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Abstract

We present a static analysis that estimates reusable memory cells and a source-level
transformation that adds explicit memory-reuse commands into the program text.
For benchmark ML programs, our analysis and transformation system achieves the
memory reuse ratio from 5.2% to 91.3% and reduces the memory peak from 0.0% to
71.9%. The small-ratio cases are for programs that have a number of data structures
that are shared. For other cases, our experimental results are encouraging in terms of
accuracy and cost. Major features of our analysis and transformation are: (1) poly-
variant analysis of functions by parameterization for the argument heap cells; (2)
use of multiset formulas in expressing the sharings and partitionings of heap cells;
(3) deallocations conditioned by dynamic flags that are passed as extra arguments
to functions; (4) individual heap cell as the granularity of explicit memory-free. Our
analysis and transformation system is fully automatic.
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1 Overview

Our goal is to automatically insert explicit memory-reuse commands into ML-
like programs so that they do not blindly request memory when constructing
data. We present a static analysis and a source-level transformation system
that automatically adds explicit memory-reuse commands into the program
text. The explicit memory-reuse is accomplished by inserting explicit memory-
free commands right before data-construction expressions. Because the unit of
both memory-free and allocation is an individual cell, such memory-free and
allocation sequences can be implemented as memory reuses. 2

Example 1 Function call “insert i 1”7 returns a new list where integer i
is inserted into its position in the sorted list 1.

fun insert i 1 =

case 1 of [] => i::[] ¢D)
| h::t => if i<h then i::1 (2)
else h::(insert i t) (3)

Let’s assume that the argument list 1 is not used after a call to insert. If
we program in C, we can destructively add one node for i into 1 so that
the insert procedure should consume only one cons-cell. Meanwhile, the ML
program’s line (3) will allocate as many new cons-cells as that of the recursive
calls. Knowing that list 1 is not used anymore, we can reuse the cons-cells from
1:

fun insert i 1 =
case 1 of [] => 1i::[]
| h::t => if i<h then i::1
else let z = insert i t
in (free 1; h::z) (4)

In line (4), “free 1” will deallocate the single cons-cell pointed to by 1. The
very next expression’s data construction “: :” will reuse the freed cons-cell. O

1.1 Related Works

The type systems [1-3] based on linear logic fail to achieve Example 1 case
because variable 1 is used twice. Kobayashi [4], and Aspinall and Hofmann [5]
overcome this shortcoming by using more fine-grained usage aspects, but their

2 This approach’s drawback might be that the memory reuse “bandwidth” is limited
by the data-construction expressions in the program text. But our experimental
results show that such a drawback is imaginary.



systems still reject Example 1 because variable 1 and t are aliased at line (2)—
(3). They cannot properly handle aliasing: for “let x=y in e” where y points
to a list, this list cannot in general be reused at e in their systems. Moreover,
Aspinall and Hofmann did not consider an automatic transformation for reuse.
Kobayashi provides an automatic transformation, but he requires the memory
system to manage a reference counter for every heap cell.

Deductive systems like separation logic [6-8] and the alias-type system [9,10]
are powerful enough to reason about shared mutable data structures, but
they cannot be used for our goal; they are not automatic. They need the
programmer’s help about memory invariants for loops or recursive functions.

The region-based memory managements [11-15] use a fixed partitioning strat-
egy for recursive data structures, which is either implied by the programmer’s
region declarations or hard-wired inside the region-inference engine [16,17].
Since every heap cell in a single region has the same lifetime, this “pre-
determined” partitioning can be too coarse; for example, transformations like
the one in Example 1 are impossible.

Blanchet’s escape analysis [18] and ours are both relational, covering the same
class of relations (inclusion and sharing) among memory objects. The differ-
ence is the relation’s targets and deallocation’s granularity. His relation is
between memory objects linked from program variables and their binding
expression’s results. Ours is between memory objects linked from any two
program variables. His deallocation is at the end of a let or function body.
Transformations like the one in Example 1 are impossible in his system. Har-
rison’s [19] and Mohnen’s [20] escape analyses have similar limitation: the
deallocations is at the end of function body.

1.2  Our Solution

The features of our analysis and transformation are:

e Partitioning of heap cells is pivoted by two axes: one by structures (e.g.
heads and tails for lists, roots and subtrees for trees, etc.) and the other by
set exclusions (e.g. cells A excluding B). This double-axed partitioning is
expressive enough to isolate proper reusable cells from others.

e Sharing information among heap cells is maintained, in order to find the dis-
jointness properties between two partitions of heap cells. An analysis result
consists of terms called “multiset formula.” A multiset formula symbolically
manifests an abstract sharing relation between heap cells.

e The parameterized analysis result of a function is instantiated at each func-
tion call, in order to finalize the disjointness properties for the function’s
input and output. This polyvariant analysis is done without re-analyzing a



function body multiple times.

e Dynamic flags are inserted to functions in order to condition their memory-
free commands on their call sites. Dynamic flags are simple boolean expres-
sions.

Our contribution is a cost-effective automatic analysis and transformation for
fine-grained memory reuses for recursive/algebraic data structures in ML-like
programs. Our experimental results show that for small to large ML bench-
mark programs the memory reuse ratio ranges from 5.2% to 91.3%. The small-
ratio cases expose that our analysis and transformation system is weak for
programs that have too prevalent sharings among memory cells. Other than
those few cases, our experimental results are encouraging in terms of accuracy
and cost: the reuse ratio ranges from 10.6% to 91.3% and the analysis cost
ranges from about 400 to 4500 lines per second. The limitation is that we
only consider ML-like immutable recursive data and a first-order monomor-
phic language without memory-free commands.

Section 1.3 intuitively presents the features of our method for an example
program. Section 2 defines the core of the target language, which consists of
the source language plus explicit memory reuse commands. Section 3 presents
the key abstract domain (memory-types) for our analysis. Section 4 shows,
for the same example as in Section 1.3, a more detailed explanation on how
our analysis and transformation system works. Section 5 proves our analy-
sis and transformation correct. Section 6 shows our experimental results and
concludes.

1.8  Exclusion Among Heap Cells and Dynamic Flags

The accuracy of our algorithm depends on how precisely we can separate the
two sets of heap cells: cells that are safe to deallocate and others that are not.
If the separation is blurred, we find few deallocation opportunities.

For a precise separation of two such groups of heap cells, we have found that
the standard partitioning by structures (e.g. heads and tails for lists, roots
and subtrees for trees, etc.) is not enough. We need to refine the partitions by
the notion of exclusion. Consider a function that builds a tree from an input
tree. Let’s assume that the input tree is not used after the call. In building the
result tree, we want to reuse the nodes of the input tree. However, we cannot
free every node of the input if the output tree shares some of its parts with the
input tree. In that case, we can free only those nodes of the input that are not
parts of the output. A concrete example is the following copyleft function.
Both of its input and output are trees. The output tree’s nodes along its left-
most path are separate copies from the input tree and the rest are shared with



the input tree.

fun copyleft t =
case t of
Leaf => Leaf
| Node (t1,t2) => Node (copyleft tl, t2)

The Leaf and Node are the binary tree constructors. Node needs a heap cell
that contains two fields to store the locations for the left and right subtrees.
The opportunity of memory reuse is in the case-expression’s second branch.
When we construct the node after the recursive call, we can reuse the pattern-
matched node of the input tree, but only when the node is not included in the
output tree. Our analysis maintains such notion of exclusion.

Our transformation inserts free commands that are conditioned on dynamic
flags passed as extra arguments to functions. These dynamic flags make differ-
ent call sites to the same function have different deallocation behavior. By our
free-commands insertion, the above copyleft function is transformed to:

fun copyleft [, fus] t =
case t of
Leaf => Leaf
| Node (t1,t2) => let p = copyleft [ A fus, Ous| t1
in (free t when (3; Node (p,t2))

Flag [ is true when the argument t to copyleft can be freed inside the
function. Hence the free command is conditioned on it: “free t when [3.”
By the recursive calls, all the nodes along the left-most path of the input
will be freed. The analysis with the notion of exclusion informs us that, in
order for the free to be safe, the nodes must be excluded from the output.
They are excluded if they are not reachable from the output. They are not
reachable from the output if the input tree has no sharing between its nodes,
because some parts (e.g. t2) of the input are included in the output. Hence
the recursive call’s actual flag for 3 is A (s, where flag (¢ is true when there
is no sharing inside the input tree.

2 Language

Fig. 1 shows the syntax and semantics of the source language: a typed call-by-
value language with first-order recursive functions, data constructions (mem-
ory allocations), de-constructions (case matches), and memory deallocations.
All expressions are in the K-normal form [16,4]: every non-value expression
is bound to a variable by let. Each expression’s value is either a tree or a
function. A tree is implemented as linked cells in the heap memory. The heap



SYNTAX

Type T ::= tree | tree — tree
Boolean Expression b ::= (3 | true | false | bV b | bAD | —b
Storable Value a ::= Leaf | I
Value v ::= a | z | fix x [B1, 2] Az.e
Expression e ::= v value
| Node (v,v) allocation
| free v when b deallocation
| casew (Node (z,y) =>e1) (Leaf =>e3) match
| v [bi,bo]v application
| letx=ecine binding

OPERATIONAL SEMANTICS

h € Heaps 2 Locations 13 {(a1,a2) | a; is a storable value}

a
A

f € FreedLocations = gp(Locations)

k € Continuations = {(x1,€1) ... (zn,en) | ; is a variable and e; an expression}

(Node (a1,a2),h, f,k) ~(,hU{l~ (a1,a2)}, f, k)
where [ does not occur in (Node (a1, az), h, f, k)
(free [ whenb, h, f, k) ~>(Leaf,h, fU{l},k)ifb<true, [ & f, andl € dom(h)
(free [ whenb, h, f, k) ~> (Leaf,h, f, k) if b ¢5 true
(case | (Node(x1,x2) =>e1) (Leaf =>e2),h, f, k) ~ (e1{a1/x1,a2/x2} b, f k)
where h(l) = (a1,a2) and [ &€ f
(case Leaf (Node(x1,z2) =>e1) (Leaf =>e9), h, f, k) ~ (e2, h, f, k)
((fiX Y [ﬁla 62] )\IB@) [b17 bQ] v, h, f, k) ~
(e{(fixy [B1, Ba] Ax.€)/y,b1/B1,ba/ B2, v/x} , D, f, k)
(let x=e; in ey, h, f, k)~ (e1,h, f,(x,e2) - k)
(v,h,f,(ac,e)~k:) M(e{v/x},h,f,k)

Fig. 1. The syntax and the semantics.

consists of binary cells whose fields can store locations or a Leaf value. For
instance, a tree Node (Leaf, Node (Leaf, Leaf)) is implemented in the heap by
two binary cells [ and [” such that [ contains Leaf and [’, and I’ contains Leaf
and Leaf.

The language has three constructs for the heap: Node (v, v9) allocates a node
cell in the heap, and sets its contents by v; and vy; a case-expression reads the
contents of a cell; and free v when b deallocates a cell v if b holds. A function
has two kinds of parameters: one for boolean values and the other for an input
tree. The boolean parameters are only used for the guards for free commands
inside the function.

Throughout the paper, to simplify the presentation, we assume that all func-
tions are closed, and we consider only well-typed programs in the usual mono-



morphic type system, with types being tree or tree—tree. In our implemen-
tation, we handle higher-order functions, and arbitrary algebraic data types,
not just binary trees. We explain more on this in Section 6.

The algorithm in this paper takes a program that does not have locations,
free commands, or boolean expressions for the guards. Our analysis analyzes
such programs, then automatically inserts the free commands and boolean
parameters into the program.

3 Memory-Types: An Abstract Domain for Heap Objects

Our analysis and transformation system use what we call memory-types to
estimate the heap objects for expressions’ values. Memory-types are defined
in terms of multiset formulas.

3.1 Multiset Formula

Multiset formulas are terms that allow us to abstractly reason about disjoint-
ness and sharing among heap locations. We call “multiset formulas” because
formally speaking, their meanings (concretizations) are multisets of locations,
where a shared location occurs multiple times.

The multiset formulas L express sharing configuration inside heap objects by
the following grammar:

L:=A|R|X|mroot|xleft | wright || LUL|L&L|L\L

Symbols A, R, X and 7 are just names for multisets of locations. A sym-
bolically denotes the heap cells in the input tree of a function, X the newly
allocated heap cells, R the heap cells in the result tree of a function, and 7 for
heap objects whose roots and left /right subtrees are respectively m.root, m.left,
and 7.right. ) means the empty multiset, and symbol & constructs a term
for a multiset-union. The “maximum” operator symbol LI constructs a term
for the join of two multisets: term L LJ L' means to include two occurrences
of a location just if L or L' already means to include two occurrences of the
same location. Term L\L’' means multiset L excluding the locations included
in L.

Fig. 2 shows the formal meaning of L in terms of abstract multisets: a function
from locations to the lattice {0,1,00} ordered by 0 C 1 C co. Note that we



SEMANTICS OF MULTISET FORMULAS

lattice  Occurrences = {0,1,00}, ordered by 0 C 1 C oo

. . A . . .
lattice MultiSets = Locations — Occurrences, ordered pointwise

For all n mapping X, A, R, w.root, w.left, and w.right to MultiSets,

[0y £ L
[Vin 2 n(V) (Vis X, A, R, m.root, w.left, or w.right)
[L1 U Loln £ [La]n U [La]n
[L1 & Laln 2 [La]n @ [La]n
[Li\La]n £ [La]n\ [La]n

where

@ and \ : MultiSets x MultiSets — MultiSets
S1 6 S 2 ALif S1(1)=52(1)=1 then oo else S (1) LI Sa(1)
S\ Sa 2 AL.if S(1) = 0 then S (1) else 0

REQUIREMENTS ON GOOD ENVIRONMENTS

goodEnv(n) £ for all different names X and X’ and all A,
n(X) is a set disjoint from both n(X’) and n(A); and
for all =,
n(m.root) is a set disjoint from both n(m.left) and n(m.right)

SEMANTICS OF MEMORY-TYPES FOR TREES

[(Lopin,pi2)ixeenn = {1, h) | A1) = (a1,a2) A [LIn1 31 A (@i, h) € [uidiween}
[ € dom(h)A
[L]treen = (I, h) | VI let n = number of different paths from [ to " in h
in(n>1=[Lnl!" 31) AN(n>2=[L]nl' = c0)
U {(Leaf,h) | his a heap}

Fig. 2. The semantics of multiset formulas and memory-types for trees.

consider only good instantiations 7 of name X, A, and 7 in Fig. 2. The pre-
order for L is:

L, C Ly iff ¥n.goodEnv(n) = [L1]n C [La]n.



3.2 Memory-Types

Memory-types are in terms of the multiset formulas. We define memory-types
1, for value-type 7 using multiset formulas:

Htree = <L7 Htree, Ntree) L
L

|
iree—tree = VA.A — X (L, L)

A memory-type piyee for a tree-typed value abstracts a set of heap objects. A
heap object is a pair (a, h) of a storable value a and a heap h that contains all
the reachable cells from a. Intuitively, it represents a tree reachable from a in h
when a is a location; otherwise, it represents Leaf. A memory-type is either in
a structured or collapsed form. A structured memory-type is a triple (L, pq, i2),
and its meaning (concretization) is a set of heap objects ([, h) such that L,
i1, and py abstract the location [ and the left and right subtrees of (I, h),
respectively. A collapsed memory-type is more abstract than a structured one.
It is simply a multiset formula L, and its meaning (concretization) is a set of
heap objects (a,h) such that L abstracts every reachable location and its
sharing in (a, h). The formal meaning of memory-types is in Fig. 2.

During our analysis, we switch between a structured memory-type and a col-
lapsed memory-type. We can collapse a structured one by the collapse function:

collapse((L, p1, 112))
collapse(j)

> >

L U (collapse(p1) & collapse(us))
i (for collapsed p)

Note that when combining L and collapse(p;) & collapse(us), we use L instead
of @ : it is because a root cell abstracted by L cannot be in the left or right
subtree. We can also reconstruct a structured memory-type from a collapsed
one when given splitting name 7:

({m — L}, (m.root, m.left, w.right))
(0, ) (for structured p)

reconstruct(L, )

> e

reconstruct(u, 7)

The second component of the result of reconstruct is a resulting structured
memory-type and the first one is a record that L is a collection of 7.root,
m.left, and 7.right. The pre-order T for memory-types for trees is:

LC L' iff LEL
<L7 Hi, ,u2> E tree<L/> H’/l? Nl2> iff L E L/a H1 E tree,u/la and 2 E tree,u/2
<L> Hi, /L2> E treeL, IH CO”apse<<L7 Hi, ,u2>> E treeL/



Note that this order is sound with respect to the semantics: if pq C eefto,
then Vn.goodEnv(n) = [u1]ireen C [12]treen. The join of two memory-types
is done by operator W that returns an upper-bound? of two memory-types.
The operator W is defined using function collapse:

L WLy 2 LU L,

A .
(L, puy ) & (L i, ) = (LUL pa W gy, i @ puy)
LW (L, o) 2 LU collapse({L’, i1, pi2))

For a function type tree — tree, a memory-type describes the behavior of func-
tions. It has the form of VA.A — 3X.(L, L), which intuitively says that when
the input tree has the memory type A, the function can only access locations
in Ly and its result must have a memory-type L;. Note that the memory-type
does not keep track of deallocated locations because the input programs for
our analysis are assumed to have no free commands. The name A denotes
all the heap cells reachable from an argument location, and X denotes all
the heap cells newly allocated in a function. Since we assume every function
is closed, the memory-type for functions is always closed. The pre-order for
memory-types for functions is the pointwise order of its result part L; and Ls.

4 The free-Insertion Algorithm

We explain our analysis and transformation using the copyleft example in
Section 1.3:

fun copyleft t =

case t of
Leaf => Leaf D)
| Node (t1,t2) => let p = copyleft t1 (2)

in Node (p,t2) (3)

We first analyze the memory-usage of all expressions in the copyleft program,;
then, using the analysis result, we insert safe free commands to the program.

4.1 Step One: The Memory-Usage Analysis

Our memory-usage analysis (shown in Fig. 3) computes memory-types for all
expressions in copyleft. In particular, it gives the memory-type VA.A —

3 The domain of memory-types for trees is not a lattice: the least upper-bound of
two memory-types does not exist in general.

10



Environment A € {z |z is a variable} fin {1 | & is a memory-type }
Bound B € {V |VisRorm} fin {L | L is a multiset formula }
Substitution S C {L/V |V is X or A, and L is a multiset formula }

Given environment A and expression e, we compute e’s
Ape:B u, L .
memory-type p and usage L with a bound B for newly
introduced Rs and =s.
AD>uv:p A>wvp iy A>wvy:puy (fresh X)
——— (U-VALUE) (U-NODE)
A>v:0,p0 A > Node (v, v2) : 0, (X, p1, po), 0

A ey : B, pr, L
AU{x — 1} > ez : Ba, iz, Lo

AD>let r=¢; in62281U82,u2,L1uL2

(U-LET)

(B, (L, u}, 1)) = reconstruct(p, )  (fresh )
AU{z = (L, ph, o), o1+ pty, o2 po} > e : By, Ly
AU{Z’H@}D€2 : Bo, po, Lo
AU{z — u} > case x (Node (x1,x2) =>e;1) (Leaf =>e2) :
BiUByUB, up W e, Li ULy UL
A>v :VAA— ElX.(Ll,LQ) A D> vy 1o
S 2 [collapse(uz) /A][X'/X]  (fresh X', R)

A D> v vy {RHSLl},R,SLQ

(U-CASE)

(U-APP)

A v:u | Given environment A and value v, we compute v’s memory-type .

x € dom(A)
—————— " (U-VAR) —————— (U-LEAF)
A x: Ax) A > Leaf : ()

AL Ap. VA.A — 3X.(wideng(collapse(y')), wideng(L))
Hifp = HX where {f > pu, z+— Al >e: By, L

(U-FUN)
A fix f Az.e: g

Fig. 3. Step one: the memory-usage analysis.

dX.(AU X, A) to copyleft itself. Intuitively, this memory-type says that
when A denotes all the cells in the argument tree t, the application “copyleft
t” may create new cells, named X in the memory-type, and returns a tree
consisting of cells in A or X; but it uses only the cells in A.

This memory-type is obtained by a fixpoint iteration (U-FUN). We start from
the least memory-type VA.A — 3X.(0,0) for a function. Each iteration as-
sumes that the recursive function itself has the memory-type obtained in the
previous step, and the argument to the function has the (fixed) memory-type
A. Under this assumption, we calculate the memory-type and the used cells for
the function body. To guarantee the termination, the resulting memory-type

11



and the used cells are approximated by “widening” after each iteration.

We focus on the last iteration step. This analysis step proceeds with five
parameters A, X5, X3, X, and R, and with a splitting name 7: A denotes
the cells in the input tree t, X5 and X3 the newly allocated cells at lines (2)
and (3), respectively, X the set of all the newly allocated cells in copyleft,
and R the cells in the returned tree from the recursive call “copyleft t1”
at line (2); the splitting name 7 is used for partitioning the input tree t to
its root, left subtree, and right subtree. With these parameters, we analyze
the copyleft function once more, and its result becomes stable, equal to the
previous result VA.A — 3X (AU X, A):

e Line (1) of the example: The Leaf-branch is executed only when t is Leaf
whose memory-type is (). So, we assume that t’s memory-type is () when
analyzing the Leaf-branch (U-CASE).

The memory-type for Leaf is (), which says that the result tree of Leaf-
branch is empty. (U-LEAF and U-VALUE)

e Line (2) of the example: The Node-branch is executed only when t is a
non-empty tree. We exploit this fact to refine the memory-type A of t. We
partition A into three parts: the root cell named m.root, the left subtree
named 7.left, and the right subtree named 7.right, and record that their
collection is A: m.root Ul (m.left & 7.right) = A. Then t1 and t2 have 7.left
and m.right, respectively. (U-CASE)

The next step is to compute a memory-type of the recursive call “copyleft
t1.” In the previous iteration’s memory-type VA. A — 3IX. (AU X, A) of
copyleft, we instantiate A by the memory-type m.left of the argument t1,
and X by the name X, for the newly allocated cells at line (2). The instan-
tiated memory-type m.left — (m.left U X5, 7.left) says that when applied to
the left subtree t1 of t, the function returns a tree consisting of new cells
or the cells already in the left subtree t1, but uses only the cells in the left
subtree t1. So, the function call’s result has the memory-type m.left LI X5,
and uses the cells in 7.left. However, we use name R for the result of the
function call, and record that R is included in 7.left U X,. (U-APP)

e Line (3) of the example: While analyzing line (2), we have computed the
memory-types of p and t2, that is, R and m.right, respectively. Therefore,
“Node (p,t2)” has the memory-type (X3, R, m.right) where X3 is a name
for the newly allocated root cell at line (3), R for the left subtree, and
m.right for the right subtree. (U-NODE)

After analyzing the branches separately, we join the results from the branches
(U-cASE). The memory-type for the Leaf-branch is (), and the memory-type
for the Node-branch is (X3, R, w.right). We join these two memory-types by
first collapsing (X3, R, w.right) to get X3 LI (R & 7.right), and then joining the
two collapsed memory-types X3 Ul (R & m.right) and ). So, the function body
has the memory-type X3 LI (R @ 7.right).

12



Reduced Form Lr:=V | V&V |0]| LglU Lg (Vis Aor X)

widenss(L) gives a formula in a reduced form such that the formula only
B has free names A and X, and is greater than or equal to L when
B holds.
wideng(L) £ S(reduces(L)) (wl)

(S ={X/X'| X" appears in reduceg(L) } for the fixed X)

where reduceg(L) uses the first available rule in the following:

reducep(R) = reduceg(B(R)) (W2)
reducep(m.o) 2 reduCGB(B( ) (W3)
reducep(L; U Lg) reduceB(Ll) Ul reducep(Ls2) (w4)
reduces(Ly & Lg) reduceg(L1) LI reduceg(Ls) (Wb)
(if d|SJ0|ntB(L1, Ls) < true where disjoint is defined in Fig. 6)
reduceg(R & L) = reduceB(B(R) & L) (W6)
R [ - e
reduceg(m.o® L) = reduceB(B( )& L) (W8)
reduceg((L1 U Lo) & L3) reduceB(L1 & L3) Ureduceg(La & L3) (wW9)
reduceg((L1® Ls) @L3)

reducep(L1® L) Ul reduces(La® L3) U reduces(Ls® Ly) (W10)
reducep(L) 2L (for all other L) (w11)

Fig. 4. The widening process.

How about the cells used by copyleft? In the Node-branch of the case-
expression, the root cell m.root of the tree t is pattern-matched, and at the
function call in line (2), the left subtree cells 7.left are used. Therefore, we
conclude that copyleft uses the cells in m.root LI 7 left.

The last step of each fixpoint iteration is widening: reducing all the multiset
formulas into simpler yet more approximated ones (U-FUN). We widen the
result memory-type X3 Ul (R @ 7.right) and the used cells 7r.root LI 7.left with
the records B(R) = w.left L X, and B(7) = A. In the following, each widening
step is annotated by the rule names of Fig. 4:

X3 U (R @ m.right)

C X3U((m.left U Xo) &b . right) (B(R) = w.left U X5) (W6)
= X3 U (rleft & m.right) U (X2 & w.right) (@ distributes over 1) (W9)
C X3UAU (X m.right) (B(m) = A thus 7.left & w.right = A) (W7)
C X3UAU (XD A) (B(m) = A thus m.right C A) (w8)
= X3UAUX A (A and X, are disjoint) (W5)

Finally, by replacing all the newly introduced X;s by a fixed name X (w1)
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and by removing redundant A and X, we obtain A U X. By rules (W4&w3)
in Fig. 4, m.root LI .left for the used cells is reduced to A.

The widening step ensures the termination of fixpoint iterations. It produces
a memory-type all of whose multiset formulas are in a reduced form and can
only have free names A and X. Note that there are only finitely many such
multiset formulas that do not have a redundant sub-formula, such as A in
AU A. Consequently, after the widening step, only finitely many memory-
types can be given to a function.

Although information is lost during the widening step, important properties
of a function still remain. Suppose that the result of a function is given a
multiset formula L after the widening step. If L does not contain the name
A for the input tree, the result tree of the function cannot overlap with the
input.* The presence of @ and A in L indicates whether the result tree has
a shared sub-part. If neither @& nor A is present in L, the result tree can not
have shared sub-parts, and if A is present but @ is not, the result tree can
have a shared sub-part only when the input has.®

4.2 Step Two: free Commands Insertion

Using the result from the memory-usage analysis, our transformation algo-
rithm (shown in Fig. 5) inserts free commands, and adds boolean parameters
B and [y (called dynamic flags) to each function. The dynamic flag 3 says
that a cell in the argument tree can be safely deallocated, and (3,4 that no sub-
parts of the argument tree are shared. We have designed the transformation
algorithm based on the following principles:

(1) We insert free commands right before allocations because we intend
to deallocate a heap cell only if it can be reused immediately after the
deallocation.

(2) We do not deallocate the cells in the result.

Our algorithm transforms the copyleft function as follows:

fun copyleft [, fus] t =
case t of Leaf => Leaf (1)
| Node (t1,t2) => let p = copyleft [B A fBus, Ons] t1 @)
in (free t when (3; Node (p,t2)) 3

4 This disjointness property of the input and the result is related to the usage
aspects 2 and 3 of Aspinall and Hofmann [5].

5 This sharing information is reminiscent of the “polymorphic uniqueness” in the
Clean system [3].
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Preservation Constraints € C {b< L |b is a boolean expression }

(Ap) takes v; annotated with the analysis result (A, p), and produces
> vy = V2 | free-inserted vs.

B,{-f—A} truee=¢€:&

(1-vaR) (FLEAF) & fix f Az (eCBm))
>r=x > Leaf = Leaf — fix [ [B, Bus] : A€/

(I-FUN)

. takes an expression e; annotated with the analy-
B, &, b> 6§A’B wh) o ez : & | sisresult (A, B, u, L), a bound B for free names,
and b and &; that prohibit certain cells from be-
ing freed: b says that the result of e; should not be freed, and each ¥/ — L’ in &
that L’ should not be freed when b’ holds. The algorithm returns a free-inserted
es and & whose b’ — L’ expresses that L’ is freed in es when o’ holds.

>v =
B,C,b>v=1"1

=3z A(x)=(L, p1, p2) > vy = v] > vy = vh

(I-VALUE)

(I-NOF)
B,C,b> (Node(vy,v2)) A7) = Node (v}, vh): ()
Jx.A(z)=(L, p1, p2) > v1 = v] > vy = vh
gEeuU {b < collapse(p)} ¥ 2 freeCondg ¢/(L)
(I-FREE)

8757[) > (Node(’l)17’l}2))(A7'7,“'7’)
= (freezwhen b';Node(v],v5)) : {/ — L}

B,C,b>ep =€) :& B,C,b>ey=¢€): &

(I-CASE)
B,E,b > case z (Node (x1,22) =>e1) (Leaf =>e3)
= case z (Node (x1,29) =>¢€}) (Leaf =>¢)) : &1 U &
B,E U {true — L, b collapse(u)} , false > e; = €} : &
B,EUELbD> e :>6,2 : &y
(I-LET)

B,C,br>1let z=¢; in (eg"’“’L)) =letx=¢) inel: E UE
sv=o L2 collapse(p) b 2 freeCond&g(L\R) bns 2 noSharingg(L)

- (I-APP)
B,EV > ( (0 A1) R = g [b, b v {b < L\R}

freeConds & (L) calculates a safe condition to free L from the bound B for free
Bg names and the constraint £ that says when certain cells should

not be freed.

freeCondp ¢(L) = /\ {=bV disjointg(L, L) | (b— L") € £}

Fig. 5. Step two: the algorithm to insert free commands.
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Note that “e;; ey” is an abbreviation of “let z =e; in ey” when z does not
appear in es.

The algorithm decides to pass 5 A Bns and [y in the recursive call (2) (rule
1-APP). To find the first parameter, we collect constraints about conditions
for which heap cells we should not free (£ in 1-APP). Then, the candidate
heap cells to deallocate must be disjoint with the cells to preserve. We de-
rive such disjointness condition, expressed by a simple boolean expression
(freeCondp ¢(L\R) in 1-APP). A preservation constraint has the conditional
form b < L: when b holds, we should not free the cells in multiset L because,
for instance, they have already been freed, or will be used later. For the first pa-
rameter, we get two constraints “—3 — A” and “true — X3 Ul (R & 7.right)”
from the algorithm in Fig. 5 (rules I-FUN and I-LET). The first constraint
means that we should not free the cells in the argument tree t if g is false,
and the second that we should not free the cells in the result tree of the
copyleft function. Now the candidate heap cells to deallocate inside the re-
cursive call’s body are 7.left\ R (the heap cells for t1 excluding those in the
result of the recursive call). For each constraint b < L, the algorithm finds a
boolean expression which guarantees that L and ﬂ.left\R are disjoint if b is
true; then, it takes the conjunction of all the found boolean expressions.

e For “=3 < A, the algorithm in Fig. 6 returns false for the condition that
A and 7.left\ R are disjoint:

disjoint (A, 7 left\ R)

= disjointy (A, 7.left) (excluding R) (D5)
= disjointg (A, A) (m.root I (r.left @ m.right) = A) (D9)
= false (A=A) (p10)

where B = {R +— wleft U X5, 7 — A} and B = {R— 0,7 — A}. We take
—(=0) V false, equivalently, 5.

e For “true — X3 U (R @ m.right),” the algorithm in Fig. 6 finds out that [
ensures the disjointness requirement:

disjointg(X3 U1 (R & 7.right), 7.left\ R)
= disjoint (X3 U (R & m.right), 7.left) (D5)
= disjointg (X3, 7.left) A disjointg (R, 7.left) A disjointg (m.right, 7.left)
(D7&DR)
= disjointz (X3, A) A disjointg (0, w.left) A noSharingz (A) (D9&D6&D4)
= true A true A Bps (D1&D1&D11)

Thus the conjunction 3 A (3,5 becomes the condition for the recursive call body
to free a cell in its argument t1.

For the second boolean flag in the recursive call (2), we find a boolean
expression that ensures no sharing of a sub-part inside the left subtree t1
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disjoint(L1, Lo) gives a condition that L; and Lo are disjoint under B.
We apply the first available rule in the followings:

disjointz(A, X) 24 true, and disjointg (0, L) 2 true (1)
disjointg(X1, X2) 2 true (when X7 # X5) (D2)
disjointgz(m.root, 7.0) 2 true (when o = left or right) (D3)
disjointg (7 left, 7w.right) 2 noSharingg(B(7)) (D4)
disjointys gy (L1\R, L2) = disjointyg g gy (L1, L2) (D5)
disjoint(R, L) £ disjointz(B(R), L) (D6)
disjoint(Ly U1 Lo, Ls) 2 disjoint (L1, L3) A disjointg(La, Ls) (D7)
disjointg(Ly & Lo, L3) 2 disjointg(L1, Ls) A disjointg(La, L3) (D8)
disjoint (7.0, L) 2 disjointg(B(r), L) (D9)
disjointg(L1, L2) 2 false (for other L; and L) (D10)
noSharingz(L) |gives a condition that L is a set under B:
noSharingz(A) = Bhns (p11)
(where (s is the second dynamic flag of the enclosing function)
noSharingz(L) = true (when L = X, m.root, or ) (D12)
noSharingg (. 0) = noSharlngB(B(ﬂ)) (when o = left or right) (D13)
noSharingz(R) = noSharlngB(B(R)) (D14)
noSharingg (L Ul Lo) = noSharmgB(Ll) A noSharingz(L2) (D15)
noSharingg (L1 & Lg)

noSharingz(L1) A noSharingg(Ls) A disjointg(L1, La) (D16)
noSharings(L\R) 2 noSharingz(L) (D17)

Fig. 6. The algorithm to find a condition for the disjointness.

(noSharingz(L) in 1-APP). We use the memory-type w.left of t1, and find
a boolean expression that guarantees no sharing inside the multiset 7.left;

Bns becomes such an expression: noSharinggz(w.left) = noSharingz(A) = Bus
(D13 & D11).

The algorithm inserts a free command right before “Node (p,t2)” at line (3),
which deallocates the root cell of the tree t (I-FREE). But the free command
is safe only in certain circumstances: the cell should not already have been
freed by the recursive call (2), and the cell is neither freed nor used after the
return of the current call. Our algorithm shows that we can meet all these
requirements if the dynamic flag 3 is true; so, the algorithm picks 3 as a
guard for the inserted free command. The process to find (3 is similar to the
one for the first parameter of the call (2). We first collect constraints about
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SEMANTICS OF SAFETY CONSTRAINTS: 1) = C

nEser(L) iff [L]n C A1

n i Li#tly i ([La]n) N ([L2]n) = L

7 ): L1 Ceet Loiff ([[Ll]]n) NAL1E [[LQ]]??

ni LiC Ly iff [Li]n T [La]n

nE&ECE  iff nkE Ly Ceer Lo where Ly = U{L | (b— L) € &;, b ¢ false}

n = true  always
nEb=C iff (b < false) V (n =C)
nECAC  iff (nECi) A ECa)

Fig. 7. The semantics of the safety constraints.

conditions for which heap cells we should not free:

e we should not free cells that can be freed before (3 A By — m.left\R),

e we should not free the input cells when f is false (- — A), and

e we should not free cells that are included in the function’s result (true — Xj
U (R & 7.right)).

These three constraints are generated by rules I-APP, I-FUN and I-FREE in
Fig. 5, respectively. From these constraints, we find a condition that cell 7.root
to free is disjoint with those cells we should not free. We use the same process
as used for finding the first dynamic flag of the call (2). The result is .

5 Algorithm Correctness

The correctness of our analysis and transformation is proved via a type system
for safe memory deallocations. In section 5.1, we introduce a memory-type
system, and in section 5.2, we prove that our memory-type system is sound:
every well-typed program in the system does not access any deallocated heap
cells. Then in section 5.3, we prove that programs resulting from our analysis
and transformation are always well-typed in the memory-type system. Since
our transformation only inserts free commands, a transformed program’s
computational behavior modulo the memory-free operations remains intact.

5.1 The Memory-Type System

We use a safety constraint in our type system for the memory safety of pro-
grams. For instance, consider that a function takes a tree as its input, deal-
locates all of its right subtree, and then accesses its left subtree. For such a
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SYNTACTIC SUGARS

7C L 2 mroot L] (m.left & w.right) C L

PRECISE((L, fu1, f12)) = SET(L) A (L#collapse(p1)) A (L#tcollapse(u2))
PRECISE(L) 2 false

EHL = L#E 2 N{b= L#L |(b— L) e &}

b L &
R i)

B2 AN{VCB(V) |V e dom(B)}

LCue ! 2 LTI
(L1, i1, H2) Coree (L2, i, pth) 2 (L1 T L) A (1 Ctree #2) A (1 Ceree 115)
(Ly i1, p12) Coree L 2 collapse((L, 1, pi2)) = L
L' Ciree (L, pt1, p12) 2 false

- , A [ true, if they are a-equivalent,
H = tree—treell = false, otherwise.

R { 1 Ctree 1, for memory-types for trees,

1 E treetreett’, for memory-types for functions.

Fig. 8. The syntactic sugars of the safety constraints.

function, our type system deduces that its input tree must have no shared
sub-parts between its left and right subtrees. This judgment is expressed by
the following safety constraint:

|L#L | LCw L | LCL|ECE

= SET(L)
| b= C | CAC | true | false

p
C:=p

The exact semantic definition of C is in Fig. 7, and the definition of multiset
formula L is in section 3.1. Predicate SET(L) means that a multiset formula L is
indeed a set (i.e., a tree in L has no shared sub-part), Ly # L, means that L; and
Lo are disjoint, L1 C Ly means that multiset Ly includes multiset Ly, L1 Eget Lo
means that if we interpret them as sets, L, is a subset of Lo, i.e., every location
in Ly is also in Ly, and & C & means that & says more deallocations than &;
does. Constraint C holds if and only if for any substitution S for the boolean
variables,

Vn.goodEnv(n) = (n = SC).

Constraint C; is stronger than constraint Co (C; = Co) if and only if for any
substitution S for the boolean variables,

Vn.goodEnv(n) A (n = SC1) = (n = SCs).
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SUBSTITUTION

S CH{L/V |Vis A, X, R, m.root, w.left, or w.right, L is a multiset formula } U
{b/B | B is a boolean variable, b is a boolean expression }

where

supp(S) ={V |(L/V) e S, Vis A, X, or R} U
{7 | (L/m.root), (L/m.left), or (L/m.right) € S} U
{B1(b/B) €S}

APPLYING A SUBSTITUTION

Sﬂt — {SL? if Htree = L
e <‘SL7 ‘Sﬂla S/-L2>> if Htree = <L, M1, ,LL2>
Sﬂtree—»tree = HUtree—tree
SA = {id— Sp | (id— p) € A}
SB — { {V—SL|(V+— L)e B}, if supp(S) Ndom(B) =0
S(AvedomB)V EB(V)),  otherwise
SE={Sb—SL|(b—L)e&}

SET(SL), if C = seT(L)

(SLy) op (SL2), if C = Ly op Ly where op = #, Cget, or T
SC =< Sb= 8C, ifC=b="C

(SC1) N (SCa), ifC=C1NCo

C, if C = true or false

Fig. 9. Substitution.

In Fig. 8, we define some notations and make clear that the bound B (a map
from names to multiset formula, Fig. 3) and the pre-order relation L i (in
page 9) of memory-types for trees are expressed in our constraints.

By using a safety constraint, we define the memory-types for functions as:

Mtree—»tree H= Aﬁ)‘ﬂns)\Azlv (87 ,utree> L7 g) & C

A function takes two boolean parameters § and 3,5 and one tree-typed value
named A. When constraint C is satisfied, the function can access only the
heap cells in L, can deallocate only those in £, and returns a result that has
memory-type fiiee- Set V is the set of new names that appear in the type, and
B imposes conditions on those names. Since we assume that every function is
closed, we consider only closed memory-types: every name or boolean variable
is either 3, By, A, or the names in V.
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FREE NAMES

{L}, ifL=A, X, or R

free(L { {r}, if L = m.root, mleft, or m.right
free(Ly) U free(Ls), if L = Ly U Ly, Ly & Lo, or L1\ L
0, ifL=10
ree(L), if pitree = L

free(ptree) = { free(L) U free(py) U free(us), if pree = (L, 1, p12)
free Ntree—»tree) =0

free(A) = {free(n) | (id— p) € A}

free(B) = {free(L) U{V'} | (V — L) € B}

free(€) = {free(L) |(b— L) € £}
free(L), if C =setr(L)
free(Ly) U free(Lsg), if C = Ly op Ly for op = #, Ceet, Or C

free(C free(C’), fC=b="C
free(Cy) U free(Cq), if C =C1 ACa
0, if C = true or false

free(Aq, -+, An) =, free(4;)

Fig. 10. Free names.

We have a mapping from the memory-types in the algorithm to those in the
memory-type system:

T(Utree) = Htree
T(VA.A — 3X.(L1, Ls)) = AB\Gus ANA3 {X, R} .
({R L1}, R, Lo, {ﬁ < A\R, true < X\R})
&(Bns = SET(A))
T(A) = {2z~ T(A(z)) |z € dom(A) }

Our plan of program transformation is manifest in this translation: (1) we do
not deallocate the heap cells in the result (A\R and X\R): (2) only when 3
is true, we deallocate the input tree (3 < A\R): and (3) B should indicate
that the input has no shared sub-part ((,s = SET(A)).

The memory-type system is defined in Fig. 11-13. In the definition, we use
substitutions and function “free” in Fig. 10 which gives a set of free names in
the arguments. Typing judgment “A F v : p& C” for a value v (in Fig. 11)
means that for a given memory-type environment A, value v has memory-type
i under constraint C. A Leaf-value has a memory-type equal to or greater than
() (LEAF). An identifier id (a variable or a location) has a memory-type equal
to or greater than A(id) (ID). The memory-type of a function value follows
the result of its function body (FUN).

Typing judgment “A e : IV. (B, u, L,E) & C” for an expression e (in Fig. 11)
means that for a given memory-type environment A, if constraint C is satisfied
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AFov:p&C

id=x orl ide dom(A)

C=0Cu C = A(id) Cp
(LEAF) : (ID)
Al Leaf : p&C AlFid: p&C

C = (ANBNBus AA V.0 &C)C p
{y— p,z— Al Fe:V.0&C

AFfixy (B, Bus) \ve: p&l’

(FUN)

At e:IV.0&C where o = (B, u, L, E) Every bound name is fresh: V N

free(A) = 0.
Arwv:(L Y& C - ( )
| | | VALUE
v 1, p2 (FREE) At wv:30.(0,p,0,0)&C
Al free v when b : ,
30. (0,0,0, {b— L}) &C AFvr: (ABABus AAIV. 0 &C) & C

AFwvy: L&C free(L)NV =10

Al vy
vi t i &C (NODE) S £ {L/A, b/, bus/ s}

A+ Node (v1, v9) : — (APP)
EI{X} (@7 <X, Ml,ﬂQ),@,@)&c A V1 [b, bns] Vg HVSO'&(SC ANC )
AI—v@&C Al—elzﬂvl.al&cl
At er:3V.0&C where o1 = (B, 1, L, £)
(LCASE) AU {.%' — M} Feg: V. 090&Co
Al casew _
ViNYy = 1]
(Node (z1,x2) =>€1) . (LET)
(Leaf =>e3) : V.0 &C AbFletz=e iney:
VL UVs.((01 &Ch); (02 &Ca))
AFv: (L p,u)&C
AU{x;— pit ke :3V.(B,u, L,E)&C
(NCASE)

A b case v (Node (z1,x2) =>e1)(Leaf =>e9) : IV. (B,u, LU L', &) &C

where

(01&C1); (02 & Ca) 2 (By U Ba, i, L1 (1 Lo, & U &)
& (Cl ACo A (51#[12) A (51#52))

when g; = (BZ, iy Liagi)-

Fig. 11. The memory-type system.

and the heap cells in L and & are available, program e is safely evaluated to
a result of memory-type p. During the execution, the program may access
the heap cells in L and may deallocate those in £. A set V of new names is
introduced in the derivation and satisfies constraint B. “free v when 0" has
memory-type () and deallocates v’s root cell when b is true (FREE). A Node-
expression introduces a new name X for its new heap cell, and has a memory-
type whose root is X (NODE). For “case v (Node (x1,22) =>€;1) (Leaf =>e3),”
when v has memory-type () which means that v is a Leaf-value, the result of
case-expression is the same as that of its Leaf-branch e; (LCASE), and when
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Every bound name is fresh: V N

Ate:W.0&C where o = (B,u, L,E)

free(A) = 0.
Abe:V. o' &C AF@:HVU{XZ'}.SU&SC
V' N free(C,o) C V S 2 (X)) X}
(V.o &C)C (V.0 &) X, & free(0,C) X, X; ¢V
(WEAK) (MERGE)
Abe:V.o&C AFe:VU{X}.o&C

AFe:IW.Sc&SC ¢V

L 2 (L1, La, L3) PRECISE(L)

sa {Ly/m.root, Ly /7. left, Ls/m.right}
AFe:FVU{r}. (o U{r — collapse(u)}) &C

(mINT)

Abe:W.So&SC S2{L/RY R¢V
AtFe:WVU{R}. (cU{R— L})&C

AU {z — (m.root, w.left, m.right)} Fe: V.0 & C
AU{z—0tFe:IV.0c&C 7V

AU{x +— pitree} Fe: IV U{r}. (0 U {m — collapse(pitree) }) & C

(RINT)

(PRUNE)

where

o UB 2 (BiUB, p1, L1, &)
(E|V1.0’1 &Cl) C (HVQ.UQ &Cg) iff
Vi D Vy, By = By, and By ACy = C1 A (p1 T po) A (L1 Cset L2) A (€1 C &)

when o; = (B;, wi, Li, &;).

Fig. 12. The structural rules of the memory-type system.

v has a structured memory-type which means that v is not a Leaf-value, the
result of case-expression is the same as that of its Node-branch e; (NCASE). A
function application has the result of its function body by replacing the formal
parameter A, 3, and (.5 by the actual argument L, b, and b, respectively
(APP). For an expression “let x =e; in eg,” its memory-type is that of e,
it uses what e; or ey uses, it deallocates what e; or e, deallocates, and its
constraint is, in addition to those of e; and e, that the heap cells freed by e;
do not overlap with those used or freed by ey (LET).

The memory-type system has five structural rules in Fig. 12. We can conclude
with a greater result (WEAK). We can introduce new name 7 by replacing
Ly, Lo, and L3 by m.root, w.left, and m.right, respectively, and recording that
the collection of m.root, w.left, and m.right is equal to or smaller than the
collection of Ly, Ly, and L (7INT). We can merge several X;s into one name X
(MERGE). We can introduce new name R by replacing L by R in the judgment
and recording that R is equal to or smaller than L (RINT). We can analyze
a program by separating two cases of a variable in the environment. The
separation is when the variable has a Leaf-value or not. The result is the one
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AFk:3IV.0&C whereo = (B,u,L,E)

Every bound name is fresh: ¥V N
free(A) = ().

AU{z—pu}tte:V.01&C,

where o1 = (B, u1, L, E)
AU{O+—>,U1}|—]{ZZE|V2.O'2&C2
ViNnVy, =10

(NIL)

(CONT)
AU{e— u}te:

30.(0,0,0,0)&C

AU{e— pu}tt (z,e) k:
VLU Vo ((01 & C); (02 & Co))

Fh:A
A= {ll'—><X1, H(1,1)> M(12)>,"',ln'—><X H(n,1), M(n,2)>}
' ' A [ A(l), when ag; ;) =1
Vi # j. Xi # X; VZ,J.H( = { ’ when a(; j) = Leaf
& (HEAP)
F{li = (aay,aa2)), 5 ln = (ama) ame)) - A
AFf:e Vi € f.A(L) = (X, i, 1l
(FREED)
AF f:{true— X; |l; € f}
l_ (67 h? f’ kj)

Fh:A AFf:&
At e: V.01 &Cp where o1 =

VlﬂVQZ(Z)

By ABs = Ci ACa A C(071) A\ C(L?) A C(072) where C(i,j)

(B1,p1, Ly, &)
AU{e— p1}Fk:3Vs.09&Cy where o9 =

(Ba, p2, L2, E2)

= 51#[43' A gz#gj

F (e, h, f, k)

where

(01&C1); (02 & Ca) 2

when g; = (BZ, iy Ll,gz)

(STATE)

(BiUBa, g, L1 U Ly, &1 U &)
& (Cl ACo A (gl#Lg)

N (E1#E2))

Fig. 13. The memory-type system for states.

that both cases agree (PRUNE).

The memory-type system for a state is defined in Fig. 13. A state (e, h, f, k)
is well-typed when each component is well-typed, the constraints (C; A Cz)
of expression e and continuation k are satisfied, and it is safe to sequentially
evaluate e and k& when the heap cells of locations f are freed (STATE). Note
that the side conditions make sure that the freed heap cells of locations f
should be neither used nor freed by e or k (Ci,1) A C(o,2)) and the heap cells
freed by e should be neither used nor freed by k (C(1,2)). In rules (NIL) and
(CONT), we use a special identifier ® for the argument of a continuation.
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5.2 The Memory-Type System Is Sound

We prove the soundness of the memory-type system by the syntactic ap-
proach [21]. The key propositions are, as usual:

e subject reduction: if a well-typed state has a transition, the next state is
also well-typed (Proposition 1); and

e progress: there exists a transition from the well-typed state, or the well-
typed state is final (Proposition 2).

In order to achieve the above two key propositions, we need to establish several
lemmas:

e we can rename the names in our judgments (Lemma 1);

e we can substitute multiset formulas for free names, or boolean expressions
for free boolean variables in our judgments (Lemma 2);

e we can substitute values for program variables in our judgments when their
memory-types are the same (Lemma 3); and

e our typing derivation is monotonic (Lemma 4).

Lemma 1 (Fresh Names) For a memory-type environment A, an expres-
sion e, a set V of names, a result o, and a constraint C, if At e:IV.0&C,
then for a substitution S = {V'/V'} with V' being a fresh name of the same
kind as V, SAtFe: H{SV |V eV} . So&SC.

Proof. By structural induction on the derivation trees. O

We can apply a substitution to judgments only when the substitution respects
the conditions of good environments. Note that a substitution can violate the
good environment conditions; for instance, m.root and 7.left are disjoint in
a good environment whereas S(m.root) and S(7w.left) can overlap each other
when & = {X/m.root, X/m.left}. The side conditions of substitution (b)—(d)
in Lemma 2 is for preserving the conditions of good environments.

Lemma 2 (Type Replacement) For constraints C;, Co and C, a memory-
type environment A, a value v, an expression e, a memory-type p, a set’V of
names, and a result o, the followings are true:

(1) ZfCl = CQ, then SC| = SCQ,’

(2) if AFv:pu&C, then SAFv:Su&SC; and

(3) if A b e : IV.o&C holds and V N free(S) = 0, then SA F Se :
V. S50 & SC holds with the same size of derivation tree; and the same
lemma holds for continuation k,
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when S is either

(a) {L/R};

(b) {Li/m.root, Ly/m.left, Ls/m.right} where PRECISE((Ly, Lo, L3)) holds;
(¢c) {L/X} where L consists of fresh X;s and SET(L) holds;

(d) {L/A} where L consists of fresh X;s and A;s; or

(¢) {b1/Brs--+.bu/Bn}

Proof. The proof is in [22]. O

We can replace a variable in judgments by a value when the variable and the
value have the same memory-type. The exception is that the memory-type is
not precise: a memory-type g is not precise if and only if y is structured and
its root and left /right sub-tree can be overlapped; for instance, (X;, X3, X3) is
not precise because the root part X; and the left sub-tree X; are overlapped.
This exception is because we only have a pruning rule PRUNE restricted for
a variable: after replacing a variable by a value, since we cannot apply rule
PRUNE in the same way, we may not derive the same judgment.

Lemma 3 (Term Replacement) For a memory-type environment A, a vari-
able x, values v and v', an expression e, memory-types . and i', a constraint
C, a set V of names, and a result o, the followings are true:

(1) IfAU{z — ptEv @/ &Cand A v: p&C, then A+ v {v/z}: p/ &C.
(2) f AU{z—ptFe:W.o&C and AFv:p&C, then At e{v/x}:
V.0 & C unless v is a tree-typed identifier and PRECISE(u) does not hold.

Proof. The proof is in [22]. O

Our typing derivation is monotonic. When a judgment holds with a memory-
type environment A, by using a stronger one than A, we can derive another
judgment whose result is stronger than the original one.

Lemma 4 (Monotonicity) For a memory-type environment A, a value v,
an expression e, a memory-type u, a constraint C, a set V of names, and a
result o, the followings are true:

(1) If AFov:p&C and C = A'C A, there exists a memory-type p' such
that A'Fv: /& C and C = i/ C p.

(2) If
(a) C= A CA,
(b) AFe:3IV.0&C, and
(¢c) VNiree(A’) =0,
then there exist a result o’ and a constraint C' such that A"+ e : AV. o' &’
and (V.o &C') C (V.0 & C). Moreover, the same lemma holds for con-

tinuation k.
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where C = A" C A if and only if dom(A’) D dom(A) and for all id € dom(A),
C = A’(id) C A(id).

Proof. The proof is in [22]. O

Proposition 1 (Subject Reduction) For a state (e, h, f, k) and (e, 1, f' k'),
if = (e, h, f, k) and (e, h, f, k)~ (', ), f', k'), we have & (e, I, f', k).

Proof. For each transition (e, h, f,k) ~ (¢/,h', f',k’) in Fig. 1, we derive
(e, 1, [ k") from | (e, h, f, k). By (STATE),

Fh:A, (1)
AFf:&, (2)
VinV, =10, (3)
AFe:3IVy.01&Cy where o1 = (By, p1, L1, &), (4)
AU{e+— pi} Fk: IV 09 &Cy where o9 = (Bs, g, Lo, &), and (5)
(Bl A Bg) = C; ANCay A 8(071) A\ C(l’g) A C(O’g) (6)

where C(; ;) = E#L; N E#E;. In order to avoid the case that (4) ends with
the structural rules (WEAK), (MERGE), (RINT), (7INT), and (PRUNE), we first
prove that there is another derivation tree for & (e, h, f, k) where (4) does
not end with the structural rules. We prove it by induction on the size of the
derivation tree of (4):

e case (WEAK): : The assumption is that (4) is derived by (WEAK); that is,
there exist Vi, C1, and o} such that

AFe:3V,. (B, L, &) &, (7)
Vi Nfree(oq,Cy) C Vi, (8)
Vi CVy, (9)
By = By, and (10)
By ACir = Cy A (py € pa) A (LY Cser L1) A (E] E &1). (11)

We can assume that V] \ V; are fresh by Lemma 1 and (8). Then (3) and
(9) imply that

(5) implies that
AU{.H/Ll}'_kElVQO'Q&(CQ/\Bll/\BQ) (13)

because
- when k=¢, AU{®+— 1} Fe:30.(0,0,0,0)&C for any C, and
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- when k = (x,e) -k, (5) has sub-judgment AU{z — u1} Fe:IV.0&C for
some V, 0 and C. By (WEAK), AU{x+— }Fe:IV.0c& (CAB)ABy).
Then by (CONT), we achieve (13).

(6), (10) and (11) implies that B} A By = gy C py. Then By A By A Cy =

AU{e— i} CAU{e+— p}. (12) implies that free(y)) NV, = () because

free(p)) € V. Then by Lemma 4, (13) implies that there exist Bj, uh, L,

&5, and Cj such that

AU{e— i} FEk:3Vs (By, sy, Ly, E5) & Cs, (14)
B, = B,, and (15)
By ABy ACy = Cy A (pty E o) A (L Eer L) A (€5 E &). (16)

(6), (10), and (15) imply that

Bi/\BéiBl/\BQ/\Cl/\CQ. (17)
(11), (16), and (17) imply that

By A By =

CiNCON (L] Ceet L) A (ETT &) A (L Caer Lo) A (E5C &) (18)

(6) and (17) imply that

By A By = Eg# Ly N EogH#EL N EogH Ly N Eg#E N E1F# Ly N E1#E5.  (19)
(18) and (19) imply that

By A By = Eg# Ly N EoHEL N Eo# Ly N Eo#ES N EJFLY N EJ#E.  (20)

By (STATE), (1), (2), (7), (12), (14), (18), and (20) imply that - (e, h, f, k).
case (RINT): The assumption is that (4) is derived by (RINT); that is, when
S={L/R}, V1 =V{U{R}, and 0y = 0y U{R — L},

At e:3V).Soy & SC. (21)
By Lemma 2, we can apply S to (5) and (6):

SAU{e— Sy}t kI, Soy& SCy, and (22)
SBi1 NSBy) = SCy ASCy AN SCp1y ANSCii2) A SCo,2)- (23)

Note that since R does not appear in A and &, SA = A and S& = &,
that is, SC ) = Eo#SLi NEWHSE;. Then by (STATE), (1)—(3) and (21)—(23)
implies that F (e, h, f, k).

case (mINT) and (MERGE): These cases are proved similarly to the case
(RINT).

case (PRUNE): (4) cannot be derived by (PRUNE) because dom(A) has only
locations.
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We prove by case analysis with the assumption that (4) does not end with the
structural rules.

e case (free [ when b, h, f, k) ~ (Leaf, h, f U{l},k) when! € dom(h),l & f,
and b < true: In this case, (4) is

Al free [ when b: 30. (0,0,0, {true — L}) & C;.
By (FREE), A1 : (L, 1, o) & Cy for some py and pe. By (HEAP), A(]) =
(X, py, ph) for some X, pf, and ufh, and by (D), C; = X C L. Since (6)
implies that ) = C;, we have X C L. By (FREED), (2) implies that

AF fU{l}:&U{true— X}. (24)
By (LEAF) and (VALUE),

A+ Leaf : 30.(0,0,0,0) & C;. (25)
Since & U {true — X} C & U &, (6) implies that

By A By = (& U {true — X })#Ls A (& U {true — X })#&s. (26)
Therefore by (STATE), (1), (3), (5), (6), and (24)—(26) imply that

F (Leaf, h, f U{l}, k).

e case (e, h, f, k) ~ (e;{a1/x1,az/x2} ,h, f, k) when h(l) = (a1,a2), | & f,
and e = case | (Node (x1,25) =>e1) (Leaf =>e5): (4) is

AFe: Hvl.(Bl,,UJl,Ll,gl)&Cl. (27)

By (HEAP), A(l) = (X, p1, po) for some X, and precise p; and puo. Since it
is impossible to C = A(l) C 0 for any C, (27) is derived by (NCASE); that
is,

AU{$Z'—>/L;}|_€1 . ElVl.(Bl,,ul,Lll,Sl)&Cl, and (28)

where Lj UL = L;. Since A(l) = (X, 1, p2), by (ID), (29) implies that
C1 = u; C py. By Lemma 4, (28) implies that

A U {ZCZ — ILL,L} [ €1 - ElVl (Bl,/,bl,Lll,gl) &Cl (30)

By (HEAP), (ID), and (LEAF), A F a; : u; &Cy. Then by Lemma 3, (30)
implies that A F ey {a1/x1,as/x2} : V1. (By, 1, LY, 1) & Cy. By (WEAK),

AF €1 {al/l’l?ag/l’g} . 3V1 (Bl,ﬂl,Ll,gl) &Cl (31)
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Then by (STATE), (1)—(3), (5), (6), and (30) imply that
'_ (61 {al/xl, (IQ/ZEQ} s h, f, k)

o case (F [b,bys| v, h, f, k) ~ (e{b/B, bus/Bus} {F/y} {v/z}, h, f, k) where F =
fix y [B1, Bao) Av.e: (4) is

AF F [bbys) v:3IV.So& (SCAC.
By (APP), when S = {L/A, b/, bus/Bus}

AFfix y [0, Ba] Av.e : p&C' where pp = A3 \Bus AAIV. 0 & C, (32)
AFv:L&C', and (33)
free(L) NV = 0. (34)

By (FUN), (32) implies that {y — pu,z+— A} F e: IV.0&C. By (34) and
Lemma 2, applying S to the judgment,

{y = 2 LY F e {b/B,bus/Bus} : IV. S0 & SC.
By Lemma 4,
AU{y = o — LY F e {b/B,bys/Bus} : IV. So & SC.
By (32), (33), and Lemma 3,
A e{bi/Br,bo) B} {F/y} {v/z} : IV.So & (SCAC). (35)
By (STATE), (1)-(3), (5), (6), and (35) imply that
= (e{b1/Br,bo/ B} {F/y} {v/x} b, [, k).
The proofs for other cases are in [22]. O

Proposition 2 (Progress) If a state (e, h, f, k) is well-typed (i.e., = (e, h, f, k)),
then (e, h, f, k) is final (i.e., e is a value and k is an empty continuation €),
or there exists a transition (e, h, f, k)~ (¢/, 0, f', k") for some (e, 1, f' k).

Proof. We consider only the cases of memory errors; non-closed or ill-typed
states in the ordinary type system are straightforwardly rejected by our memory-
type system.

e case (free [ when b, h, f, k) when b < true, [ € f, and [ € dom(h): Assume
for contradiction that - (free [ when b, h, f, k). By (STATE),

Fh A, (36)
AFf:&, (37)
AF free [ when b: 3V.0 & C where 0 = (B, 1, L, E), and (38)
B = C A (E#E). (39)
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As we did when we prove Proposition 1, we can assume that (38) does not
end with the structural rules; that is, by (FREE), B =0, & = {b— L'}, and

AFL: <L,,M1,M2>&C

for some g1 and po. By (ID), C = A(l) T (L', ju1, p12). By (HEAP) and (36),
A(l) = (X, iy, ) for some X, piy, and pify. Since B=0,B=C,C = X C L/,
and & = {b— L'}, and b < true, we can conclude that (39) implies that
Eo#{true — X} holds. By (FREED) and (37), & has {true — X}. Then our
conclusion becomes {true < X }#{true — X} which does not hold.

e case (case | (Node (z1,x9) =>e;) (Leaf =>e3), h, f, k) when [ € f: Assume
for contradiction that F (case [ (Node (x1,x2) =>e1) (Leaf =>e2), h, f, k).
By (STATE),

Fh:A, (40)
AF f:&, (41)
A& case | (Node (z1,x2) =>e1) (Leaf =>e5) : V. (B, pu, L, E) & C,(42)
B = C A (Eo#{true — L}). (43)

We can assume that (42) is derived by (NCASE); that is,

Al-l:(L,ul,u2>

for some gy and po. By (1D), C = A(l) C (L, py, u2). By (HEAP) and (40),
A(l) = (X, pl, pb) for some X, py, and pfy. Since B=C and C = X C L, we
can conclude that (43) implies that B = E#{true — X }. By (FREED) and
(41), & has {true <— X }. Then our conclusion becomes B = {true — X }#
{true — X}; that is, B = X#X which does not hold. O

Theorem 1 (Memory-Type Soundness) If a state (e, h, f, k) is well-typed
in the memory-type system (i.e., = (e, h, f, k)), then (e, h, f, k) does not go to
a stuck state: (e, h, f, k) ~* (v, ', f',€) for some v, I, and f’, or a transition
from (e, h, f, k) does not terminate.

Proof. Assume for contradiction that (eq, ho, fo, ko) is well-typed in the memory-
type system but it causes a memory error. Then we can prove that a faulty
state can be well-typed, which conflicts with Proposition 2. Suppose that a
transition from (e, ho, fo, ko) to a faulty state (e, hp, fu, kn):

(67 ha fa k) ~ (elahbflvkl) NN (enahn7fnakn)-

We can prove every (e;, h;, fi, ki) is well-typed by induction on i.
e case ¢ = 0: The assumption is that - (e, ho, fo, ko).

e case ¢ > 0: By induction hypothesis, - (e;_1,h;_1, fi_1, ki—1). Since there
exists a transition (61‘_1, hi—l; fi—lu l{fi_1> ~ (61'7 hi, fi7 ]{JZ), by PI‘OpOSitiOH 17
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- (eiahivfiaki)'

Therefore a well-typed state does not go to a stuck state. O

5.8 Transformed Programs Are Well-Typed

Now we prove that programs transformed by our algorithm do not cause any
memory error. The key propositions are two.

e Transformed expressions respect preservation constraints: our algorithm
does not insert any memory-free command that violates preservation con-
straints (Proposition 3).

e Transformed expressions are well-typed: for each transformed expression,
there is a corresponding judgment in the memory-type system which is
based on the result of our analysis and transformation (Proposition 4).

In order to achieve the above two key propositions, we first prove for two
sub-routines of the algorithm.

e One is freeCond in Fig. 5 which takes a bound B, a preservation constraint
£, and a multiset formula L, and gives a safe condition to deallocate the
heap cells in L without violating preservation constraint £ under bound B
(Lemma 5).

e The other is reduce which takes a bound B and a multiset formula L and
gives a multiset formula which is greater than or equal to L under bound B
(Lemma 6).

Lemma 5 For a bound B, a preservation constraint £, and multiset formulas
L, Ly, and Ly, when Cns = (Bus = SET(A)), the followings are true:

(1) (B ACys) = (noSharingz(L) = SET(L));
(2) (B /\Cns) = (disjointB(Ll, Lg) = Ll#L2>; and
(3) (BACys) = ({freeCondgg(L) — L} #E).

Proof. The proof is in [22]. O

Lemma 6 For a bound B and a multiset formula L, reduceg(L) gives a mul-
tiset formula Ly in a reduced form such that B = L C Lg.

Proof. The proof is in [22]. O

Proposition 3 (Transformed Expressions Respect Constraints) Fora
bound B, a preservation constraint £, a boolean value b, and an expression e,
if e is transformed to €' by the algorithm (i.e., B,E,b> eAB D) = o . &)
then (B A Cps) = E'#E holds where Cps = [ns = SET(A).
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Proof. We prove it by induction on the number of calls:

e case (I-VALUE and I-NOF): &' = ().

e case (I-FREE): Since b’ = freeCondp ¢/ (L) where £” = EU{b — collapse()},
by Lemma 5, BA Cps = {0 — L} #E&". Therefore B A Cps = {V/ — L} #E
also hold.

e case (I-CASE): By induction hypothesis, B A Cps = E#E for i = 1 or 2.
Then by definition, B A Cps = (€1 U &E)#E also holds.

e case (I-LET): By induction, BACys = & #(EU{true — L,b < collapse(x)})
and B A Cps = EH#(E U &E); that is, BA Cys = E#E for i = 1 or 2. Then
by definition, B A Cps = (&€ U &)#E holds.

e case (I-APP): By Lemma 5, B A Cys = {b’ — L\R} #E. O

Our analysis and transformation system always gives well-typed programs in
our memory-type system. That is, for each transformed expression, there is
a corresponding judgment in the memory-type system which is based on the
result of our analysis and transformation.

Proposition 4 (Transformed Expressions Are Well-Typed) The follow-
mgs are true:

(1) For a value v, if the algorithm transform v to v’ (i.e., >v™H = ') then
AF v :p&true holds.

(2) For a bound By, a preservation constraint &y, a boolean value b, and an
expression e, if the algorithm transform e to e’ (i.e., By, &y, b>e&Bwl) =
e &), when'V is a set of fresh names introduced during the analysis phase
(i.e., A>e: B, u, L),
(a) when b = false, there exists C such that (By A Cns) = C and

T(A) ke V. (B, T(p),L,E)&C; and

(b) when b = true, there exists fresh R and C such that (By A Cys) = C
and

T(A)Fe' :3V. (BU{R — collapse(u)}, R, L,E") & C

where &' = (E\R) U {true — (I;IXGVX)\R}
and E\R={b—I\R|(b—L)€E}.

Proof. In proof, we do not explicitly put the translation function 7 because
it is clear from the context where 7 should appear.

e case (I-FUN/U-FUN): The assumption is that >(fix y Az.e)®# = (fix y
Az.€') is derived by (I-FUN) and the last step of (U-FUN); that is,

p=VAA—3IX. (L, Ly) and (44)
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B,{=f — A}, true > e{fmra—AbBull) - of . g (45)

where L' = collapse(y/), Ly = S(reduces(L')), Ly = S(reduces(L)), S =
{X/Xy, -+, X/X,}, and X;s are new Xs in V. By induction hypothesis,
(45) implies that there exists C such that

{f—pr— AFe:IVU{R}.
(BU{R+ L'}, R,L,(E\R) U {true < (1;X;)\R}) &C (46)

BACy=C (47)
By Lemma 6,
B = (L' C reduceg(L')) A (L C reduces(L)). (48)

Note that these reduced forms consist of only A and X;s in V. For a
reduced form L, when &' = {(1;X;)/X}, we have LC S§'(SL) because
§'S ={(;X;)/ X1, -+, (1;X;)/ X, }. Then (48) implies that

B= (I'CSL)A(LCSLy). (49)
By Proposition 3, (45) implies that B A Cps = E# {0 — A}, and
E#{-B—A}=EC(E\A)U{B— A}

because

- when = false, E# {A} = € = E\A, and

- when (§ = true, true = £ C (E\A) U {true — A}.
Then

E\RC ((E\A)\R) U {8 — A\R}. (50)
Moreover, £ C {true — U free(£)} and by Lemma 6,

B = Ufree(€) Cye reduces( L free(E)).
Since the reduced form consists of A or new X;s in V,

reduces( U free(€)) Ceer AU (U x,ev X5).
Then (50) implies that

B= E\R C {true = (AU (U x,evX)\A\R, 38— A\R}

= &' {true — X\R, 3 — A\R} (51)

because A#X;. Then by (WEAK), (46), (47), (49), and (51) implies that

{f— p,z— A} e :IVU{R} _ '
(BU{R— S'Li} R, S'Ly, S {true — X\R, 3 — A\R}) & C.s
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By (MERGE),

{f—p,x— A} F e :3dom(B) U {X, R}.
(BU{REC L1}, R, Ly, {true — X\R, B A\R}) &Cy

Since the result part has only free names A, X, and R, by (WEAK),

{f—pz— A} Fe:
X, RY. ({R— L1}, R, Ly, {true — X\R, 8 — A\R}) & C,s

By (FUN) and the definition of 7" in page 21, A F fix f Az.e’ : T (p).
case (I-FREE/U-NODE): The assumption is that when e = free x when ¥';
Node (v}, v4) which is let y = free = when b’ in Node(v},v)) for some fresh

Y,

By, £, b > Node(vy, v) 000D = ¢ (B — L}

where = (X, uy, pio) is derived by (I-FREE) and (U-NODE); that is,

V' = freeCondp, ¢ (L), (52)
&y = EyU{b— collapse(u)}, (53)
A(z) = (L, uy, py) for some 1} and p5, and (54)
o) = o (55)

By induction hypothesis, (55) implies that A - v} : u; & true. By (NODE),
A+ Node(vy,vh) : H{X}. (0, 1, 0,0) & true.
Since y is fresh, by Lemma 4,
AU {y — 0}  Node(v),vh) : H{X}. (0, 1, 0, 0) & true. (56)
Since A(z) = (L, !, pb), by (ID), A+ : (L, uy, ph) & true. By (FREE),
A+ free x when V' : 30. (0,0,0,{b' — L}) & true. (57)
By (LET), (56) and (57) implies that
AFe:3{X}. (0,0,0,{0 — L}) & true (58)

which proves for b = false.

Now we prove for b = true with C = (V' = L#collapse(u)). Since C =
{V/ = L} Cet {b’ — L\collapse(,u)} and p C collapse(u), by (WEAK), (58)
implies that

Ake:3H{X} ((Z), collapse(y), 0, {b' — L\collapse(,u))} &C.
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By (RINT),
At e:3{X, R} ({R — collapse(u)}, R, 0, {b/ — L\R}) &C.

By Lemma 5, (52) implies that By A Cps = {b' — L} #&}. Since &} includes
(b — collapse(t)) and b = true, By A Cys = C.

The proofs of other cases are in [22]. O

Theorem 2 (Algorithm Correctness) For every well-typed closed expres-
sion e, when e is transformed to € by the memory-usage analysis (0 > e :
B, i, L) and the free-insertion algorithm (B, 0, falser> e@BwL) = ¢ . £) then
expression €' does not cause a memory error.

Proof. By Proposition4, ) ¢’ : 3V. (B, u, L, E) & Cys for some V. By Lemma 2,
we can apply substitution S = {#}/A} to the judgment. As a result,

OFé:3V.(SB,Su,SL,SE) & true.

By (HEAP), - @ : (. By (FREED), 0 - @ : 0. By (NIL), {e — pu} F € :
30.(0,0,0,0)

& true. Therefore by (STATE), F (¢/,0,0,¢). Then by Theorem 1, (¢/,0,0,¢)
does not go to a stuck state. O

6 Experiments

We experimented the insertion algorithm with ML benchmark programs which
use various data types such as lists, trees, and abstract syntax trees:

program ‘ lines ‘ description ‘

sieve 18 | prime number computation (size=10000)

gsort 24 | quick sort (size=10000)

merge 30 | merging two ordered integer lists (size=10000)

msort 61 | merge sort (size=10000)

queens 66 | solving eight queen problem

mirage 141 | an interpreter for a tiny non-deterministic programming
language

life 169 | “life” from the SML/NJ [23] benchmark suite (loop=>50)

kb 557 | “knuth-bendix” from the SML/NJ [23] benchmark suite

k-eval 645 | an interpreter for a tiny imperative programming language

nucleic | 3230 | “nucleic” from the SML/NJ [23] benchmark suite

We first pre-processed benchmark programs to monomorphic and closure-
converted [24] programs, and then applied the algorithm to the pre-processed
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program‘ lines ‘(1) totala‘(Q) reuse“‘(2)/(1)‘cost(sb)‘

sieve | 18| 161112] 131040] 8L.3%| 0.004]  Mmabssest =
gsort 24 675925 617412| 91.3% 0.007 10 - :

merge 30 120012 59997| 50.0%| 0.007
msort 61 440433 390429| 88.7% 0.019
queens 66 118224 6168 5.2%| 0.017
mirage | 141 208914 176214| 84.4%| 0.114
life 169 84483 8961| 10.6%| 0.113 : 5 5
kb 557 | 2747397 235596| 8.6% 0.850 0001 0" 700 1000 10000
k-eval | 645 | 271591 161607| 59.5%| 1.564 program sise (logarithmic scale)
nucleic| 3230 | 1616487 294067 18.2% 3.893

a

words: the amount of total allocated heap cells and reused heap cells by our
transformation

b seconds: our analysis and transformation system is compiled by the Objective
Caml 3.04 native compiler [25], and executed in Sun Sparc 400Mhz, Solaris 2.7

Fig. 14. Analysis cost and reuse ratio.

programs.

We extended the presented algorithm to analyze and transform programs with
more features. (1) Our implementation supports more data constructors than
just Leaf and Node. It analyzes heap cells with different constructors sep-
arately, and it inserts twice as many dynamic flags as the number of con-
structors for each parameter. (2) For functions with several parameters, we
made the dynamic flag § also keep the alias information between function
parameters so that if two parameters share some heap cells, both of their dy-
namic flags # are turned off. (3) For higher-order cases, we simply assumed
the worst memory-types for the argument functions. For instance, we just as-
sumed that an argument function, whose type is tree — tree, has memory-type
VA.A — 3X.(L,L) where L = (A® A) U (X & X). (4) When we have multi-
ple candidate cells for deallocation, we chose one whose guard is weaker than
the others. For incomparable guards, we arbitrarily chose one.

The experimental results are shown in Fig. 14. Our analysis and transforma-
tion system achieves the memory reuse ratio (the fifth column) of 5.2% to
91.3%. In the table of Fig. 14, the second column is the number of lines, the
third column is the amount of heap cells allocated during the execution of
the original programs, the fourth the amount of heap cells reused during the
execution of the transformed programs, the fifth its ratio, and the sixth the
cost of our analysis and transformation. For the two cases whose reuse ratio
is low (queens and kb), we found that they have a number of data structures
that are shared. The kb program heavily uses a term-substitution function
that can return a shared structure, where the number of shares depends on an
argument value (e.g. a substitution item e/x has every x in the target term
share e). Other than such cases, our experimental results are encouraging in
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program reuse | (A) memory | (B) reduced | (A — B)/A
ratio peak? peak
sieve (size=1000) | 56.0% 690 300 56.5%
gsort (size=100) | 81.0% 1189 334 71.9%
merge (size=500) | 49.4% 1197 606 49.4%
msort (size=100) | 82.5% 714 321 55.0%
queens (n=>5) 8.3% 255 255 0.0%
mirage 84.4% 1398 1361 2.6%
life (loop=>5) 10.6% 2346 1746 25.6%
kb (group rule) 12.7% 27125 26501 2.3%
k-eval 59.5% 1044 944 9.6%
nucleic 18.2% 103677 89352 13.8%

& words: the maximum number of live cells. It is profiled by our interpreter which

has the same memory layout as that of Objective Caml 3.04 compiler [25]. (A) is

for the original program and (B) is for the program transformed by our algorithm.
Fig. 15. The memory peak is reduced.

terms of accuracy and cost. The graph in Fig. 14 indicates that the analysis
and transformation cost can be less than square in the program size in practice
although the worst-case complexity is exponential.

Our transformation reduces the memory peak from 0.0% to 71.9% (Fig. 15).
The memory peak is the maximum number of live cells during the program
execution. In Fig. 15, the second column is the reuse ratio, the third is the
memory peak of the original programs, the fourth the memory peak of the
transformed programs, and the fifth how much the memory peak is reduced
by our transformation. For sieve, merge, qsort, and msort, both reuse ratios
and peak reductions are high. For queens and kb, both reuse ratios and peak
reductions are low. But for 1ife and mirage, reuse ratios and peak reductions
do not match. For mirage, its reuse ratio is high (84.4%) whereas its peak
reduction is low (2.6%). This is because, as seen in the graph (f) of Fig. 16,
the transformed mirage fails to reduce several peaks in the second phase. For
life, the situation is reversed. This is because, as seen in the graph (e) of
Fig. 16, it always reuses only those cells that contribute to the memory peak.

7 Conclusion and Future Work

We have presented a static analysis and a source-level transformation system
that add explicit memory-reuse commands into the program text, and we have
shown that it effectively finds memory-reuse points.

We are currently implementing the analysis and transformation system inside
our nML compiler [26] to have it used in daily programming. The main issues
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12000 6000
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o e
8000 |- g 4000 | g
6000 - . E 3000 -
4000 g 2000 g
2000 g 1000 | g
0 0
(a) sieve (b) merge

1200 R 800
O Al 'gsort-reuse’ ——— 'msort-reuse’

‘gsort’ ------- ‘msort’ -------
700 //; T

1000

(d) msort

2500 1400
life-reuse’
life’

‘'mirage-reuse’

7777777 ¥ ‘'mirage’ -1--1-
] 1200

2000

1000

1500 800

1000 600

400

500
200 B

(e) life (f) mirage

Fig. 16. The numbers of live memory cells from start to the end. The upper dotted
lines are the original program’s and the lower solid lines are those of the programs
transformed by our algorithm.

in the implementation are to reduce the runtime overhead of the dynamic
flags and to extend our method to handle polymorphism and mutable data
structures. The runtime overhead of dynamic flags can be substantial because,
for instance, if a function takes n parameters and each parameter’s type has k
data constructors, the function has to take 2 x n x k dynamic flags according
to the current scheme. We are considering to reduce this overhead by doing
a constant propagation for dynamic flags; omitting some unnecessary flags;
associating a single flag with several data constructors of the same size; im-
plementing flags by bit-vectors; and duplicating a function according to the
different values of flags.
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300 30000
‘queens-reuse’ 'kb-reuse’
‘queens’ ------- Kb -------

25000 |- e
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15000
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Fig. 17. The numbers of live memory cells from start to the end. The upper dotted
lines are the original program’s and the lower solid lines are those of the programs
transformed by our algorithm.

To extend our method for polymorphism, we need a sophisticated mechanism
for dynamic flags. For instance, a polymorphic function of type Va.a — «
can take a value with two constructors or one with three constructors. So,
this polymorphic input parameter does not fit in the current method because
currently we insert twice as many dynamic flags as the number of constructors
for each parameter. Our tentative solution is to assign only two flags to the
input parameter of type a and to take conjunctions of flags in a call site:
when a function is called with an input value with two constructors, instead
of passing the four dynamic flags (3, Bns, ', and 3], we pass GAS" and Bps A Sl
For mutable data structures, we plan to take a conservative approach similar
to that of Gheorghioiu et al. [27]: heap cells possibly reachable from modifiable
cells cannot be reused.
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