed.

7

main()

Global Variable int c; �u

Procedure Variable a; b; arr[4]

begin

n

1

: u = &c;

n

2

: arr[0] = P ; arr[1] = Q;

n

3

: arr[2] = R; arr[3] = T ;

n

4

: �u = 0;

n

5

: if (c < 0) then c := 0 else c := c+ 1;

n

6

: call P (&a; arr[2]);

n

7

: call Q(a);

n

8

: call P (&b; P) ;

n

9

: call b(&a; �(arr + c)) ;

n

10

: call a(T) ;

end

procedure P (x; y)

begin �x := y; end

procedure Q(z)

begin

n

11

: � � � := c;

n

12

: call z();

n

13

: � � � := c;

end

procedure R()

begin

n

14

: c := 1;

end

procedure T()

begin

n

15

: c := 2;

end

Figure 3: An example program of pointers and higher-order procedures.

3.3 Example Analysis based on Abstract Interpretation

We will illustrate the idea of abstract interpretation in the presence of pointers and higher-order proce-

dures using the example program in Figure 3, which is similar to that de�ned in [35, 36]. The program

is written in a simple language that permits pointers to variables and pointers to procedures, but little

else. In particular, for simplicity, we assume that the language does not support recursion or structures,

and that every variable has a distinct identi�er. In other words, the memory locations known to the

program are �nite and each is accessed by an index. For more complex examples, see [19, 4, 20, 3].

Suppose the anlysis we want to perform is constant propagation; that is, we want to know whether a

variable (c, in the example of Figure 3) is constant at a program point. The concrete interpretation and

abstract interpretation for this analysis problem are described next.

3.3.1 Concrete Interpretation

The concrete semantic function I associated with this problem maps a store s 2 S to another s

0

for each

expression in the program; that is, I : N ! S ! S. A store maps a location l 2 Loc to a denotable

value v 2 V al, where Loc is the set of locations in a store, which can be simply integers as indices to the

store. The denotable values are Loc, Z, and Proc; Z represents integers and Proc is the set of de�ned

procedures (like closures, but in the case of this simple language, closures without environments). In

order to treat pointers, Loc is also a denotable value in the store. In fact, there is an environment that

maps an identi�er to a location (i.e., Id ! Loc) where Id is the set of identi�ers in a program. An

environment can be very complicated, depending on the language and the desired analysis. Here we

simply use addr to return the address of a variable (i.e., a location in the store).

8

I : N � S ! S /* interpretation function */

S = Loc! V al /* interpretation store */

V al = Loc + Z + Proc /* denotable values in S */

The concrete interpreter I for the language is de�ned as follows.

I = �n:�s: case n of

[[v := w]]: if (v 2 Id) then s(addr(v)) Eval(w; s)

[[�v := w]]: if (v 2 Id) and (Eval(v; s) 2 Loc) then s(Eval(v; s)) Eval(w; s)

[[A[e] := w]]: if (A 2 Id) and (Eval(A + e; s) 2 Loc) then s(Eval(A + e; s)) Eval(w; s)

[[begin n

1

; � � � ; n

k

end]]:

s

0

 s

s

i

 I(n

i

; s

i�1

) for i = 1 to k

[[if a then b else c)]]:

if (EvBool(a)) then I(b; I(a; s)) else I(c; I(a; s))

[[call x(a

1

; � � � ; a

k

)]]:

if (x 2 Id) and (s(addr(x)) 2 Proc) then

I([[call s(addr(x))(a

1

; � � � ; a

k

)]],s) /* x is a procedure variable */

[[call g(a

1

; � � � ; a

k

)]]:

hl

1

; � � � ; l

k

i Formals(g)

s

0

 s

s

i

 I([[l

i

:= a

i

]],s

i�1

) for i = 1 to k /* a

i

is assigned to l

i

using I */

s

0

 I(BodyOf (g); s

k

) /* the body of the function is interpreted */

s

0

 s

0

[?=l

1

; � � � ;?=l

k

] /* formal parameters are removed from the store*/

� � �

endcase

Eval = ��:�s: case � of

[[t]]: if (t 2 Z + Proc) then t

else if (t 2 Id) then s(addr(t))

[[�t]]: if (t 2 Id) and (s(addr(t)) 2 Loc) then s(s(addr(t)))

[[&t]]: if (t 2 Id) then addr(t)

[[A[e]]]: if (A 2 Id) then s(s(addr(A)) +Eval(e; s))

[[�(A + e)]]: if (A 2 Id) then s(Eval(A + e; s))

[[e

1

+ e

2

]]: Eval(e

1

; s) + Eval(e

2

; s)

[[e

1

� e

2

]]: Eval(e

1

; s)� Eval(e

2

; s)

� � �

endcase

The right hand side of an assignment statement will be evaluated �rst using Eval, and its value is

assigned to the l-value of the left hand side. Eval also evaluates arithmetic expressions. �v means the

content of the location which is pointed by v. A[e] denotes the content of the location pointed by A with

o�set e; in fact, it is equivalent to �(A + e). \begin" expression is a block-like structure that causes its

subexpressions to be evaluated from left to right. When a procedure g is called with a store s, a formal

parameter l

i

is assigned a

i

using I; then the body of g is evaluated. After g is returned, those formal

parameters of g will not be in the store any more. Formals(g) is an ordered set of the formal parameters

of g. EvBool evaluates a boolean expression.

3.3.2 Abstract Interpretation

Now, abstract interpretation is simply an approximation of the concrete interpretation. The abstract

interpreter transforms an abstract store to another abstract store, mapping Loc to

^

V al. The abstract

9

-1-2 0 1 2

>

Z

?

Z

Figure 4: Abstract domain L

Z

for integers.

denotable values are

^

Loc,

^

Proc, and

^

Z.

^

I : N �

^

S !

^

S /* abstract interpretation function */

^

S = Loc!

^

V al /* abstract store */

^

V al =

^

Loc +

^

Z +

^

Proc /* abstract denotable value */

^

Z = L

Z

/* abstract integer */

^

Loc = 2

Loc

/* abstract location */

^

Proc = 2

Proc

/* abstract procedure */

2

Loc

is the power set of Loc, in which the top element is Loc and the least element is ;; similarly for

2

Proc

: \t" for them is set union.

^

Z is a
at domain whose least element is ?

Z

and whose top element

is >

Z

(see Figure 4). ?

Z

means unknown and >

Z

means not a constant. Initially, all variables are

assigned ?

Z

; therefore, the analysis of constant propagation here is an optimistic approach.

The abstract interpreter is similar to the concrete one except that an abstract denotable value is a

set of locations or procedures, or an element from a
at domain. For example, if a procedure-valued

variable is called, all procedures it refers to are called and the resulting stores are joined. If a pointer

is used, we need to deal with all the possible locations it may reference. In this example, the index of

an array (e.g., 2 for arr[2] at n

6

and c for �(arr + c) at n

9

) can be determined at compile time (taking

advantage of constant propagation); therefore, only one location is treated (since \arr" points to only

one array in this case). If the index cannot be determined during analysis (i.e., >

Z

), all the locations of

an array referred to by the pointer are considered. Details of alias anlysis are beyond the scope of this

paper.

The principal change to the concrete interpreter is shown in Figure 5.

Range(loc) returns the size of the object starting at loc. For the example in Figure 3, A is an

array of size 4; Range(s(addr(A))) returns 4. \

^

+" is abstracted from \+," in which >

Z

^

+x = >

Z

and

?

Z

^

+x = ?

Z

; similarly for

^

EvBool.

^

Eval = ��:�s: case � of

[[�t]]: if (t 2 Id) and (s(addr(t)) 2

^

Loc) then

F

d

j

2s(addr(t))

s[d

j

]

[[e

1

+ e

2

]]:

^

Eval(e

1

; s)

^

+

^

Eval(e

2

; s)

� � �

endcase

Figure 6 lists the abstract execution of the example program step by step using

^

I; abstract interpreta-

tion basically \ executes" a program over abstract domains and gathers information as analysis proceeds.

The store after a statement is executed during analysis is shown. Initially, the store is unknown, that

10

^

I = �n:�s: case n of

[[call x(a

1

; � � � ; a

k

)]]:

if (x 2 Id) and (s(addr(x)) 2

^

Proc) then /* x is procedure-valued variable */

F

f

j

2s(addr(x))

^

I(f

j

; s)

[[�v := w]]:

if (v 2 Id) and (s(addr(v)) 2

^

Loc) then /* v is a pointer */

F

d

j

2s(addr(v))

s[

^

Eval(w)=d

j

]

[[�(p+ e) := w]]: /* equivalent to p[e] := w */

case

^

Eval(e) of /* evaluate e �rst */

?

Z

: ? /* if unknown, return unknown */

const :

F

d

j

2s(addr(p))

s[

^

Eval(w)=(d

j

+

^

Eval(e))] /* if constant, the o�set is �xed */

>

Z

:

F

d

j

2s(addr(p))

F

i<Range(d

j

)

s[

^

Eval(w)=(d

j

+ i)]

endcase

[[if a then b else c)]]:

case

^

EvBool(a) of /* the condition of \if" is evaluated �rst */

? : ? /* if unknown, return unknown */

true :

^

I(b;

^

I(a; s)) /* if true, take the \true" branch */

false :

^

I(c;

^

I(a; s)) /* if false, take the \false" branch */

> :

^

I(b;

^

I(a; s)) t

^

I(c;

^

I(a; s)) /* otherwise, join the results from two branches */

endcase

� � �

endcase

Figure 5: Abstract semantic function

is, �l:?. \enter" and \return" are added to show a procedure call. The formal parameters are assigned

actual arguments when \enter" is listed, and removed from the abstract store when \return" is listed. If

a procedure has no arguments, we simply show the evaluation of its body; that is, \enter" and \return"

are not listed. We use P to represent the procedure name and the procedure itself. Since the array \arr"

is not modi�ed after initialization, we simply use arr

i

to represent the location of arr[i]; the locations

for the array pointer by arr are not listed in the store.

T

Y

is used to record the analysis information for each node. Originally, each node is associated with a

store, mapping Loc to

^

V al, and when a node n is evaluated with store s, T

Y

(n) T

Y

(n)tFI(n; s). To

show the desired results more clearly, we combine s and env together and let T

Y

(n) : Id !

^

V al, which

gives the abstract denotable value of an identi�er at node n 2 N . Suppose we are interested primarily in

c and z, of which the analysis information is shown at the end of the table in Figure 6. From the listed

stores, it is easy to conclude that c at n

11

(marked with �) is a constant, but c at n

13

(marked with �)

is not a constant because the values for c are possibly 1 or 2 (i.e., >

Z

). We can also conclude that there

are edges from Q to R and to T in the call graph from the information of z at node n

12

(marked with

?).

11

Abstract Execution Abstract Store Analysis Information

=========== =============== ============

a b c u x y z

|||||||||||-

begin ? ? ? ? ? ? ? /* initial store */

n

1

: u = &c ? ? ? &c ? ? ? /* u points to c */

n

2

: arr[0] = P ; arr[1] = Q /* s(arr

0

) P , s(arr

1

) Q */

n

3

: arr[2] = R; arr[3] = T /* s(arr

2

) R, s(arr

3

) T */

n

4

: �u = 0 ? ? 0 &c ? ? ? /* �u is assigned 0 */

n

5

: if (c < 0) then c := 0 else c := c+ 1 ? ? 1 &c ? ? ? /* the branch c := c+ 1 is taken */

n

6

: call P (&a; arr[2])

enter ? ? 1 &c &a R ? /* s(arr

2

) = fRg */

�x := y; R ? 1 &c &a R ?

return R ? 1 &c ? ? ?

n

7

: call Q(a) � call Q(R)

enter R ? 1 &c ? ? R

� n

11

: use of c R ? 1 &c ? ? R T

Y

(n

11

; c) = 1

� n

12

: call z � call R R ? 1 &c ? ? R T

Y

(n

12

; z) = fRg

n

14

: c := 1; R ? 1 &c ? ? R /* c is assigned 1 */

? n

13

: use of c R ? 1 &c ? ? R T

Y

(n

13

; c) = 1

return R ? 1 &c ? ? ?

n

8

: call P (&b; P)

enter R ? 1 &c &b P ?

�x := y; R P 1 &c &b P ?

return R P 1 &c ? ? ?

n

9

: call b(&a; �(arr + 2))

enter R P 1 &c &a Q ? /* �(arr + 2) = fQg */

�x := y; Q P 1 &c &a Q ?

return Q P 1 &c ? ? ?

n

10

:call a(T) � call Q(T)

enter Q P 1 &c ? ? T

� n

11

: use of c Q P 1 &c ? ? T T

Y

(n

11

; c) = 1 t 1 = 1

� n

12

: call z � call T Q P 1 &c ? ? T T

Y

(n

12

; z) = fR; Tg

n

15

: c := 2; Q P 2 &c ? ? T

? n

13

: use of c Q P 2 &c ? ? T T

Y

(n

13

; c) = 1 t 2 = >

Z

return Q P 2 &c ? ? ?

Figure 6: A list of abstract interpretation of the program.

12

3.3.3 Discussion

Since abstract interpretation mimics program execution using abstract domains, the interprocedural

constant propagation with conditional branches presented in [37] is accomplished in an elegant way. For

example, the abstract interpreter will evaluate the condition of \if" expression �rst ; if the condition

can be determined at compile time, only one branch will be taken. In addition, if the index to an array

can be determined by constant propagation, only one location is treated (if the array name points to one

array); this has been discussed previously. The presence of loops and procedure calls can also be solved

by the idea of simulating program execution. Constant propagation using abstract interpretation shown

in the section can �nd as many constants as the SCC algorithm for those examples shown in [37], but of

course the solution by abstract interpretation applies to a much larger class of programming languages.

If there is recursion, for instance, recursive calls, some abstraction mechanism must be used to assure

the �niteness of an abstract interpretation. For example, the Z1 system [19] employs abstract procedure

strings to accommodate interprocedural analysis (see [19, 4]). The precision of an analysis depends

critically on abstraction maps. In general, the more precise information we want, the more space and

analysis time are required. However, the design of abstraction interpretation is not our main concern.

The method presented later can be applied to any abstract interpretation of domains of �nite height. In

fact, our algorithm has been applied to Z1 in practice.

4 Entailment Model

In this section, we will de�ne the entailment relation, propose an entailment model for computing the

least �xpoints that arise in abstract interpretation, and present a basic algorithm based on the model.

4.1 Entailment Relation

The naive approach to computing least �xpoints in abstract interpretation constructs the graph of fix F

in its entirety. This approach assumes every prestate is possible for every node, and the corresponding

poststate is computed as in Examples 1 and 2. Usually, however, only a small fraction of the possible

prestates will arise in a program. It is not always possible nor practical to explore the entire argument

space of a semantic functional. In Example 2, suppose the result we want is the de�nedness of variables

after procedure P is called given that the initial input is fag. So we start with FI(n

0

; fag). To compute

it, we �rst compute FI(n

1

; fag) and FI(n

2

; fag). The only input argument to n

1

, n

2

, and n

0

is fag.

By contrast, there are 2

k

possible prestates for each statement where k is the number of variables in the

program.

Let X = � ! X and Y = Y , so that F has type (X ! Y) ! (X ! Y). Obviously, there is a

relationship of dependence between the elements in X, induced by the functional F . In the function f

of Example 1, f(a) depends on f(b), f(b) depends on f(c), and f(c) depends on itself. The dependence

13

relation can be used to order the evaluations e�ciently. Suppose the function value we want to know is

f(a) (e.g., a is the start node). Only four, instead of twelve in Example 1, evaluations of Ff are enough,

in the order of Ff(c); Ff(c); Ff(b), and Ff(a). In Example 2, I(n

0

; fag) depends on I(n

1

; fag)

and I(n

2

; fag). Only those nodes related, directly or indirectly, to the start node, x

0

2 X, need to

be represented in the resulting �xpoint, if we are interested only in the states that can arise from a

particular (abstract) starting condition. This is the concept of a minimal function graph [22]. We will

de�ne the relationship, which we call entailment, and the least �xpoint based on this relation.

De�nition 1 (Entailment relation) Let F : (X ! Y) ! (X ! Y); f : X ! Y , and x; x

0

2 X. We

say that x entails x

0

under F and f (written x

F ;f

; x

0

) i� 9y = fx

0

, F(f [y=x

0

])x = Ffx 2

The function f [y=x] is the same as f , except that x is mapped to y. The intuition of De�nition 1

is that if F(f [y=x

0

])x is higher than Ffx for some y higher than fx

0

, it can only be that Ffx depends

upon the value of fx

0

; that is, to raise the value of fx

0

will raise the value of Ffx. If x depends upon

x

0

in this way, we say that x entails x

0

. On the other hand, 8x

0

if x 6; x

0

, F(f [y=x

0

])x = Ffx even if

y = fx

0

,

The entailment relation can be used to enormous practical advantage in computing least �xpoints.

Let x

0

2 X denote the initial node in which a computation begins. We write x

F

; x

0

if x

F ;f

i

; x

0

for some

f

i

that is an approximation of fix F during �xpoint computation, and we write X

�

= fx

0

2 Xjx

0

F

;

�

x

0

g. In other words, X

�

is the set of nodes that are reached directly or indirectly from x

0

; that is,

8x 2 X

�

, x; x

0

) x

0

2 X

�

(for simplicity, we use ; to denote

F

;).

We will base the computation of least �xpoints on the entailment relation. f j

Z

denotes the function

f restricted to the set Z � X. The initial approximation f

0

is the bottom function restricted to ;

(E1), and the entailed set X

0

consists of x

0

only (E2). Application of F to the current approximation

restricted to the elements in the entailed set (i.e., f

i

j

X

i

) will yield a new approximation (E3) and entail

some new nodes that are therefore added to the entailed set (E4). The procedure is repeated until the

approximation converges, that is, f

i+1

= f

i

and X

i+1

= X

i

. Thus, the least �xpoint of F restricted to

X

�

(the nodes entailed, directly or indirectly, by x

0

), denoted by (fix Fj

X

�

), is reached. Now consider

the sequence:

14

(E1) f

0

= �x:?j

;

(E2) X

0

= fx

0

g

(E3) f

i+1

= fx 7! F(f

i

j

X

i

)x j x 2 X

i

g

(E4) X

i+1

= X

i

S

fx

0

jx

F ;f

i

j

X

i

; x

0

8x 2 X

i

g

Let n be the least integer satisfying f

n+1

= f

n

. It can be shown that f

n

= (fix Fj

X

�

); and that

X

n

= X

�

:

First we need to prove that X

n

= X

�

.

Lemma 2 Let G = (V;E) is the entailment graph where V = X

�

and hx; x

0

i 2 E if x ; x

0

. If the

length of the shortest path from x

0

to x is i, then x is in X

i

.

Proof: Let len(x) be the length of the shortest path from x

0

to x. It is easy to prove by induction on i.

1. Basic step: len(x

0

) = 0 and x

0

2 X

0

.

2. Induction step:

Suppose that 8x if len(x) = i then x 2 X

i

holds true.

If len(x) = i + 1, there exists z such that z ; x and len(z) = i: We know z 2 X

i

.

Application of (E4) X

i+1

= X

i

S

fx

0

jx

F ;f

i

j

X

i

; x

0

; 8x 2 X

i

g will add x into X

i+1

.

Therefore we can conclude that if len(x) = i then x 2 X

i

. 2

Theorem 1 X

n

= X

�

.

Proof: From Lemma 2, all the elements entailed by x

0

, directly or indirectly, are included in X

l

where

l = maxflen(x)jx 2 V (G)g, l � n

Hence, X

l

= X

l+1

� � � = X

n

= X

�

. 2

Theorem 2 f

E

= (fix Fj

X

�

) where f

E

is the �xpoint computed by the procedure of E1 to E4.

Proof: To prove that f

E

= (fix Fj

X

�

), we need to prove that f

E

w (fix Fj

X

�

) and f

E

v (fix Fj

X

�

):

1. First, we prove f

E

w (fix Fj

X

�

):

fixFj

X

�

is the least �xpoint of Fj

X

�

; that is, if Fj

X

�

f = f , then f w fixFj

X

�

. When the

procedure terminates, f

E

is a �xpoint ofFj

X

n

; in other words, (Fj

X

n

)f

E

= f

E

. We knowX

n

= X

�

.

Thus, f

E

is a �xpoint of Fj

X

�

. Therefore, f

E

w fix Fj

X

�

.

2. Second, we prove f

E

v (fix Fj

X

�

).

That is to prove that (f

i

: X

i

! Y) v fixFj

X

i

holds true for all i. It is proved by induction on i.

� Basic step:

X

0

= fx

0

g and f

0

= �x:?j

;

Hence, (f

0

: X

0

! Y) v fix Fj

X

0

holds true.

15

a

b c

Figure 7: The entailment graph of Example 1.

n

n n

0

1 2

Figure 8: The entailment relation of Example 2.

� Induction step:

Suppose (f

i

: X

i

! Y) v fix Fj

X

i

holds true for some i.

To compute a node x 2 X

i

to obtain f

i+1

(x), consider x

0

such that x

F ;f

i

; x

0

:

if x

0

2 X

i

; f

i

(x

0

) v fix Fj

X

i

(x

0

), or

if x

0

62 X

i

; f

i

(x

0

) = ?

Hence, f

i+1

(x) = Ff

i

(x) v fix Fj

X

i+1

(x) since for all x

0

such that x

F ;f

i

; x

0

, f

i

(x

0

) v

fix Fj

X

i

(x

0

).

Therefore, (f

i

: X

i

! Y) v fixFj

X

i

holds true for all i. That is, f

E

v fix Fj

X

�

.

From 1 and 2, we can conclude that f

E

= (fix Fj

X

�

). 2

Thus, f

E

is the least �xpoint if F is restricted to those nodes that are reachable from the initial

node. Recall that X (i.e., � ! X) represents the set of expressions and possible (pre-)states together,

and let x

0

2 X denote the start expression with the initial state in which a computation begins. In other

words, X

�

is the set of expressions and their resulting prestates that are reached directly or indirectly

from x

0

. Of course, we can envisage the entailment relation over prestates as a graph.

An entailment graph describes the relationship between the elements of X induced by F ; that is,

x

F

; x

0

means the computation of (fix F)x depends on the computation of (fix F)x

0

, and in this case

there is an edge hx; x

0

i in the entailment graph. The entailment graph will be constructed during the

computation of the least �xpoint. The entailment relation for Examples 1 and 2 are given in Figures 7

and 8. It is no accident that the relationship of the elements in X resembles a
ow graph. However, the

entailment graph and control
ow graph are quite di�erent, being at most distantly related. Consider the

expression x+ y + z: there are three entailment edges, from the whole expression to the subexpressions

x, y, and z, depending on the de�nition of the semantic functional F . The idea of entailment relation

is de�ned to match the dependences among evaluation steps during computation. It is general and

applicable to more languages, for example, the functional language of which the control
ow graphs are

not evident.

16

4.2 Basic Entailment Algorithm

In this section, we will give an algorithm for computing the least �xpoint using the entailment relation.

However, it is not e�cient to compute all the elements in X

i

to obtain f

i+1

. Only those nodes that

are newly entailed or by which the nodes entailed are improved. Therefore, W

i

is used to contain those

nodes that are actually needed to be computed. The following equations are used to e�ciently compute

the least �xpoint restricted to those nodes entailed by the start node.

(A1) f

0

= �x:?j

;

(A2) X

0

= fx

0

g; W

0

= fx

0

g

(A3) f

i+1

= fx 7! F(f

i

j

X

i

)x j x 2W

i

g

(A4) W

i+1

= fx

0

jx

F ;f

i

j

X

i

; x

0

; x 2 W

i

g

S

fxjx; x

0

and F(f

i

j

X

i

)x

0

= (f

i

j

X

i

)x

0

; x

0

2W

i

g

(A5) X

i+1

= X

i

[W

i+1

Let n be the least integer satisfying f

n+1

= f

n

. It is easy to show that f

n

= (fix Fj

X

�

); and that

X

n

= X

�

: The proof is similar to that of Theorem 2.

Given a node x 2 V (G), we need to evaluate the functional, F : X ! Y; jXj � 1 times, to obtain the

set of nodes that x entails, This sums up to O(jXj

2

) evaluations to compute X

i+1

. It is not practical

to compute the entailment relation exactly. Therefore, we employ an approximate method to �nd the

entailment relation in our algorithm; if the value of f(b) is retrieved to compute Ff(a), an edge ha; bi is

added to G. However, the entailment relation derived in this way is not exactly the same as we de�ne

(see Section 4.3).

Algorithm 1 in Figure 9 is a basic algorithm for computing the least �xpoint of F given that start

node w

0

and the initial state �

0

, using A1�A5 and the approximate entailment relation. We will call the

graph that Algorithm 1 produces the computed entailment graph G hereafter. G uses an approximation

of the entailment graph from De�nition 1, in which all prestates for a �xed � 2 � are collapsed to a

single node � in V (G). The algorithm keeps a prestate and a poststate for each expression in the table

T

X

and T

Y

respectively. The two tables are initialized with bottom values. Prestates
ow forward and

poststates
ow backward in G.

Initially, the worklist W contains the start expression w

0

, only w

0

is in G, and T

X

(w

0

) is assigned

�

0

. We repeatedly choose an element w from W to evaluate with its current prestate T

X

(w) until W

is empty. If the poststate of w is improved, those nodes that entail (depend on) w will be put on W

(i.e., they need to be re-evaluated), and the new poststate is recorded in T

Y

. If w entails w

0

, f(w

0

; �

0

) is

invoked by F in the evaluation of F(f; w; T

X

(w)), where �

0

is a prestate, prepared by w, for w

0

. In f , a

node w

0

and an edge hw;w

0

i are added to G, the new prestate �

0

to w

0

is recorded in T

X

, and the current

value of T

Y

(w

0

) is returned. To start the computation of the least �xpoint, we call Fixpoint(F ; w

0

; �

0

).

17

Algorithm 1 The basic iterative algorithm using the entailment graph:

function Fixpoint (F : (�! X ! Y)! (�! X ! Y); w

0

: �; �

0

: X) : �! X ! Y

G : (V;E) = (�;�� �) /*the computed entailment graph*/

W : 2

�

/*worklist*/

T

X

: �! X /*prestate of a node*/

T

Y

: �! Y /*poststate of a node*/

w : � /*the current node to evaluate*/

y : Y /*the computed value*/

function f(w

0

: �; � : X) : Y

begin

if (� 6v T

X

(w

0

)) then /*if the prestate is higher*/

W W [fw

0

g /*put the node that w entails on W*/

T

X

(w

0

) T

X

(w

0

) t � /*record the new prestate*/

endif

V (G) V (G) [fw

0

g /*build the graph G*/

E(G) E(G) [fhw;w

0

ig

return T

Y

(w

0

) /*return the current poststate of w

0

*/

end

begin /*Fixpoint*/

T

X

(e) ?

X

; T

Y

(e) ?

Y

8e 2 � /*initialization*/

G hfw

0

g; ;i /*only w

0

is in G*/

W fw

0

g /*W contains w

0

*/

T

X

(w

0

) �

0

/*initial prestate for the start expression*/

while (W 6= ;) do /*iteratively until W is empty*/

w retrieve an element from W /*retrieve a node to evaluate*/

y F(f; w; T

X

(w)) /**EVALUATION**/

if (y 6v T

Y

(w)) then /*if its poststate is improved*/

W W [fw

0

jhw

0

; wi 2 E(G)g /*put all the nodes that entail w on W for reevaluation*/

T

Y

(w) y /*record the new poststate*/

endif

endwhile

return (T

X

; T

Y

)

end /*Fixpoint*/

Figure 9: Basic algorithm based on entailment relation

18

4.3 Discussion

Note that the computed entailment graph G may have more edges than the (true) entailment relation

derived from De�nition 1. consider the example:

f = �x: case x of

a : >[f(b)

� � �

endcase

The edge ha; bi is included in G, but a does not entail b because no matter what the value of f(b) is, the

value of Ff(a) is >. In addition, more edges may be included, like hn

0

; n

1

i caused by \n

0

: � � �f(n

1

)�

f(n

1

)" in the semantic functional. However, it is easy to show that super
uous edges in G do not a�ect

the correctness of the �xpoint. Let f

A

be the �xpoint computed by Algorithm 1 and X

+

be the set of

entailed nodes using the approximate entailment. We know X

�

� X

+

.

8n 2 X

�

; f

A

(n) = f

E

(n).

8n 2 (X

+

�X

�

); f

A

(n) w f

E

(n) = ?

Consider a node n 2 (X

+

�X

�

). If f

A

(n) = ?, it is the same as f

E

(n). If f

A

(n) = ?, it will leads

to a safe approximation of f

E

(n). Hence, f

A

is a safe approximation of f

E

; however, f

A

restricted to

X

�

is the same as (fix Fj

X

�

).

On the other hand, notice that by the entailment de�nition, hn

2

; �

0

i entails hn

1

; ;i (where �

0

=

f(n

1

; �)), induced by f(n

2

; f(n

1

; �)) of the functional F . G, however, does not contain an edge hn

2

; n

1

i.

This is caused by the projection function � and the approximate method we use to compute the entail-

ment relation. In fact, it is not necessary for G to contain such edges, because the dependence of n

2

upon n

1

, is implicitly enforced in the functional F . Besides, such dependences are \internal" to a single

evaluation step of Algorithm 1 (see the line marked /**EVALUATION**/), whereas the purpose of G is

to record the dependences between separate evaluations. It is easy to include those internal dependences

in G if desired.

5 E�cient Computation of Least Fixpoints

This section presents the strategies for determining an e�ective order of evaluations and then the guided-

entailment model using these strategies is described and discussed.

5.1 Strategies for Improving the Basic Algorithm

As discussed previously, propagation using def-use chains or sparse representations is not straightforward

for interprocedural analysis in the presence of unrestricted pointers. Furthermore, the control
ow graph

is not always available a priori; for example, those of programs with higher-order functions. Therefore,

it is di�cult to avoid propagating throughout the entire program for the complex analyses in which we

19

1

2

3

4

n-2

n-1

n

Figure 10: An example for describing the worst

case

n0 Start node

nk

n2 n3 n4

n1

nb

n5

Figure 11: An example for explaining the strate-

gies

are interested. However, we can exploit the entailment relation to dynamically order the evaluations

that lead to the �xpoint more quickly.

In Algorithm 1, we did not specify how to retrieve the next element to evaluate. The order in

which elements are chosen will signi�cantly a�ect the performance of the iterative method. Consider

the entailment graph in Figure 10. The basic algorithm may require O(2

n

) evaluations in the worst

case even though O(n) are apparently enough. The best sequence of evaluations is 1,2,3,...,n-1,n (for

prestate forwarding), n-1,..,2,1 (for poststate propagation). However, the basic algorithm may evaluate

1 and put 2 and 3 on the worklist, then choose 2 and propagate the poststate of 2 immediately back to

1. Later it may choose 3 and propagate back to 1 �rst and then back to 2 and 1. That is, whenever

the poststate of a node is improved, it may propagate in the worst possible way: propagating to node

1 before propagating to the other predecessors of n. the worst sequence is 1,[2,1], [3,1,2,1], [4,3,1,2,1],

[5,3,1,2,1,4,3,1,2,1], :::, which sums to O(2

n

).

In fact, it is possible to determine an e�ective order without much overhead. In the following, the

strategies for determining the evaluation order that underlie our model will be described separately. Each

of these strategies, independently, improves a basic iterative algorithm. The strategies, waiting for all

successors, leading node �rst, suspended evaluation, and back edge �rst, need not be used independently;

one strategy may bene�t another. The guided-entailment method we propose integrates all the strategies

in a uni�ed way. We will use the example entailment graph in Figure 11 to illustrate these strategies.

20

5.1.1 Waiting for All Successors

When n

1

is evaluated (see Figure 11), its successors n

2

, n

3

, and n

4

, are put on the worklist. If n

2

(or any of its successors) is evaluated and improved, n

1

is put back on the worklist for reevalua-

tion. It may happen that n

1

is chosen earlier than n

3

and n

4

. The sequence of evaluations will be

n

2

; :::; n

1

; :::; n

3

; :::; n

1

; :::; n

4

; :::; n

1

. Thus n

1

is evaluated repeatedly, as each of its successors is im-

proved. Instead, n

1

should wait until all its successors are evaluated. It is then evaluated only once, as

in the sequence n

2

; :::; n

3

; :::; n

4

; :::; n

1

.

5.1.2 Leading Node First

In Algorithm 1, there are two kinds of nodes on the worklist. One is a leading node|added for computing

a new poststate because its prestate has been improved. The other is a retreating node|added for

reevaluation because the poststate of one of its successors has improved. In the example of Figure 11,

n

1

depends on n

2

, n

3

, and n

4

. When n

1

is evaluated, n

2

, n

3

, and n

4

will be put on the worklist. n

2

,

n

3

, and n

4

are leading nodes at this time. Suppose n

2

is next evaluated. If its poststate is improved, n

1

will be put on the worklist for propagating the new poststate of n

2

. At this moment, n

1

is a retreating

node. Notice that n

5

, entailed by n

2

, is already on the worklist at this point.

It is obvious that a leading node should be preferred over a retreating node. Suppose we choose n

1

(a retreating node) �rst, and propagate back to the start node n

0

. Later, n

5

(a leading node) will be

evaluated. If its poststate is improved, n

2

will be reevaluated. If the poststate of n

2

is also improved, all

the nodes on the path from n

1

back to the start node n

0

will be evaluated again. The resulting sequence

will be [n

1

; n

k

; :::; n

0

]; :::; n

5

; :::; n

2

; :::; [n

1

; n

k

; :::; n

0

]. The sequence in \[]" is redundant. Hence, choosing

leading nodes �rst will lead to a shorter (or equal) sequence of evaluations reaching the least �xpoint .

5.1.3 Suspended Evaluation

In the basic algorithm, n

1

is evaluated, and its successors are put on the worklist as leading nodes. If

the poststate of any of its successors is improved, n

1

will be reevaluated. It is more e�cient to perform

only as much of the evaluation of n

1

as is needed to generate prestates for its successors, put them on

W; and then suspend the evaluation of n

1

. After its successors are evaluated, the suspended evaluation

of n

1

is resumed. If there exists an internal entailment between the successors of a node, the evaluation

of this node can be partitioned into slices, in which each prepares a prestate for a successor, puts this

successor on W , and then is suspended in the order given by the entailment relation.

If the entailment graph is acyclic, it is easy to suspend the evaluation of a node and evaluate its

successors �rst; when there is a cycle, this will cause an in�nite wait. The entailment graphs in program

analysis are usually cyclic. Therefore, a mechanism must be designed to cope with circularity. We will

return to this later.

21

forward-edge
successors

activatex

Figure 12: Activation of a node

back-edge
propagate

first

m

n

x

Figure 13: Propagation of a node (dotted line)

5.1.4 Back Edge First

If a node entails its ancestor, there is a circular entailment relation. In other words, a back edge exists

in the entailment graph. When the poststate of a node is improved, the poststate will be propagated

to its predecessors, which will be put on W for reevaluation. Consider n

1

in the example. One of its

predecessors, n

b

, is also its descendant. Suppose we propagate the poststate of n

1

to n

k

, and afterwards,

due to circularity, a change in one of its descendants n

b

results in a new poststate for n

1

, which will

invalidate the earlier propagation to n

k

. The sequence will be n

1

, [n

k

; :::; n

0

],(n

b

; :::; n

1

),[n

k

; :::; n

0

]

,(n

b

; :::; n

1

),[n

k

; :::; n

1

],n

b

; ::: where \(...)" denotes a loop. Whenever the poststate of n

1

is improved by

the propagation from n

b

, the previous evaluations of n

k

and all nodes along the way back to the start

node n

0

denoted by \[...]" will be invalid.

If a back edge exists, as hn

b

; n

1

i in this example, the value of the header of a loop, such as n

1

, may

be improved later as a result of propagation along the back edge to the header itself. Thus, propagation

to those predecessors not connected by back edges should be suspended. We can accomplish this by

always propagating a new poststate along a back edge �rst, if any, until the loop is stable. The resulting

sequence of this example will be (n

1

; n

b

; :::); (n

1

; n

b

; :::); (:::); :::; [n

k

; :::; n

0

]. The idea is similar to the

loop �rst strategy which is commonly used in data
ow analysis [38].

5.2 Guided-Entailment Algorithm

In this section, we will propose a model for e�ciently computing the least �xpoint of a semantic functional

F : (X ! Y) ! (X ! Y) in which the relationship of elements of X is not given a priori. The

aforementioned strategies are embedded in the model. Based on the strategies, local knowledge of the

entailment graph that is dynamically constructed is exploited to determine dynamically an e�ective

order of evaluations.

There are two primary functions in this model: \Activate(x)" pursues a new value in Y for a node

22

x 2 X, depicted in Figure 12, and \Propagate(x)" passes back an improved value of a node x 2 X

to its predecessors, depicted in Figure 13. At the end of \Activate(x)," \Propagate(x)" will be called

after the value of x is actually evaluated. Basically, \Activate" occurs along the edges of the entailment

graph, while \Propagate" takes place in the reverse direction of the entailment relation. Each node

(expression, statement, or block) in the program acts as an object. When it receives a message (activate

or propagate), it will perform a corresponding action.

5.2.1 Activation

A node is activated, as a leading node, when it is actually needed (entailed) during the computation of

the least �xpoint. A node will not be evaluated until all the values of its successors are available (stable

so far; this is determined by local knowledge of the entailment relation). To avoid an in�nite wait, when

a node entails its ancestor, it will neither activate nor wait for this ancestor. To start the computation

of the least �xpoint, the initial node x

0

2 X is activated.

Activate(x : X)::

begin

if (x entails a node x

0

and hx; x

0

i 62 BackEdge(G)) then

for each x

0

of those entailed non-ancestor nodes

Activate(x

0

) and

wait for a notice of completion from x

0

endfor

endif

if any value of the successors is improved then

y compute (Ff)x using the computed values of x's successors

if (y is improved) then record the new value y

endif

Propagate(x) /*will be de�ned later*/

end

In \Activate," the �rst three strategies are integrated.

� Waiting for all successors: when x is activated, its non-ancestor successors are activated. x will

wait until all the successors complete their evaluations, and the value of x is computed once with

all their new values. \Waiting for all successors" is therefore accomplished.

� Leading node �rst: a node will �rst activate its non-ancestor successors; that is, the model re-

cursively calls \Activate" �rst for activating leading nodes, and \Propagate" is called later for

propagating a computed value to its predecessors (as retreating nodes). \Leading node �rst" is

obviously achieved.

� Suspended evaluation: the evaluation of x will not continue until all the activated successors return;

then the value of x is actually computed. Thus \suspended evaluation" is integrated. It will be

23

clear how the evaluation of a node is suspended (if the node depends on other nodes) when we

give a concrete algorithm for the functions g

i

of F , in Section 6.2.

We did not specify the order for activating the successors. If there is a dependence relation (internal

entailment) between these successors in the semantic functional F , the order for activating them should

be the same as the entailment relation; otherwise, the order for activating the successors is not important.

5.2.2 Propagation

When the value of a node x is improved, it is necessary to propagate the new value to x's predecessors as

retreating nodes. The \back edge �rst" strategy is applied in \Propagate". If a back edge hm;xi exists,

propagation of the value of x to its non-back-edge predecessors should be suspended since the value of x

may not be stable yet. The loop, caused by hm;xi, is manipulated �rst until it is stable. Then the stable

value of x is propagated back to its non-back-edge predecessors. Therefore \ Propagate" is de�ned as:

Propagate(x 2 X)::

begin

for each m 2 fx

0

jhx

0

; xi 2 BackEdge(G)g do BackF irst(x;m)

for each z 2 fx

0

jhx

0

; xi 2 E(G)� BackEdge(G)g do

send a notice of completion to z and return

end

When a back edge exists, we call \BackF irst" to propagate along the back edge to the header

repeatedly in the loop. BackF irst(header; z) maintains a working set of nodes to be evaluated for

propagation in a loop, caused by the back edge hz; headeri. Initially it contains only the back-edge

predecessor z. We repeatedly retrieve a node to evaluate from the working set until the set is empty (the

order is not important). If the value of a node other than the header is improved, all its predecessors

within the loop (i.e., they are not the ancestors of header) are put into the working set. If header is

improved, only the original back-edge node z that de�nes the loop is put in the set. If a back edge is

found while propagating in a loop, we deal with the inner loop �rst, recursively. The detailed algorithm

is included in Section 6.2.

During the loop propagation, if an edge hm;ni exists where n is within the loop and m is an ancestor

of the header (see Figure 13), m will not be propagated because m, crossing the header, is not within

the loop. Note that m is not completely evaluated yet, although m was already noti�ed by n when n

was �rst evaluated and propagated (at that time, it is unknown that n is in a loop); m is awaiting a

completion notice passed from the loop header indirectly. Therefore, the ordering induced in our model

is as e�cient as those methods that examine the whole control
ow graphs a priori, even though in our

method only local knowledge of the graph is kept (back edges and non-back edges at each node), and

the identi�cation of loops occurs as the algorithm proceeds.

24

5.3 Summary of the Guided Entailment Model

If the entailment graph is acyclic, the order of evaluations derived in the guided-entailment model is

depth-�rst. If there are back edges, the nodes in a connected component are evaluated repeatedly

until the component is stable, and the components are visited in reverse topological order. The model

takes strongly connected components into consideration and takes advantage of local knowledge of the

entailment relation to exclude unnecessary evaluations. The model is conceptually simple but
exible.

In summary, for an acyclic entailment graph, each node will be activated for pursuing a new value (as

a leading node) exactly once, and will be propagated and then evaluated at most once (as a retreating

node); those nodes that do not depend on any other nodes are evaluated when they are activated, and

there will not be any propagation from other nodes to them. Therefore, for an acyclic entailment graph

of n nodes, the total number of evaluations is no more than 2n. For an entailment graph with only

self loops (i.e., single-node loops), the time complexity is O(n + l) where l is the height of lattices for

abstract domains. As to a general entailment graph, we have collected experimental data (Section 7.2)

that suggests that the model is e�cient in practice. Intuitively, the behavior and complexity of the

guided-entailment algorithm should be no worse than those of interval analysis.

If the algorithm is applied to a conventional data
ow analysis problem, that is, the control
ow graph

is given a priori, its behavior is similar to interval anlysis [14]. Given a directed graph, the ordering

derived by our algorithm is basically the same as that derived by the iterative algorithm in [10] except

that the guided entailment model �rst traverses and activates the nodes, but the order of evaluations

should be the same.

6 Guided-Entailment Algorithm

So far, we have described a model for computing least �xpoints e�ciently without control
ow graphs

a priori, but we must turn it into a concrete algorithm. Section 6.1 describes the data structures.

Section 6.2 presents the guided-entailment algorithm. Section 6.3 describes another data structure for a

sequential implementation to further improve the e�ciency.

6.1 Design and Implementation

This section describes two essential data structures, dependence counts and path strings, in the imple-

mentation of the guided entailment algorithm.

6.1.1 Dependence Count (DC)

To avoid in�nite wait, a count of the number of successors for which a node is waiting is maintained.

Whenever a node activates its successors (puts its successors on the leading worklist), its dependence

25

count will be incremented by one. If a back-edge successor exists, to avoid an in�nite wait, this successor

will not be activated; that is, the dependence count is not incremented by a back-edge successor. After

a node is evaluated, it will notify all its dependents. This can be accomplished simply by decrementing

the dependence counts of its dependents by one. Once the count of a node becomes zero, all successors

for which it is waiting have reported back, and that node is ready to be evaluated (put on the retreating

worklist).

6.1.2 Path String (PS)

If a circular entailment relation exists, this will cause an in�nite wait since a node will not be evaluated

until all its successors are evaluated. To avoid this, we keep track of back edges as the graph develops to

identify loops. A path string is a mechanism designed for recording paths dynamically. For example, n

0

is the initial node whose path string is \0." If there is a entailment edge from n

0

to n

1

, the path string

of n

1

is \01," the path string of its predecessor concatenated with its identi�cation.

Each node is associated with a set of path strings. It is easy to check if there is a back edge using

path strings. If x entails z and the path strings of x contains \z", hx; zi is a back edge. Moreover,

path strings can easily be implemented so that they share storage with one another, and consume no

more space than the entailment graph itself. We will show below that for a sequential implementation,

a single bit-vector of length n (the number of nodes in a program) is su�cient.

6.2 Guided-Entailment Algorithm

The guided-entailment algorithm is described in this section. In BackF irst, a local working set is needed

for propagation in a loop. To simplify the implementation and yet use the whole structure of the basic

algorithm, BackF irst in Algorithm 3 makes use of the global W as the local working set; it saves the

worklist W when it is called, and restores W before it returns.

If a node is found to depend on the poststates of other nodes that are yet to be evaluated, the

computation of the semantic function g

i

for the node need not be �nished. In order to suspend the

computation, we need to check the dependence count in the semantic function; if it is not zero, the

computation, de�ned by each semantic function, is suspended (see ** in g

i

). When the node is chosen to

be evaluated again, it will resume at the point where it was suspended. Each function g

i

in F is de�ned

as,

26

Algorithm 2 An iterative algorithm based on the guided-entailment model:

function Fixpoint (F : (�! X ! Y)! (�! X ! Y); w

0

: �; �

0

: X) : �! X ! Y

G : (V;E) = (�;�� �) /*the entailment graph*/

W : 2

�

/*global worklist*/

T

X

: �! X /*prestate of a node*/

T

Y

: �! Y /*poststate of a node*/

PS: array of 2

V

+

/*path strings for each node*/

DC: array of integer /*dependence count for each node*/

w: � /*the current node to process*/

y: Y

function f(w

0

: �; � : X) : Y

begin

if hw;w

0

i 62 E(G) /*if the edge is not constructed yet*/

PS[w

0

] PS[w

0

] [fs & w

0

j s 2 PS(w)g /* \&" means concatenation of strings*/

V (G) V (G) [fw

0

g /*build the entailment graph*/

E(G) E(G) [fhw;w

0

ig

if (� 6v T

X

(w

0

)) then /*if the prestate is higher*/

T

X

(w

0

) T

X

(w

0

) t � /*record the prestate*/

if (hw;w

0

i is not a back edge) then /*if not a back edge*/

W W [fw

0

g /*\Activate" the successor, and*/

DC[w] DC[w] + 1 /*increment the dependence count of w*/

endif

endif

return T

Y

(w

0

) /*return the current poststate*/

end

begin /*Fixpoint*/

for all e 2 � do

DC[e] 0; PS[e] ;, T

X

(e) ?

X

; T

Y

(e) ?

Y

/*initialization*/

G hfw

0

g; fgi /*only node w

0

is in G*/

W fw

0

g /*the worklist contains w

0

*/

T

X

(w

0

) �

0

/*prestate for w

0

*/

PS[w

0

] f0g /*path string for w

0

*/

while (W 6= ;) do /* iteratively until W is empty*/

w retrieve an element from W /*retrieve an element to process*/

y F(f; w; T

X

(w)) /**EVALUATION**/

if (DC[w] = 0) and (y 6v T

Y

(w)) then /*if w awaits no node and improved*/

T

Y

(w) y /*record the new poststate*/

for each z 2 fw

0

jhw

0

; wi 2 BackEdge(G)g do

BackF irst(w; z) /*\Propagate": to back-edge dependents �rst*/

for each z 2 fw

0

jhw

0

; wi 2 E(G)�BackEdge(G)g do /*then to non-back-edge predecessors:*/

DC[z] DC[z]� 1; /*decrement the dependence count of its dependents*/

if (DC[z] = 0) then W W [fzg /*trigger a ready node as a retreating node*/

endfor

endif

endwhile

return (T

X

; T

Y

)

end /*Fixpoint*/

Figure 14: Guided-entailment Algorithm

27

Algorithm 3 An iterative algorithm for back edge �rst propagation:

function BackF irst(header; z 2 �): void

local NewW : 2

�

begin

NewW W /*save W , and use W as a local working set*/

W fzg /*initialized with the back-edge predecessor z*/

while (W 6= ;) /*repeat until it is empty*/

w retrieve an element from W /*choose an element to evaluate; use global w*/

y F(f; w; T

X

(w)) /*evaluation of the current node*/

if (y 6v T

Y

[w]) then /*if the poststate is improved*/

T

Y

[w] y /*record the improved poststate*/

if (w 6= header) then /*if not the header, propagate*/

for each v 2 fx

0

jhx

0

; wi 2 BackEdge(G) and x

0

is not an ancestor of headerg do

BackF irst(w; v)

for each v 2 fx

0

jhx

0

; wi 2 E(G)�BackEdge(G) and x

0

is not an ancestor of headerg do

W W [fvg /*put the non-back predecessors on W*/

else W W [fzg /* if w = header, only z is put on W*/

endif

endif

endwhile

W NewW /*restore W*/

end

Figure 15: BackFirst algorithm

g

i

(f; �; �)

begin

for each j 2 Successors(�)

if (j entails k) and (k has been activated) then suspended

�

� � � (prepare the prestate �

j

)

call f(j; �

j

) to activate node j with prestate �

j

� � � (post-processing)

endfor

if (DC[�] > 0) then suspended

��

computation of Ff for � using the current poststates of Successors(�)

end

In the \for" loop in g

i

above, if a successor j depends on another successor k, the order for activating

its successors (in the entailment graph) must preserve the dependence relation (internal entailment); note

that the suspension marked with * in g

i

. Otherwise, all the successors can be processed simultaneously

or in any order.

6.3 Path Bit Vector

To detect the back edges in the graph G, Algorithm 2 records all the paths that lead to a node. However,

this is very ine�cient. As a matter of fact, for a sequential implementation of the guided entailment

algorithm, the successors of a node must be handled one by one sequentially. We can activate only one

28

successor at a time; after its value is computed, the next successor is activated. Thus, the order derived

for activating leading nodes is basically depth-�rst; that is, only one path leads to a node at a time during

analysis. It is not necessary to keep all path strings during analysis, in a sequential implementation. We

can therefore make use of this characteristic to simplify path strings.

A bit vector Path is designated to denote the current path as the analysis proceeds. Initially no

nodes are on the path. When a node x puts a successor on the worklist as a leading node, Path[x] is

set 1; that is, x is on the path. When a node z is put on the retreating worklist, z is removed from the

path. In this way, it is easy to identify back edges. If x entails z and Path[z] = 1 (i.e., z is already on

the path), hx; zi is a back edge. Our guided-entailment algorithm has been implemented using such a

path bit vector in a sequential version.

7 Experiments and Discussion

We have conducted experiments to compare the performance of the guided-entailment method with that

of other iterative algorithms that do not require the control
ow graph a priori. Section 7.1 describes

the program analyses conducted and the test programs. Section 7.2 shows the experimental results and

discussion.

7.1 Program Analyses and Test Programs

The experiments are based on the abstract interpretation used in MIPRAC [18]. MIPRAC analyzes and

compiles an intermediate language, called MIL, which includes higher-order procedures, dynamic alloca-

tion, and unrestricted pointer manipulation. Programs in many source languages, such as FORTRAN,

C, and Scheme, can be transformed into MIL programs. The compiler performs whole-program analysis

of the intermediate form by abstract interpretation.

We use Z1, an analyzer generator based on MIPRAC, to generate various interprocedural analyses.

The analyses we have experimented with are interprocedural alias analysis and def-use analysis. The

analyses are described using the speci�cation language provided by Z1 and Z1 automatically generates

analyzers to perform those analyses.. It is important to realize, when considering the results below, that

these analyses occur over abstract domains that represent function pointers, memory addresses, integers,

etc. In other words, these are complex and thus very time consuming.

The test programs|\matmul" (matrix multiplication), \gauss" (Gauss elimination), \simplex", and

\amoeba", are widely used numerical programs. The programs, gauss, simplex, and amoeba are examples

from a book of numerical algorithms [39]. TIS is a program from the Perfect Benchmarks [40]. The

\wator" program that simulates a ecological system of �sh & shark uses a large number of arrays and is

used for testing generated analyzers in Z1. The others are test programs of our own.

The algorithms that we compare are: the algorithm that chooses a node randomly from the worklist,

29

Simple Queue Depth Leading Least Guided-

Test �rst nodes recently entailment

program worklist worklist ordering �rst evaluated algorithm

testme 640

2

640 552 619 627 179 (89

3

)

(7

4

95

5

21

6

) 0.11

7

0.10 0.08 0.08 0.11 0.03

tune 1212 1213 1254 1220 1196 356 (177)

(8 124 15) 0.18 0.18 0.20 0.18 0.19 0.06

dep3 2382 2386 2050 2320 2399 1115 (550)

(9 143 13) 0.33 0.32 0.26 0.29 0.32 0.14

t2 4114 4108 3873 4203 3993 1200 (629)

(14 357 33) 1.14 1.08 1.01 1.08 1.06 0.21

matmul 7840 7817 10196 7647 7666 2736 (1357)

(18 513 58) 2.31 2.21 2.56 2.12 2.19 0.47

gauss I 42311 41946 37039 41986 43377 12940 (6821)

(34 1863 81) 16.22 14.53 12.19 14.17 16.59 5.30

simplex 26451 26367 42034 27984 26762 3374 (1766)

(58 4662 221) 37.21 36.05 46.52 55.30 37.27 22.46

gauss II 19928 19928 20412 18808 19570 2478 (1260)

(54 4710 172) 36.39 36.29 38.04 36.17 36.34 24.56

wator 351912 354167 194340 284196 336007 17446 (87014)

(45 3467 166) 196.19 194.35 93.27 196.37 252.01 68.08

TIS 343743 342057 153688 308144 304660 163068 (81026)

(102 6028 410) 219.54 225.38 83.19 178.15 214.36 88.12

amoeba 615713 614656 457552 579028 582641 530715 (271291)

(36 6062 221) 521.41 553.35 575.47 676.19 467.39 369.55

1 number of total iterations.

2 number of incomplete iterations.

3 number of procedures in the program.

4 number of expressions in the program.

5 number of places in the program.

6 cpu time (sec).

Table 1: Alias analysis

the algorithm that uses a depth-�rst ordering, the \leading nodes �rst" algorithm, and the algorithm

that chooses the node which has been least recently evaluated. The last algorithm was suggested to us

by Professor Daniel Weise at Stanford University.

7.2 Results and Discussion

The experimental results of alias analysis plus constant propagation

8

, and def-use chain analysis are

shown in Table 1 and 2, respectively. There are two metrics: the total number of iterations (evaluations)

and cpu execution time, shown in the upper and lower part respectively. The number of iterations is

greatly reduced by our method. In addition, because the guided-entailment method uses the suspended

evaluation strategy, some incomplete evaluations that simply set up prestates and put successors on the

8

constant propagation is automatically accomplished in the abstract interpretation framework

30

Simple Queue Depth Leading Least Guided-

Test �rst nodes recently entailment

program worklist worklist ordering �rst evaluated algorithm

testme 656 656 567 635 643 194 (96)

(7 95 21) 0.12 0.12 0.10 0.11 0.13 0.04

tune 1328 1329 1448 1298 1272 356 (177)

(8 124 15) 2.47 2.49 3.12 2.41 2.47 0.54

dep3 2398 2402 2066 2337 2415 1115 (550)

(9 143 13) 0.34 0.34 0.28 0.34 0.38 0.15

t2 4595 4591 4388 4591 4543 1255 (629)

(14 357 33) 1.22 1.16 1.12 1.20 1.23 0.21

matmul 8798 8775 11143 8553 8541 2736 (1357)

(18 513 58) 2.47 2.49 3.12 2.41 2.47 0.54

gauss I 53278 50986 43139 52984 54249 14795 (7340)

(34 1863 81) 24.20 22.39 18.48 22.16 25.09 6.40

simplex 33379 26367 48870 27984 33562 3439 (1766)

(58 4662 221) 51.31 36.05 48.39 36.18 51.40 28.27

gauss II 20464 20464 20799 19277 20135 2600 (1320)

(54 4710 172) 41.48 41.10 39.41 39.41 41.25 28.02

wator 647981 354167 203460 284196 535736 226806 (112612)

(45 3467 166) 460.42 194.35 107.44 196.37 532.07 98.44

TIS 405156 342057 205965 308144 357899 192134 (94742)

(102 6028 410) 278.59 224.38 116.03 178.15 286.04 109.08

amoeba 1208327 1230333 1029806 985281 1071368 1036347 (518305)

(36 6062 221) 1013.25 1079.15 958.09 939.19 1860.48 718.20

Table 2: Def-use chain analysis

worklist add to the iteration count arti�cially. Therefore, execution time gives a more precise comparison.

The numbers of procedures, expressions, and places in each program are listed in the tables.

The performance of our algorithmvaries among examples. Generally speaking, for complex programs,

the ordering derived by the guided entailment algorithm will lead to the �xpoint much more quickly

because the ordering without guidance may cause many ine�ective evaluations. Note that the complexity

of a program lies mainly in the structure of the program (e.g., cyclic call graphs and dynamic allocations).

For numerical programs like simplex and amoeba, although there are many nested loops and expressions,

the control-
ow is simple and well structured (i.e., no dynamic allocation and few procedure calls), and

therefore the speedups are not so impressive. In contrast, for programs with many procedure calls and

much dynamic allocation (e.g., t2), the speedup are very signi�cant.

Judging from the experimental results, our algorithm consistently outperforms the others. On the

average, our algorithm is more than two times faster than the other algorithms. The experimental

results also indicate that the performance of our algorithm is always better than the others for these

test programs and analyses. None of the other algorithms is consistently better than the others because

they are somewhat in
exible; they perform well for some examples, while they are ine�cient for other

examples. In contrast, our algorithm seems to order the evaluations e�ciently for all these test programs.

31

8 Conclusion

The paper presents a practical contribution to abstract interpretation which is an important compiler

optimization technique. We propose the entailment model for computing the �xpoints that arise in com-

plex program analysis based on abstract interpretation. Then a guided-entailment algorithm for e�cient

computation of these �xpoints is presented. This algorithm is applicable to any abstract interpretation

over domains of �nite height and can solve complex inter- and intra- procedure program analysis without

requiring the control
ow graph a priori.

The entailment graph is constructed during analysis; it is precise and thus results in an e�cient

analysis. The strategies that underlie the algorithm are waiting for all successors, leading node �rst,

suspended evaluation, and back edge �rst. Some strategies are similar to those embodied by interval

analysis algorithms. Based on the strategies, our algorithm exploits local knowledge of the entailment

graph to determine dynamically an e�ective order of evaluations. An iterative algorithm based on the

model is designed and implemented. Experiments have been conducted to show the model is
exible

and the associated algorithm is e�cient. Results indicate that, on the average, it is more than two times

faster than the applicable algorithms to which we compared it. The algorithm can e�ciently handle

complicated program analyses in the presence of di�cult language constructs in a uni�ed approach.

That is, it is possible to e�ciently compute general program analysis based on abstract interpretation,

approaching the e�ciency of data
ow methods that use interval analysis.

Although the algorithm developed in the paper is sequential, it can be easily adapted for parallel

computation; there is inherent parallelism in the model. In particular, all the ready nodes on the worklist

can be evaluated in parallel. In addition, all the nodes in the working set during loop propagation can

also evaluated simultaneously. The successors of a node which are independent of one another in the

functional F can be activated simultaneously.

References

[1] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni�ed lattice model for static

analysis of program by construction or approximation of �xpoints. In Conference Record of the

ACM 4th Symposium on Principles of Programming Languages, pages 238{252, 1977.

[2] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In Confer-

ence Record of the 6th ACM Symposium on Principles of Programming Languages, pages 269{282,

1979.

[3] Samson Abramsky and Chris Hankin. Abstract Interpretation of Declarative Languages. Ellis

Horwood Series in Computers and Their Applications, 1987.

[4] Williams Ludwell Harrison III. The interprocedural analysis and automatic parallelization of scheme

programs. Lisp and Symbolic Computation: An International Journal, 2(3/4):179{396, 1989.

[5] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory and practice of strictness analysis for higher

order functions. In Programs as Data Objects, Lecture Notes in Computer Science 217, pages 43{62.

Springer-Verlag, 1986.

32

[6] Neil D. Jones. Flow analysis of lazy higher-order functional programs. In Samson Abramsky and

Chris Hankin, editors, Abstract Interpretation of Declarative Languages, chapter 5. Ellis Horwood

Series in Computers and Their Applications, 1987.

[7] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers - Principles, Techniques, and Tools. Addison

Wesley, Reading, MA, 1986.

[8] John B. Kam and Je�rey D. Ullman. Global data
ow analysis and iterative algorithms. Journal

of ACM, 23(1):158{171, 1976.

[9] A. Aho and J. Ullman. Node listings for reducible
owgraphs. Journal of Computing System

Science, 13:286{299, 1976.

[10] S. Horwitz, A. Demers, and T. Teitelbaum. An e�cient general iterative algorithm for data
ow

analysis. Acta Informatica, 28:679{694, 1987.

[11] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal of Computing, 2(1):146{

159, 1972.

[12] Susan L. Graham and Mark Wegman. A fast and usually linear algorithm for global
ow analysis.

JACM, 23(1):172{202, January 1976.

[13] M. S. Hecht and J. D. Ullman. A simple algorithm for global data
ow problmes. SIAM Journal of

Computing, 4(4):519{532, December 1977.

[14] F.E. Allen and J. Cocke. A program data
ow analysis procedure. Communications of ACM,

19(3):137{147, August 1976.

[15] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in optimiza-

tion. ACM Transaction on Programming Language and System, 9(3):319{349, 1987.

[16] Olin Shivers. Control
ow analysis in Scheme. In ACM SIGPLAN Conf. on Programming Language

Design and Implementation, pages 164{174, 1988.

[17] W. Landi and B. G. Ryder. Pointer-induced aliasing: a problem classi�cation. In ACM 18th

Symposium on Principles of Programming Languages, pages 93{103, 1990.

[18] Williams Ludwell Harrison III and Zahira Ammarguellat. A program's eye view of Miprac.

In 5th Workshop on Languages and Compilers for Parallel Computing, pages 339{354, 1992.

YALEU/DCS/RR-915.

[19] Kwangkeun Yi and Williams Ludwell Harrison III. Automatic generation and management of inter-

procedural data
ow analysis. In ACM 20th Symposium on Principles of Programming Languages,

1993.

[20] Paul Hudak. A Semantic Model of Reference Counting and its Abstraction. In S. Abramsky and

C. Hankin, editors, Abstract Interpretation of Declarative Languages. Ellis Horwood Limited, 1987.

[21] Li-Ling Chen and Williams Ludwell Harrison III. E�cient computation of �xpoints that arise

in complex program analysis based on abstract interpretation. Technical Report 1245, Center for

Supercomputing Research and Development, University of Illinois at Urbana-Champaign, July 1992.

[22] Neil Jones and Alan Mycroft. Data
ow analysis of applicative programs using minimal function

graphs: abridged version. In ACM 13th Symposium on Principles of Programming Languages, pages

296{306, 1986.

[23] F. E. Allen. Control
ow analysis. In Sigplan Notice, July 1970.

[24] R. Cytron, J. Ferrante, and B. K. Rosen. An e�cient method of computing static single assignment

form. In ACM 16th Symposium on Principles of Programming Languages, pages 25{35, 1989.

33

[25] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence graphs and compiler op-

timizations. In ACM 8th Symposium on Principles of Programming Languages, pages 207{218,

1981.

[26] R. A. Ballance, A. B. Maccabe, and K. J.Otternstein. The program dependence web: A representa-

tion supporting control-, data-, and demand-diven interpretation of imperative languages. In ACM

SIGPLAN Conf. on Programming Language Design and Implementation, pages 257{271, 1990.

[27] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill, and Paul Stodghill. Dependence

ow graphs: an algebraic approach to program dependencies. InACM 17th Symposium on Principles

of Programming Languages, pages 67{78, 1990.

[28] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic Construction of Sparse Data Flow

Evaluation Graphs. In ACM 18th Symposium on Principles of Programming Languages, pages

55{66, 1991.

[29] Chris Clack and Simon L. Peyton Jones. Strictness analysis - a practical approach. In IFIP

Symposium on Functional Programming Languages and Computer Architecture, Lecture Notes in

Computer Science 201, pages 35{49, 1985.

[30] Chris Martin and Chris Hankin. Finding �xed points in �nite lattices. In Proc. 3rd International

Conf. on Functional Programming Languages and Computer Architecture, Lecture Notes in Com-

puter Science 274, pages 426{445. Springer-Verlag, 1987.

[31] Sebastian Hunt and Chris Hankin. Fixed points and frontiers: a new perspective. Journal of

Functional Programming, 1(1):91{120, 1991.

[32] Alan Mycroft. Abstract Interpretation and Optimising Transformations for Applicative Programs.

PhD thesis, University of Edinburgh, 1981.

[33] G. L. Burn. Abstract Interpretation and the Parallel Evaluation of Functional Languages. PhD

thesis, University of London, 1987.

[34] D.A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and

Bacon, Inc., 1986.

[35] Arun Lakhotia. Constructing call multigraphs using dependence graphs. In Conference Record of

the 6th ACM Symposium on Principles of Programming Languages, pages 164{174, 1993.

[36] J.-D. Choi, Michael Burke, and Paul Carini. E�cient
ow-sensitive inerprocedural computation of

pointer-induced aliases and side e�ects. In ACM 20th Symposium on Principles of Programming

Languages, pages 232{245, 1993.

[37] Mark N. Wegman and Frank K. Zadeck. Constant Propagation with Conditional Branches. ACM

Transaction on Programming Language and System, 13(2):181{210, April 1991.

[38] B. G. Ryder and M. Paull. Elimination algorithms for data
ow analysis. ACM Computing Surveys,

18(3):277{315, 1986.

[39] W. T. Vertterling et al. Numerical Recipes: Example Book (C). Cambridge University Press, 1988.

[40] M. Berry et al. The Perfect Club Benchmarks: e�ective performance evaluation of supercomputers.

Int'l. Journal of Supercomputer Applications, 3(3):5{40, August 1989.

34

