Typing & Static Analysis of
Multi-Staged Programs

Kwangkeun Yi

Seoul National University, Korea

5/31/2011 @ UC Berkeley

(co-work with I. Kim, W. Choi, B. Aktemur, C. Calcagno, M. Tatsuda)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

R & center
%@ﬁ R&SAEC cent

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

We try to help reduce/eliminate errors in software.
e statically: before execution, before sell/embed
@ automatically: against explosive sw size

@ to find bugs or verify their absence

@ R& SAEC center

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Our Activities

We published our works in:

o POPL('11, '06), TACAS('11), VMCAI('10, '11), ICSE('11),
SAS, ISMM, OOPSLA, FSE, etc.

@ TOPLAS, TCS, JFP, SP&E, Acta Informatica, etc.

A commercialization:
o
cSparroafﬁ

Research areas: static analysis, abstract interpretation,
programming languge theory, type system, theorem proving, model
checking, & whatever relevant

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

1. Multi-staged Programming
2. Typing Multi-Staged Programs (POPL'06)
3. Static Analysis of Multi-Staged Programs (POPL'11)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (1/4)

program texts (code) as first class objects
“meta programming”

A general concept that subsumes
@ web program’s runtime code generation
@ macros & templates
@ Lisp's quasi-quotation
@ partial evaluation

Common in JavaScript, Perl, PHP, Python, Lisp/Scheme, C's
macros, C++ & Haskell's templates, C#, etc.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (2/4)

@ divides a computation into stages
@ program at stage 0: conventional program

@ program at stage n + 1: code as data at stage n

Stage | Computation Value
0 | usual + code + run | usual 4+ code
> 0 | code substitution code

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (3/4)

In examples, we will use Lisp-style staging constructs + only 2
stages

‘e code as data

, € code substitution

e =
|
|
| run e execute code

@ code as a value: ‘(1+1)
@ code composition: let y = ‘(x+1) in ’(Ax.,y)

@ code execution: run ’ (1+1)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (4/4)

Specializer/Partial evaluator
power(x,n) = if n=0 then 1 else x * power(x,n-1)
V.S. power (x,3) = x*x*x
prepared as
let spower(n) = if n=0 then ‘1 else ‘(x*,(spower (n-1)))

let fastpower = ‘(Mx.,(spower input))
in (run fastpower) 2

R R%SAE C center
T Research On Software Analysis for Error-free Computing
| L AT E | 24 A4

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Practice of Multi-Staged Programming

@ open code
“(x+1)

@ intentional variable-capturing substitution
let y = ‘(x+1) in ‘(Ax.,y)
@ capture-avoiding substitution
let y = “(x+1) in ‘(*x.,y + x)
@ imperative operations with open code

cell := “(x+1); --- cell := ‘(y 1);

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

R & center
@&%@?@ R&SAEC cent

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Challenge |

A static type system that supports the practice.

@ type safety and
@ the expressivenss of fully-fledged multi-staging operators

Previous type systems support only part of the practice.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Challenge Il

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze
@ are dynamic entities, which
@ are only estimated by static analysis

Conventional analysis may fail to handle "run ¢”

No general static analysis method before.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part |: Our Answer |

A type system for (ML + Lisp’s quasi-quote system)
@ supports all in multi-staged programming practice
e open code: ‘(x+1)
unrestricted imperative operations with open code
intentional var-capturing substitution at stages > 0
capture-avoiding substitution at stages > 0

@ conservative extension of ML's let-polymorphism

@ principal type inference algorithm

A Let-Polymorphic Modal Type System for Lisp-style Multi-Staged
Programming [Kim, Yi, Calcagno: POPL’'06]

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Ideas

@ code's type: parameterized by its expected context
O(I > int)
@ view the type environment I" as a record type
I'={xz:int, y:int— int,---}
@ stages by the stack of type environments (modal logic S4)
IgTpte: A

o with “due” restrictions
o let-polymorphism for syntactic values
e monomorphic I' in code type O(T" > int)
e monomorphic store types
R& SAEC center

DN N
%&?@ ‘ Natural ideas worked. ‘ e on o A o e e Compng
e} Ameio] 224 el

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Simple Type System

Type A,B == |A—B|0O(I>A)
code type
“(x+1): O({z: int,---}>int)
typing judgment

Tg-ThkFe: A

(TSBOX) IgTpyI'Fe: A

Ty Ty Fboxe: O(>A)

Ty Tpbe: O, k> A)

TSUNBOX
() To-- Ty Thygr F unboxge : A

Ty-T,Fe:0(@pA ,
(TSEVAL) 9 e: 0) (for alpha-equiv. at stage 0)

I'pT'pbFrune: A

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Polymorphic Type System (1/2)

A combination of
o ML's let-polymorphism
e syntactic value restriction + multi-staged “expansive”(e)”
e expansive”(e) = False
= e never expands the store during its eval. at Vstages< n

eg.) ‘(Az.,e) : can be expansive
‘(Ar.runy) : unexpansive

@ Rémy’s record types [Rémy 1993]

e type environments as record types with field addition
e record subtyping + record polymorphism

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Polymorphic Type System (2/2)

e if e then ‘(x+1) else ‘1: ‘D({x : int}pbint)‘

e then-branch: O({z : int}p’ > int)
o else-branch: O(p” > int)

@ let x = ‘yin ‘(,x + w); ‘((,x 1) + z)
X: Van.D({y:a}pDa)‘

o first x: O({y : int, w: int}p' > int)
o second x: O({y : int — int, z : int}p” > int — int)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Type Inference Algorithm

@ Unification:

e Rémy'’s unification for record type I
o usual unification for new type terms such as O(I'> A) and A ref

@ Sound and complete principal type inference:

o the same structure as top-down version M [Lee and Yi 1998]
of the W
e usual on-the-fly instantiation and unification

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part |: Message

Staged programming “practice” has a sound static type system.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part 1l: Challenge (rephrase)

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze
@ are dynamic entities, which
@ are only estimated by static analysis

How to analyze “run e", the execution of estimated program
texts?

[Choi, Aktemur, Yi, Tatsuda: POPL'11] Static Analysis of
Multi-Staged Programs via Unstaging Translation

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Problem in Static Anaysis of Staged Programs

T := ‘0;

repeat = := ‘(,z + 2)
until cond;

run x

@ The set of possible code for x:
{€0, € (0+2), < (0+2+2),--- }.
must first be finitely approximated, e.g., by a grammar:

S — 0] S+2.

lyzing “ ! ds code, not th =
%&\é @ analyzing “run z" needs code, not the grammRr%:SAEccemer

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Our Solution

a detour: translate, analyze, and project.
1. unstaging translation
e proof of semantic-preserving
2. conventional static analysis
e can apply all existing static analysis techniques
3. cast the result back in terms of original staged programs

e a sound condition for the projection
e i.e., to be aligned with the correspondence induced by the
translation.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation Languages

Staged source

= Az.e
| ee

| =z
|

|

|

Unstaged target

Ax.e
ee

{}
e{x=e}

€-X

R& SAEC center

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation ldeas (1/2)

@ code into env-taking function:
C(1+1) — Ap. 1+l
o free variable in a code into record lookup:
“(x+1) — Ap.(px)+1
@ run expression into an application:

run ‘(1+1) — (Ap.1+1){}

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Quip R& SAEC center
%ﬁﬂ@ SAEC cent

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation ldeas (2/2)

@ code composition into an app. whose actual param. is for the
code-to-be-plugged expr.:

Gy +2) — A (Ap.(h p)+2)) vy
@ variable capturing into record passing+lookup:

Az, ((z+1)) — Apr Az (Ops. (parx)+1) (pr{x=2x}))

R R%SAE C center
T Research On Software Analysis for Error-free Computing
L AT E | 24 A4

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation Example

x = ‘0; x = Ap.0;
repeat repeat
z:="(x+2) z = (Ah.(Ap.(h p)+2))
until cond; until cond;
run x x {}

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Quin® R& SAEC center
%&%@?@ S C f

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Theorem

(Simulation) Let e be a stage-n \s expression with no free
variables such that e — ¢'. Let R+ e — (e, K) and

RF ¢ v (¢, K"). Then K(e) ¥2% K'(¢).

n /
—_—

Q

[=<=—0
|
A
5
o

|

R & center
%ﬁﬁ%@?@ R&SAEC cent

Research On Software Analysis for Error-free Computing
! AzEgo] 224 THAE]
Sl

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Inversion

Theorem

(Inversion) Let e be a \s expression and R be an environment
stack. If R+ e (e, K), then H \- e — e for any H such that
KCH.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

R & center
@&%@?@ R&SAEC cent

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Analysis and Projection

[<=—0
3
_—

3
_—

Theorem

(Projection) Let e and e be, respectively, a staged program and its
translated unstaged version. If [e] C m[e] and a0 m o~y C 7 then

afe] T #[e].

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Quip R& SAEC center
%ﬁﬂ@ SAEC cent

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (1/5): [e] staged collecting semantics

T = ‘0;
repeat

x:="(x+2)
until cond;
run x

Collecting semantics [e] =

xr has {0, “(0+2), ‘(0+2+2),---}
run =z has {0,2,4,6,---}

Research On Software Analysis for Error-free Computing
! AzEgo] 224 THAE]
Sl

Quin® R& SAEC center
%&%@?@ S C f

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (2/5): unstaged collecting semantics

x = Ap1.0;
repeat

x = (Ao (Apa. (b p)+2)) x
until cond;

z {}

Collecting semantics [e] =

z,h has {(\p1.0,0), (Ap2.(h p2)+2,{h — (Ap1.0)}),---}

p1,p2 has {}
z {} has {0,2,4,6,---}

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Quip R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (3/5): = projection of collecting semantics

Collecting semantics are aligned:
[e] 7[e]

z,h has {{\p1.0,0),
(Ap2.(h p2)+2, T

s ooy, T

. €(0+2+2),--- }
p1,p2 has {}
@ 71 = inverse translation + removing admin stuff

@ intuition

“\p' += “code indexed as p"
“hp’ = ‘“code-filling by 1"

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Quip R& SAEC center
%ﬁﬂ@ SAEC cent

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (4/5): unstaged conventional analysis

T
T

h

has
has
has

x = Ap1.0;
repeat

xz = (Ao (Npa. (b p)+2)) x
until cond;

z {}

0-CFA analysis ﬂéﬂ in set-constraint style
/\/)1.0
Ap2.(Ch p2)+2 (hp1) has Vi — 0] V+2
)\/)1.0 x {} has V5 — 0 ‘ Vi+2
Ap2.(h p2)+2

h

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

has

R& SAEC center

Research On Software Analysis for Error-free Computing

AZEQo| 27 P

Example (5/5): projection of analysis

x has Api.0

x has Ap2.(h p2)+2 . x has S1—p1
™
h has Api.0 — x has Sz — p2(9)
h has Apa.(h p2)+2 S — p1 | p2(9)
x{} has V —0]|V+2 run x has V — 0| V+2
@ intuition

“Ap” "5 “code indexed as P’
“hp’ = ‘“code-filling by 1"

o T satisfies the safety condition: aomoy E 7

e and was [e] C 7[e]

Hence, by the projection theoreom, correct:

utn ofel E 7le] & center
%@E R&SAEC cent

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part IlI: Conclusion

@ semantic-preserving unstaging translation

@ sound static analysis framework using the translation

[e]€ Ds == Ds >[e]

lel€ Dr == D, 3[¢]

[=<=—0

‘unstaging + usual static analysis + projection are sufficient. ‘

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Things to Do

@ extend to “string-based” (unstructured) multi-staged
programming

@ realistic static analyses: e.g. static malware detection
@ program logic (e.g. separation logic) for multi-staging
@ and any topic ~ multi-staging

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

