Proofs about a Folklore Let-Polymorphic Type
Inference Algorithm

OUKSEH LEE and KWANGKEUN YiI
Korea Advanced Institute of Science and Technology

The Hindley/Milner let-polymorphic type inference system has two different algorithms: one is
the de facto standard Algorithm W that is bottom-up (or context-insensitive), and the other is
a “folklore” algorithm that is top-down (or context-sensitive). Because the latter algorithm has
not been formally presented with its soundness and completeness proofs, and its relation with the
W algorithm has not been rigorously investigated, its use in place of (or in combination with) W
is not well founded. In this article, we formally define the context-sensitive, top-down type infer-
ence algorithm (named “M?”), prove its soundness and completeness, and show a distinguishing
property that M always stops earlier than W if the input program is ill typed. Our proofs can
be seen as theoretical justifications for various type-checking strategies being used in practice.

Categories and Subject Descriptors: D.3.3 [Programming Languages|: Language Constructs
and Features—data types and structures; F.3.3 [Logics and Meaning of Programs]: Studies
of Program Constructs—type structure

General Terms: Algorithms, Languages, Theory
Additional Key Words and Phrases: Type error, type inference algorithm

1. INTRODUCTION

Algorithm W, which is the standard presentation of the Hindley/Milner let-poly-
morphic type inference system, fails late if the input program has a type error.
Because the algorithm fails only at an application expression where its two subex-
pressions (function and argument) have conflicting types, an erroneous expression
is often successfully type-checked long before its consequence collides at an applica-
tion expression. This “bottom-up” Algorithm W thus reports the whole application
expression as the problem area, implying some of its subexpressions are ill typed.
Such a large type-error message does not help the programmer to find the cause of
the type problem.

A different type inference algorithm, which has been used in an early ML com-
piler [Leroy 1993], can cure this problem. This folklore algorithm carries a type

This work is supported in part by Korea Science and Engineering Foundation grant KOSEF
961-0100-001-2, by Korea Ministry of Information and Communication grant 96151-1T2-12, by
Samsung Electronics Corp., by LG Information & Communications, and by KAIST Center for
Artificial Intelligence Research.

Authors’ addresses: Department of Computer Science, KAIST, Taejon 305-701, Korea; email:
{cookcu; kwang}@cs.kaist.ac.kr.

Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright /server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

2 . O. Lee and K. Yi

0 then 1 else n *(fac(n=1));;

[
-
Hh
B

]

#let rec fac n
Toplevel input:
>let rec fac n = if n = 0 then 1 else n *(fac(n=1));;
S mmmeaaaaaccccsaaaaaaccccscssaaaaaaaaanan
This expression has type int -> int,

but is used with type bool -> int.

(a) from W (CamlLight 0.71)

#let rec fac n = if n = 0 then 1 else n *(fac(n=1));;
Toplevel input

>let rec fac n = if n = 0 then 1 else n *(fac(n=1));;
N -
Expression of type ’a -> ’a -> bool

cannot be used with type ’a -> ’a -> int

(b) from M (CamlLight 0.61)

Fig. 1. Different type-error messages from W and M.

constraint (or an expected type) implied by the context of an expression down to
its sub-or-sibling expressions. For example, for an application expression “e; es”
with a type constraint, say of int, the type constraint for e; is @« — int and the
constraint for es is the type that the a becomes after the type inference of e;. For a
constant or a variable expression, its type must satisfy the type constraint that the
algorithm has carried to that point. Because of this “top-down” nature we name
this algorithm “M.”

In this article we formally define algorithm M, prove its soundness and com-
pleteness, and show that it finds type errors earlier than V. This property implies
that this algorithm in combination with W can generate strictly more informative
type-error messages than either of the two algorithms alone can.

As an example to show the difference of the two algorithms, see Figure 1. The
program is a factorial function whose recursive call is mistakenly “fac(n=1),” in-
stead of “fac(n-1).” Algorithm W (CamlLight 0.71 [Leroy 1995] and SML/NJ
0.93 [MacQueen and Appel 1993]) reports the whole definition as the problem area
because the algorithm fails to unify the argument type bool inferred from the re-
cursive call “fac(n=1)” with the type int inferred from the argument use “if n =
0---” On the other hand, algorithm M (CamlLight 0.61 [Leroy 1993]) pinpoints
the operator “=” as the problem spot. This exact error message is possible because
the type constraint of the function’s argument is int when the argument “(n=1)"
of the recursive call is type-checked.

2. THE M ALGORITHM
2.1 Overview

Algorithm M carries a type constraint from the context of an expression and stops
when the expression cannot satisfy the current type constraint. Consider the fol-
lowing expression:

€3 eq

—_—~—
(fn x => x+1) ((fn y => if y then true else false) false)
[——

e1 €2

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 3

The expression e; must be a function expression; thus M infers its type with the
constraint @ — (. The inference will succeed with substitution {o —int,3 —int}.
This imposes the constraint that the argument expression e; must be type int.
Thus M infers the type of e with the constraint int. This, in turn, makes M
infer the type of eg with the constraint v — int. But the then-branch expression
in the function’s body is boolean; thus M stops at the true expression with a type
error.

One characteristic of M is that a type constraint that is derived from the cur-
rent context dominates in subsequent steps. For example, given an expression
“f(false,1,2)” where the type of the f is a X a X a — a, M reports that the
1 must have the bool type, because the constraint from the “false” expression
forces the subsequent sibling expressions to have the same type. In comparison,
Johnson and Walz’s unification algorithm [Johnson and Walz 1986] reports that the
“false” expression must have the type int, because it selects the most “popular”
types if multiple, conflicting types are bound to a type variable.

2.2 Notation

We use conventional notation. Vector & is a shorthand for {ay, -, @, }, and Va.7
is for VYag -+ - ay,.7. Equality of type schemes is up to renaming of bound vari-
ables. For a type scheme o = Vd.r, the set ftv(o) of free type variables in o is
fto(T) \ @, where ftv(T) is the set of type variables in type 7. For a type envi-
ronment I', fto(I') = U, ¢ gomr fiv(I(2)). A substitution {r;/a; |1 <7 <n} sub-
stitutes type 7; for type variable «;. We write {7/a} as a shorthand for a sub-
stitution {7;/a; |1 < ¢ < n}, where & and 7 have the same length n and Ra& for
{Ray, -+, Ray}. For a substitution S, the support supp(S) is {a | Sa # a}, and
the set itv(S) of involved type variables is {«| 8 € supp(S),a € {8} U ftv(SB)}.
For a substitution S and a type 7, ST is the type resulting from applying every
substitution component 7;/a; in S to 7. Hence, {}7 = 7. For a substitution S
and a type scheme o, So = V(.5{G3/a}r, where 3N (itv(S) U ftv(c)) = 0. For a
substitution S and a type environment I'; ST = {x — So |z — o € T'}. The com-
position of substitutions S followed by R is written as RS, which is {R(S«a)/a|a €
supp(S)} U{Ra/a|a € supp(R)\supp(S)}. Two substitutions S and R are equal
if and only if S = Ra for every « € supp(S) U supp(R). For a substitution P
and a set of type variables V, we write P}, for {r/a € P | a € V}. The no-
tation Y@.7’ > 7 means that there exists a substitution S such that S7/ = 7 and
supp(S) C @. We write I'+ z:0 to mean {y — o' |z #£y,y— o €T} U{x — o}.
Closr(T) is the same as Gen(I',7) in Damas and Milner [1982], i.e., V&.7, where

a= feo(r) \ fto(D).
2.3 Algorithm Definition

The source language, its Hindley/Milner-style let-polymorphic type system, and
Algorithm W are shown in Figure 2. Algorithm M is shown in Figure 3.
Algorithm M returns a substitution from three components: an expression, a
type environment, and a type constraint. The inferred type of the expression is
achieved by applying the result substitution to the type constraint of the expression.
The type constraints are just types. Note that the algorithm does not unify types
at application expressions. Instead, it unifies at constant, variable, and lambda

4 . O. Lee and K. Yi

Abstract Syntax

Ezpr e == (O constant
| = variable
| Az.e function
| ee application
| let x=e in e
| fix f Az.e
Type T n= 1 constant type
| @ type variable
| 771 function type
TypeScheme o = 7 |Va.o

TypeEnv I € Va3 TypeScheme type environment

(CON) I O
I(z) -1

(VAR) Traor

(FN) F+axmbe:m

P'FXze:m1 — 1
I'ter:m1—m T'kex:m

(APP) T'kepex:m

(LET) T'kei:m T+ Closp(mi) Fex:mo
I'Hlet x=€e1 in ez : 7o

(FIX) '+ fitkXxe:T

I'Ffix f Aze: T

W: TypEnv X Expr — Subst X Type
w(r, 0) = (id,¢)

W(T,) = (id,{3/a}r) where I'(z) = Va.7, new 3
W(T, Ax.e) = let (S1,71) =W(+x:5,€), new 3

in (51,518 — 11)
W(T, e1 e2) = let (S1,71)=W(T,e1)

(S2,m2) = W(S1T, e2)
S3 =U(S211, 72 — (), new
in (S3SQSl,S3ﬂ)
W(T',let z=e1 in e3) =
let (Sl,Tl) = W(F,el)
(S2,7m2) = W(S1T' + : Closgs, 1 (11), €2)
in (S251,72)
W(T, fix f Az.e) = let (S1,71) =W + f: 8, A\z.e), new 3
So =U(S18,711)
in (S251,85271)

Fig. 2. The language, its type inference rule, and Algorithm W. Every new type variable is
distinct from each other, and the set New of new type variables introduced at each recursive call
to W(T, e) satisfies New N ftv(T") = 0.

expressions.

Consider the variable case (M.2). The current type constraint p and the z’s type
I'(z) must agree: U(p,{F/@}r). For the lambda case (M.3), the first thing is to
check if the current type constraint p is a function type. The unification

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 5

M: TypEnv X Ezpr x Type — Subst

M(T,O,p) = U(p, L) (M.1)
M(T,z,p) = U(p,{B/@}7) where T'(z) = Va.r, new 3 (M.2)
M(T, Azx.e, p) = let S1 =U(p,B1 — B2), new (1, B2 (M.3)
So :M(S1F+x: Slﬂ1,6,51ﬂ2) (M4)
in S2S51
M(T,er1 ea,p) = let S1 =M(T,e1,8— p), new 3 (M.5)
So = M(S1T, ez, S18) (MG)
in S2S51
M(T,let z=e€1 in ez,p) =
let S1 = M(T,e1,B8), new (M.T)
So = M(S1T + x: Closg, r(S18), e2, S1p) (M.8)
in S5
M(T, fix f dz.e,p) = M(T + f:p,Az.€,p) (M.9)

Fig. 3. Algorithm M. Every new type variable is distinct from each other, and the set New of new
type variables introduced at each recursive call to M(T, e, p) satisfies New N (ftv(T) U ftv(p)) = 0.

U(p, b1 — B2), new B, B2 (M.3)

does this job. For the application case (M.5), the current type constraint p becomes
the range part of the new constraint 5 — p for the function expression es:

M(Faelaﬁﬁp)v new ﬂ (M5)

The constraint for the argument expression es is the type S13. For the let case
(M.T), the type constraint for the binding expression e; is null,

M(Faehﬁ)v new ﬁa (M?)

because no constraint about the type of ey is available. The constraint for the let-
body ey is the type S1p. For the fix case (M.9), the constraint of the expression
Az.e is the same as the given constraint p.

3. SOUNDNESS AND COMPLETENESS

Algorithm M is sound and complete with respect to the let-polymorphic type
inference system of Figure 2.

THEOREM 1 (SOUNDNESS OF M). Let e be an expression and I' be a type en-
vironment. If there exists a type p such that M(T,e,p) = S, then ST F e : Sp.

The proof uses Lemma 1 and Lemma 2.

LEMMA 1 [DAMAS AND MILNER 1982]. If S is a substitution and T' F e : T,
then ST'Fe: ST.

LEMMA 2 [MILNER 1978]. Let S be a substitution, T’ be a type environment, and
7 be a type. SClosp(t) = Closgr(S'T), where S' = S{G/a}, & = ftv(r) \ ftv(T)
and E s mew.

Proor oF THEOREM 1. We prove by structural induction on e.
—case (): Sp=St=1.So STHF () : Sp by (CON).

6 . O. Lee and K. Yi

—case x: Sp = S{f/d@}r < ST'(z). By (VAR), ST Iz : Sp.
—case A\zr.ce:
(1) By induction, (M.4) implies
5251F —+ x: 5251/81 Fe: 525152.
(2) By (FN), S251T F Az.e : S35181 — 5251 09; that is, by (M.3),
SQSlF FAz.e: SQSlp.
—case e es:
(1) By induction, (M.5) implies S1I'Fe; : S1(6 — p). By Lemma 1, we can
apply S to both sides.
5251F [[Sgslﬁ — SQSlp
(2) By induction, (M.6) implies
SgSﬂ“ H €9 Sgslﬂ.
Hence by the (APP) rule, SoS1TF €1 eg : S2.51p.
—case let z=¢; in ey Let S} = So{f/a}, where @ = ftv(S1) \ ftv(S1T), and
let B be new type variables.

(1) By induction, (M.7) implies S;T'F e; : S18. By Lemma 1 we can apply S5
to both sides.

SéSlF = (A SéSlﬁ

(2) By induction, (M.8) implies S351T 4 x: S5 Closg,r(S18) F ez : S2S1p. By
Lemma 2 and the fact that S55,T = S251T" because S} differs from Ss only on
nonfree variables of ST,

SéSlI‘ + x: ClosSéle(Séslﬂ) F €9 SQSlp.
Hence by the (LET) rule, S551T F let z=e; in ey : S35 p; that is,
S5S1I'-1let z=e; in ey : SQSlp.

—case fix f Ax.e: Let S = M(T + f:p, Az.e,p).
(1) By induction, (M.9) implies

ST+ f:Spt Az.e: Sp.
(2) By (FIX), ST fix f Az.e: Sp. O

Definition 1 [Damas and Milner 1982]. Let o and o’ be type schemes such that
o = Va.r and o/ = V3.7, If there exists a substitution R such that supp(R) C &
and 7' = R, and fitv(o) C ftv(o'), we say that ¢’ is a generic instance of o, and
we write o > ¢’. We also write I' > I if and only if dom(T') = dom(I’) and
L(z) » V() for all z € dom(T).

THEOREM 2 (COMPLETENESS OF M). Let e be an expression, and let T' be a
type environment. If there exist a type p and a substitution P such that PT' e : Pp,
then M(T',e,p) = S is defined, and there exists a substitution R such that Ply,,,
= (RS)|yew where New is the set of new type variables used by M(T', e, p).

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 7

Completeness means that if an expression e has a type 7 that satisfies a type
constraint p (i.e., IP.T = Pp), then algorithm M for the expression with the con-
straint p succeeds with substitution .S such that the result type Sp subsumes 7 (i.e.,
the principality, 3R.7 = R(Sp)).

The completeness proof uses Lemmas 3-7.

LEMMA 3. Let S be a substitution, I' be a type environment, and T be a type.
Then S Closp(7) = Clossr(ST).

PROOF. See Appendix A. [J

LEMMA 4 [DAMAS AND MILNER 1982]. LetT' and I be type environments such
that T =T". If TV Fe: 7, thenT ke : 7.

LEMMA 5. If S =U(7,7") then itv(S) C ftv(T) U ftu(r').
PRrROOF. By the definition of the unification algorithm [Robinson 1965]. [

LEMMA 6. If S = M(T, e, p) then itv(S) C fto(T') U ftv(p) U New, where New is
the set of new type variables used by M(T, e, p).

PRrROOF. See Appendix B. [
LEMMA 7. If itv(S)N A =0, then (RS)|, = R},S.
PROOF. See Appendix C. O

PrOOF OF THEOREM 2. We prove by the structural induction on e. For a rigor-
ous treatment of new type variables, we assume that every new type variable used
throughout algorithm M is distinct from each other, and moreover, the set New of
new type variables used by each call M(T, e, p) satisfies New N (ftv(T) U ftv(p)) = 0.

—case (): Let the given judgment be PT' F () : Pp. By (CON), Pp = . Because
P. =1 = Pp, P is a unifier of p and ¢«. M(T, O, p) succeeds with the most
general unifier S of p and ¢ (M.1). Hence there exists a substitution R such that
P =RS.

—case x: Let the given judgment be PI' - x : Pp, and let 5 be the new type
variables used at (M.2).

First, we prove that a unifier of p and {3/@}7 exists, where I'(z) = V@.7. By the
(VAR) rule,

PT(x) > Pp. (1)
Let 7 be type variables such that (ftv(I') U ftv(p) U ito(P) U 8) N5 = 0. Then
PI(z) = PYa.r = V7.P{7/a}r. 2)
From (1) and (2), there exists a substitution B such that supp(B) C 4 and
BP{7/@}r = Pp. 3)

The right-hand side of (3) gives us

Pp = P{/Blp because fiv(p) N = 0
= BP{’y'/,é_”}p because supp(B) C v and 7N (itv(P) U ftv(p)) = 0.

8 . O. Lee and K. Yi

The left-hand side of (3) gives us
BP{y/a@}r = BP{3/3}{3/d}T because §N fiv(Va.r) = 0.

Thus BP{7/5} is a unifier of p and {#/d}r. Note that (BP{?/B})H is also a

unifier because (ftv(p) U ftv({F/a@}7)) N5 = 0. That is, (M.2) succeeds with the
most general unifier S of p and {3/}, and there exists a substitution R such
that

RS = (BP{7/G})l;. (4)
Then
(RS)5 = (BP{T/G})su5
(BP)HUB
(Bl5P)tz by Lemma 7 and because itv(P) Ny = ()
= Plz because supp(B) C 7.

—case Ax.e: Let the given judgment be PI' - Az.e : 11 — 75 where 71 — 75 = Pp
and New be {01, B2} U New;, where 31 and (2 are the new type variables used
at (M.3) and where New; is the set of the new type variables used by
M(Sll“ + x: 5101, e, 5162) at (M4)

First, we prove the unification U(p, 31 — [2) at (M.3) succeeds. Let P’ be
{r1/B1,72/B2} U P}, 5,,- Then P’ is a unifier of p and 81 — B because

Pp = Pp because {31, B2} N ftv(p) = 0
=T1—T2
= P/(ﬁl - 52)'
Thus there exists a substitution R; such that
RS, =P (5)

By the (FN) rule,
Pl +ax:mbe:mn. (6)

To apply induction to M(SiT" + z:51051,e,5182) at (M.4) and (6), we must
prove that there exists a substitution P; such that 7 = P;.S18s and PI'+x: 1 =
Py(S1T + x: 5161). Such Py is the Ry at (5) because

R1S1062 = P'By by (5)
and
Rl(Slf—i—x:Slﬂl) = P’(I‘—i—x:,@l)

Pl +a:m because {01, B2} N fto(T') = (.

Thus by induction, (M.4) and (6) imply that there exists a substitution Ry such
that

Rilyew, = (B252) new, - (7)

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 9

Let R = R5. Then

(RS)4New = (R25251)4New
= (R2S25){new, Mg, .1 (8)
Note that tv(S1) N New; = @ because itv(S1) C ftv(p) U {B1, B2} by Lemma 5,
ftv(p) N New; C ftv(p) N New = 0, and {01, B2} N New; = () by the assumption

that all new type variables are distinct from each other. Therefore, by Lemma 7,
Eq. (8) becomes

(R2925 M wew, Mgy 51 = (R252)knew, S5, 5.3
= (RﬂNewl Sl)*{ﬂ],ﬂg} by (7)
= ((Rlsl)JfNewl)Jr{ﬁl 8o} by Lemma 7
= (RlslﬂNew
= Pquw by (5)
= Plyew because {01, B2} C New.

—case e; ey: Let the given judgment be PT' F ey es : Pp and New = {8} U New;U
Newg, where 3 is the new type variable used at (M.5) and New; and Newy
are the sets of the new type variables used by M(T',e;, 5 — p) at (M.5) and
M(S1T, e0,518) at (M.6), respectively. By the (APP) rule, there exists a type
7 such that

PTbte :7— Pp (9)
and
Plkeg:T. (10)

Let P' = {r/B} U Plg,. Then 7 — Pp = P'(3 — p) and PI'= P'I' because
B & ftv(T') U ftv(p). Hence, applying induction to M(T",e1, 8 — p) at (M.5) and
(9), there exists a substitution R; such that

P = (R1S1)
Similarly, we can apply induction to M(S1T, ez, S15) at (M.6) and (10) because
T = P'8=R1518 because 8 ¢ New; and by (11)

New; New; * (11)

and

PT = PT because (3 ¢ ftu(T")
= RS because ftv(T') N New; = @) and by (11).

Thus by induction, there exists a substitution Ry such that

R = (R252)}

Newg News *

Let R = Ry. Then
(RSHNew = (R25251)*New
= ((RQSQSlﬂNcwg)*New]U{ﬂ}‘ (13)

Note that #tw(S1) N Newg =0 because itv(S1) C ftv(T') U fiv(p) U New; U {5}
by Lemma 6, (ftv(T")U ftv(p)) N Newe C (ftv(T)U ftv(p)) N New =0, and

10

O. Lee and K. Yi

(New; U{B}) N Newg = () by the assumption that all new type variables are dis-
tinct from each other. Therefore, by Lemma 7, Eq. (13) becomes

((R2S251)*Newg)JfNe'uu u{sy — ((RQSQ)JfNer Sl)JfNew; u{s}

= (RHNewgSl)*Newju{ﬁ} by (12)

= (R1S1)New by Lemma 7

= ((Rlsl)JfNew1)JfNew2U{/3}

= P/*New by (11)

= Plyow because 3 € New.

case let x=e; in ey: Let the given judgment be PI' - 1let x=e; in ey : Pp
and New = {8} U New; U Newg, where 3 is the new type variable used at (M.7)
and where New; and News are the sets of the new type variables used by
M(T,eq,8) at (M.7) and M(S1T + x: Closs,r(5153), e2, S1p) at (M.8), respec-
tively. By the (LET) rule, there exists a type 7 such that

Pl'key:T (14)
and
PT + x: Clospr(T) ez : Pp. (15)

Let P = {r/6} U PJ[{ﬂ}. Then 7 = P'S and PT' = P'T because 8 ¢ ftv(T).
Hence by induction, (M.7) and (14) imply that there exists a substitution R;
such that

Plyew, = (R151)] (16)

New; New; *

Note

Clospr(1) = Clospr(P'f3)
= Closg,s,r(R1513) by (16) and (ftv(T') U {8}) N New; =0
R; Closg,r(518) by Lemma 3

and PT' = P'T' = R 51T because New; N ftv(T') = (). Thus
PT + x: Clospr(7) < R1(S1T + a: Closs,r(515)).
By Lemma 4 and (15),
R1(S1T + x: Closg,r(S18)) F e : Pp.

A

Because R1S1p = P'p = Pp,
Ry (51F + x: ClOSSlF(Sl,@)) Fey: RlSlp. (17)

Thus by induction, (M.8) and (17) imply that there exists a substitution Rs
such that

Rifyew, = (R252)} (18)

News Newg*

Let R = Ry. Then, using (16) and (18) and following exactly the same steps in
the proof for the application expression, we have

(RS”New = PJfNew'

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 11

——case fix f Ax.e: Let the given judgment be PI' fix f Az.e : Pp. By the
(FIX) rule,

PI'+ f: Ppt Ax.e: Pp.
By induction, M(T'+ f: p, Ax.e, p) succeeds with a substitution S, and there exists
a substitution R such that P}y, . = (RS)}y,,, where New is the set of new type
variables used by M(T'+ f: p, Az.e, p) at (M.9). By (M.9), M(T,fix [Az.e,p)
also succeeds with the S and P}y, = (RS)yew- O

4. M STOPS EARLIER THAN W DOES

We model the behaviors of the two type inference algorithms by their call strings.
The call string of W(T', e) (written [W(T,e)]) is constructed by starting with the
empty call string € and appending a tuple (I'y,e;)? (respectively, (1, e1)*) when-
ever W(T'q,e1) is called (respectively, returned). The d or u superscript indicates
the downward or upward movement of the stack pointer when the inference al-
gorithm is recursively called or returned. When the algorithm stops because of a
unification failure the call string does not have matching returns (u tuples) for some
calls (d tuples). We similarly define call strings for algorithm M.
For example, given an expression

e
—
((fn x=>x) 2),

—_———
e1

the call string [W(T, e)] is
(T,)T, e)U T +x: B,x)4T +x: 8,%)(, e1)“(T,2)4(T, 2)4(T,)™
For the ill-typed expression (1 2), the call string is
(T, 1 2)4T,1)4T, 1), 2)4T,2)"

Note that tuple (I';1 2)* is missing because the algorithm stops because of the
unification failure at the application.

Note that call strings [W(T, e)] and [M(T, e, p)] are always finite because, for any
expression e, type environment I', and a type p, at most one call to W (respectively,
M) occurs for each subexpression of e during W(T, e) (respectively, M(T, e, p)).

We say that “W (respectively, M) fails at an expression e” whenever the current
argument expression to W (respectively, M) is e when the unification fails:

Definition 2. Let I" be a type environment, e be an expression that has a type
error, and 3 be a new type variable. “W(T,e) fails at ¢’ whenever the rightmost
unmatching tuple in its call string [W(T, e)] is (I, e')?. Similarly, “M(T, e, 3) fails
at €7 whenever the rightmost unmatching tuple in its call string [M(T, e, 8)] is
(I, ¢, p).

Ezxample 1. Consider an expression ((Ax.x""a") true). W fails at the top
expression ((Ax.x""a") true) after it succeeded at every proper subexpression.
Meanwhile M fails at true.

Ezxample 2. Consider an expression (1 (2 3)). W fails at (2 3). M fails at
1, which is earlier than ¥V does because the left expression 1 is checked before the
right expression (2 3).

12 . O. Lee and K. Yi

Ezxample 3. Consider an expression ((Ax.x+1) Ay.(1 1)). W fails at (1 1).
M fails at (Ay. (1 1)), which is before it checks the body expression (1 1).

As the above examples indicate, algorithm M always stops earlier than Algorithm

W:

THEOREM 3 (EARLINESS). Let T be a type environment, e be an expression, and
B be a new type variable. Then

[IM(T, e,)1 < [PV, €]l
where |s| is the number of tuples in call string s.

The proof of Theorem 3 uses the completeness of Algorithm W and Lemmas
8-11.

THEOREM 4 (COMPLETENESS OF W) [DAMAS AND MILNER 1982]. Given T
and e, let IV be an instance of I and o a type scheme such that I" F e : 0. Then
W(T, e) succeeds, and if W(T',e) = (S, 7) then, for some substitution R, I" = RST
and RClosgr(T) = 0.

LEMMA 8. Let T' and I be type environments and T be a type. If T =T, then
Closr (1) > Closr/ (7).

PROOF. See Appendix D. [J
LEMMA 9 [DAMAS AND MILNER 1982]. If o = ¢’ then So > So’.

LEMMA 10. Let e be an expression, I' be a type environment, and (8 be a new
type variable. If [W(T,e)] has (I, e)? and [M(T,e,3)] has (T™, €', p)?, then
there exists a substitution R such that RT'YY = TM. (Note that because W and M
are called only once for each subexpression of e, such TV and T™ are well defined.)

PROOF. We prove by induction on the length of the prefixes (I',e)? .- (I'"V,¢)4
of [W(T,e)] and (T,e,B)¢---(TM €/, p)¢ of [M(T,e,3)]. Note that the prefixes
have the same length because W and M check the sub-expressions of e in the same
order. The symbols of both algorithms are identified by their superscripts.

—base case: When the prefixes are of length 1, they represent the initial calls
where €’ is e and where I'"Y and I'™ are identical. Then the identity substitution
R satisfies RT'"Y = I'M.

Followings are inductive cases.

——case ¢’ of e; in “A\z.e;”: Let the type environment parameters be I'Y and
I'M when Az.e is visited. By induction, RT'YY = I'M; that is, by Lemma 9,
SMRIW = SMIM. Let Ry = S{‘A(R“BW} u{BM/s"}). Then

Ri(TW 4+ 2:8V) = SMRDW + 2: SMpBM because 8V ¢ fto(T'V)
= SMIM 4 g SMBM.
——case ¢’ of e; in “e; e3”: The call at e; occurs with the same environment as

the one that accompanied the call at e; ea. Thus the case holds by the induction
hypothesis.

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 13

——case ¢’ of e; In “e; ey”:
(1) By the soundness of M, (M.5) implies
SMTM |- - SM(BM — pM).
(2) By induction, RT"YY = I'M; that is, by Lemma 9, S RTYW = SMIM. By
Lemma 4,
SMRTW ke, : SM(BM — pM).
(3) By the completeness of W, there exists a substitution R’ such that R'S}VT" =
SMRIYW. So, R'S)YTW = SMRTW = SMTM.
——case ¢’ of e; in “let x=¢; in ey”: The call at e; occurs with the same en-

vironment as the one that accompanied the call at let z=e; in es. Thus the
case holds by the induction hypothesis.

——case ¢’ of e5 in “let x=¢; in ey”:
(1) By the soundness of M, (M.7) implies
SMTM - ¢ SMpM,
(2) By induction, RT'Y = I'™; that is, by Lemma 9, S{M RIY = SMTM. By
Lemma 4,
SMRTW ¢, : SMpM.
(3) By the completeness of W, there exists a substitution R’ such that R'm}Y =
SMBM and R'SY'TYW = SMRIW. Therefore,
R'STYW = SMIM
and
R Closgwrw (V) = Closps swpw (R'T}Y) by Lemma 3
= CIOSR’SI/VFW (S{M,BM)
- ClOSSi/\/lFM<S{Vl/6M) by Lemma 8.
The above two facts imply that this case is proven.

—case ¢’ of \z.e in “fix f Az.e”: By induction, there exists a substitution R
such that RTY = I'M. Let R’ = R gwy U {p™M/B3V}. Then

R(TW + f: W) = RI'YW + f: pM because Y ¢ fto(I')
= TM4 f: oM O

LEMMA 11. Let e be an expression, I' be a type environment, and (3 be a new
type variable. Suppose [W(T,e)] has (TV, e)¢ and [M(T,e, 3)] has (T'M, ¢, p)<.
IfWITW e fails, then M(TM, €', p) fails.

PROOF. Assume for contradiction that M(I'M e’ p) succeeds; that is,
M(TM ¢/ p) = S is defined. By the soundness of M,

STM ¢ : Sp.

By Lemma 10, there exists a substitution R such that RT"Y = I'M: that is, by
Lemma 9, SRTY = STM. By Lemma 4,

SRTYW k€ : Sp.

14 . O. Lee and K. Yi

And, finally, by the completeness of W, W(I', ¢’) succeeds. It contrasts with the
given condition, so the assumption is not true. [J

Now we prove Theorem 3.

PRrROOF OF THEOREM 3. The case that e has no type error is trivially true, be-
cause it is obvious that |[[W(T, e)]| = |[[M (T, e, B)]I.

Let us consider the case that e has a type error. Let W(T, e) fail at an application
expression (ej eg). Then

PY(T,)] = (I er en)? - (T3, e2)"

because W fails right after it returned from an application’s operand. Suppose for
contradiction that

VT, e)]| < [[M(T, e, B)]I-
That is,
[[M(Faeaﬂ)]] = (Ff/lvel 627p1)d T (F£4’627p2)u K

and

K # €

because the order of visiting subexpressions is the same for YW and M. The next
call/return after the return from e is the return from e; es. So & is (I‘{\’t7 el ea, p1)"
k'. It means that M(F{V‘, e1 ez, p1) succeeds. However, it is impossible by Lemma 11
because W(ITV, e; e3) fails. O

5. CONCLUSION

The Hindley /Milner let-polymorphic type inference system has two different algo-
rithms: one is the de facto standard W algorithm [Milner 1978; Damas and Milner
1982] that is bottom-up (or context-insensitive) and the other is a “folklore” algo-
rithm that is top-down (or context-sensitive).

In this article, we formally defined the folklore algorithm (named M), proved its
soundness and completeness, and showed that M always finds type errors earlier
(considers a less number of expressions) than W.

Our proofs can be seen as theoretical justifications for various type-checking
strategies. For example, a compiler can let the user switch between the two algo-
rithms, which may help in situations where it is hard to find the cause of the type
error. The two algorithms will always stop at different expressions reporting differ-
ent causes of the type problem. Already, a combination of a variant of M with W
is being implemented in practice [Rideau and Théry 1997]. A compiler can also mix
the two algorithms on-the-fly, choosing one algorithm against the other, depending
on the current subexpression to type check. For example, when type-checking the
definitions of recursive functions the compiler may switch to algorithm M, because
it generates a better type diagnostic than W if the recursive calls have ill-typed
arguments (as seen in Figure 1). A variant of this technique is implemented in the
SML/NJ compiler system version 110. Similar bidirectional type-checking ideas
have been formalized in the setting of subtyping and impredicative polymorphism
[Pierce and Turner 1998].

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 15

Our formalization enables us to see clearly that algorithm M can unobtrusively
adapt the existing techniques of generating informative type error messages, which
were developed with Algorithm W in mind. The techniques of Wand [1986], Beaven
and Stansifer [1993], Duggan and Bent [1996], and Rideau and Théry [1997] essen-
tially record the history of the type instantiations (unifications) in the resulting
substitutions. Because the type instantiation in M is via the same standard unifi-
cation algorithm, these approaches can be directly used in M. For the same reason,
inferring the types of free variables [Bernstein and Stark 1995], by which the pro-
grammer can probe the types of some puzzling points in his/her program, is also
straightforward to implement inside M, by making such free variables all distinct
and initially bound to fresh type variables. The idea in the destructive implemen-
tation of Algorithm W [Cardelli 1987], in which type variables are destructively
updated during unification and free variables are remembered for quickly comput-
ing the type closure, can also be used in a practical implementation of algorithm

M.

APPENDIX
A. PROOF OF LEMMA 3
Let @ = ftv(7)\ftv(T), and let 3 be type variables such that 3 N (itv(S) U ftv(r)) = 0
and |@| = |3]. Then
SClosp(7) = SVa.r =V3.9{3/a}r.

Let R = {S@/3}. Then St = RS{f/a}r and supp(R) C [3; thus, the first condition
of generic instance is satisfied. The second condition holds as follows

ftv(SClosr (7)) = U fto(Sy)
yEftv(T)Nfto(T")
C U ftu(Sy) | N U ftv(S7)
YEftv(T) YEftu(T)
= ftv(ST) N ftv(ST)

= ftv(Clossr(ST)). O
B. PROOF OF LEMMA 6
The proof uses Lemma, 12.
LEMMA 12 [MILNER 1978]. Let R and S be substitutions and T be a type. Then
—itv(RS) C itv(R) Uitv(S) and
—ftv(ST) C ftu(r) U itv(S).
The proof is by the structural induction on e.

—case (): By Lemma 5, itv(U(p,)) C ftu(p) U ftv(e) C ftv(p).

16 . O. Lee and K. Yi

—cCcase T:

ito U(p, [/ i]7)) p)U fto({3/a)}r) by Lemma 5

to(
t(p) U (fto(7) \ &) U B

= ftv(p) U fto(Va.T) U ﬁ

fto(p) U fto (T (x)) U B

fto(p) U ftu(T') U New.

—case A\z.e: By Lemma 5, itv(S1) C ftv(p) U ftv(81 — (2). By induction,

itU(S2) Q ft’U(SlF + x: Slﬂl) UﬁU(Slﬂz) U New1
C itw(S1) U ftu(T') U New; U {1, Bz} by Lemma 12.

Hence, itv(S251) C itv(S1) U itv(S2) C ftu(T') U ftv(p) U New; U {B1, Bz}

Other cases can be similarly proven. []

NN
B

Nl

C. PROOF OF LEMMA 7
We prove that (RS)|,a = R}, Sa for all a.

—case o € A: (RS)} ,a = «a, and because itv(S)N A =0, Rl ,Sa = R} o = a.
——case a ¢ A: (RS)} o = RSa. When a € supp(S), Rl,Sa = RSa because
itv(S)NA=0. When a ¢ supp(S), R},Sa = Ra = RSa. O

D. PROOF OF LEMMA 8

By the definition, I'(x) > I'(x) for V& € dom(T). This implies ftv(I'(x)) C
fto(T(z)) for Vo € dom(T'), that is, ftv(T") C ftv(I”). Therefore,

ftu(Closp (7)) = fto(7) N ftu(T) C fto(r) N fto(T') = fto(Closy: (). O

ACKNOWLEDGMENTS

We thank anonymous referees and the associate editor for their valuable suggestions
and corrections that substantially improved our presentation. We thank David
MacQueen for his encouragement on an early draft of this article, and Laurent
Théry, Xavier Leroy, and Pierre Weis for sharing their experiences of the two type
inference algorithms. We thank Hyunjun Eo, Hyunsok Oh, and Sukyoung Ryu for
their comments during this work.

REFERENCES

BEAVEN, M. AND STANSIFER, R. 1993. Explaining type errors in polymorphic languages. ACM
Lett. Program. Lang. Syst. 2, 17-30.

BERNSTEIN, K. L. AND STARK, E. W. 1995. Debugging type errors (full version). Tech. Rep.,
State University of New York at Stony Brook.

CARDELLI, L. 1987. Basic polymorphic typechecking. Sci. Comput. Program. 8, 2 (Apr.).

DaAmaAs, L. AND MILNER, R. 1982. Principal type-scheme for functional programs. In Proceedings of
the 9th Annual ACM Symposium on Principles of Programming Languages. ACM, New York,
207-212.

DuGcAN, D. AND BENT, F. 1996. Explaining type inference. Sci. Comput. Program. 27, 1 (July),
37-83.

JoHNSON, G. F. AND WALz, J. A. 1986. A maximal-flow approach to anomaly isolation in
unification-based incremental type inference. In Proceedings of the 13th Annual ACM Sym-
posium on Principles of Programming Languages. ACM, New York, 44-57.

Proofs about a Folklore Let-Polymorphic Type Inference Algorithm . 17

LEROY, X. 1993. The caml light system, release 0.6. Institut National de Recherche en Informatique
et en Automatique.

LEROY, X. 1995. The caml light system, release 0.7. Institut National de Recherche en Informatique
et en Automatique.

MACQUEEN, D. B. AND ApPPEL, A. W. 1993. Standard ML of New Jersey. Tech. Memo., AT&T
Bell Labs.

MILNER, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17,
348-375.

PIERCE, B. C. AND TURNER, D. N. 1998. Local type inference. In Proceedings of the 25th Annual
ACM Symposium on Principles of Programming Languages. ACM, New York.

RIDEAU, L. AND THERY, L. 1997. Interactive programming environment for ML. Tech. Rep. 3139,
Institut National de Recherche en Informatique et en Automatique. March.

ROBINSON, J. A. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12, 1
(Jan.), 23-41.

WAND, M. 1986. Finding the source of type errors. In Proceedings of the 13th Annual ACM
Symposium on Principles of Programming Languages. ACM, New York, 38—43.

Received July 1997; revised March 1998; accepted July 1998

