
Typing & Static Analysis of
Multi-Staged Programs

Kwangkeun Yi

Seoul National University, Korea

5/31/2011 @ UC Berkeley

(co-work with I. Kim, W. Choi, B. Aktemur, C. Calcagno, M. Tatsuda)

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

About Us

We try to help reduce/eliminate errors in software.

statically: before execution, before sell/embed

automatically: against explosive sw size

to find bugs or verify their absence

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Our Activities

We published our works in:

POPL(’11, ’06), TACAS(’11), VMCAI(’10, ’11), ICSE(’11),
SAS, ISMM, OOPSLA, FSE, etc.

TOPLAS, TCS, JFP, SP&E, Acta Informatica, etc.

A commercialization:

Research areas: static analysis, abstract interpretation,
programming languge theory, type system, theorem proving, model
checking, & whatever relevant

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Outline

1. Multi-staged Programming

2. Typing Multi-Staged Programs (POPL’06)

3. Static Analysis of Multi-Staged Programs (POPL’11)

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (1/4)

program texts (code) as first class objects
“meta programming”

A general concept that subsumes

web program’s runtime code generation

macros & templates

Lisp’s quasi-quotation

partial evaluation

Common in JavaScript, Perl, PHP, Python, Lisp/Scheme, C’s
macros, C++ & Haskell’s templates, C#, etc.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (2/4)

divides a computation into stages

program at stage 0: conventional program

program at stage n+ 1: code as data at stage n

Stage Computation Value

0 usual + code + run usual + code

> 0 code substitution code

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (3/4)

In examples, we will use Lisp-style staging constructs + only 2
stages

e ::= · · ·
| ‘ e code as data
| , e code substitution
| run e execute code

code as a value: ‘(1+1)

code composition: let y = ‘(x+1) in ’(λx.,y)

code execution: run ’(1+1)

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Multi-Staged Programming (4/4)

Specializer/Partial evaluator

power(x,n) = if n=0 then 1 else x * power(x,n-1)

v.s. power(x,3) = x*x*x

prepared as

let spower(n) = if n=0 then ‘1 else ‘(x*,(spower (n-1)))

let fastpower = ‘(λx.,(spower input))

in (run fastpower) 2

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution

let y = ‘(x+1) in ‘(λx.,y)

capture-avoiding substitution

let y = ‘(x+1) in ‘(λ∗x.,y + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Challenge I

A static type system that supports the practice.

type safety and

the expressivenss of fully-fledged multi-staging operators

Previous type systems support only part of the practice.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Challenge II

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze

are dynamic entities, which

are only estimated by static analysis

Conventional analysis may fail to handle “run e”

No general static analysis method before.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part I: Our Answer I

A type system for (ML + Lisp’s quasi-quote system)

supports all in multi-staged programming practice

open code: ‘(x+1)

unrestricted imperative operations with open code
intentional var-capturing substitution at stages > 0
capture-avoiding substitution at stages > 0

conservative extension of ML’s let-polymorphism

principal type inference algorithm

A Let-Polymorphic Modal Type System for Lisp-style Multi-Staged
Programming [Kim, Yi, Calcagno: POPL’06]

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Ideas

code’s type: parameterized by its expected context

2(Γ . int)

view the type environment Γ as a record type

Γ = {x : int, y : int→ int, · · · }

stages by the stack of type environments (modal logic S4)

Γ0···Γn ` e : A

with “due” restrictions
let-polymorphism for syntactic values
monomorphic Γ in code type 2(Γ . int)
monomorphic store types

Natural ideas worked.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Simple Type System

Type A,B ::= ι | A→ B | 2(Γ . A)

code type
‘(x+1): 2({x : int, · · · } . int)

typing judgment
Γ0···Γn ` e : A

(TSBOX)
Γ0···ΓnΓ ` e : A

Γ0···Γn ` box e : 2(Γ . A)

(TSUNBOX)
Γ0···Γn ` e : 2(Γn+k . A)

Γ0···Γn···Γn+k ` unboxke : A

(TSEVAL)
Γ0···Γn ` e : 2(∅ . A)

Γ0···Γn ` run e : A
(for alpha-equiv. at stage 0)

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Polymorphic Type System (1/2)

A combination of

ML’s let-polymorphism

syntactic value restriction + multi-staged “expansiven(e)”
expansiven(e) = False
=⇒ e never expands the store during its eval. at ∀stages≤ n

e.g.) ‘(λx.,e) : can be expansive
‘(λx.run y) : unexpansive

Rémy’s record types [Rémy 1993]

type environments as record types with field addition
record subtyping + record polymorphism

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Polymorphic Type System (2/2)

if e then ‘(x+1) else ‘1: 2({x : int}ρ . int)
then-branch: 2({x : int}ρ′ . int)
else-branch: 2(ρ′′ . int)

let x = ‘y in ‘(,x + w); ‘((,x 1) + z)

x: ∀α∀ρ.2({y : α}ρ . α)

first x: 2({y : int, w : int}ρ′ . int)
second x: 2({y : int→ int, z : int}ρ′′ . int→ int)

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Type Inference Algorithm

Unification:

Rémy’s unification for record type Γ
usual unification for new type terms such as 2(Γ .A) and A ref

Sound and complete principal type inference:

the same structure as top-down version M [Lee and Yi 1998]
of the W
usual on-the-fly instantiation and unification

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part I: Message

Staged programming “practice” has a sound static type system.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part II: Challenge (rephrase)

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze

are dynamic entities, which

are only estimated by static analysis

How to analyze “run e”, the execution of estimated program
texts?

[Choi, Aktemur, Yi, Tatsuda: POPL’11] Static Analysis of
Multi-Staged Programs via Unstaging Translation

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Problem in Static Anaysis of Staged Programs

x := ‘0;

repeat x := ‘(,x + 2)

until cond;
run x

The set of possible code for x:

{‘0, ‘(0+2), ‘(0+2+2), · · · }.

must first be finitely approximated, e.g., by a grammar:

S → 0 | S+2.

analyzing “run x” needs code, not the grammar.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Our Solution

a detour: translate, analyze, and project.

1. unstaging translation

proof of semantic-preserving

2. conventional static analysis

can apply all existing static analysis techniques

3. cast the result back in terms of original staged programs

a sound condition for the projection
i.e., to be aligned with the correspondence induced by the
translation.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation Languages

Staged source Unstaged target

e ::= λx.e
| e e
| x
| ‘ e
| , e
| run e

7−→

e ::= λx.e
| e e
| x
| {}
| e{x=e}
| e · x

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation Ideas (1/2)

code into env-taking function:

‘(1+1) 7−→ λρ.1+1

free variable in a code into record lookup:

‘(x+1) 7−→ λρ.(ρ·x) + 1

run expression into an application:

run ‘(1+1) 7−→ (λρ.1+1){}

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation Ideas (2/2)

code composition into an app. whose actual param. is for the
code-to-be-plugged expr.:

‘(,y + 2) 7−→ (λh.(λρ.(h ρ)+2)) y

variable capturing into record passing+lookup:

’(λx.,(‘(x+1))) 7−→ λρ1λx.((λρ2.(ρ2·x)+1) (ρ1{x = x}))

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Translation Example

x := ‘0;

repeat

x := ‘(,x + 2)
until cond;
run x

7−→

x := λρ.0;
repeat

x := (λh.(λρ.(h ρ)+2)) x
until cond;
x {}

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Simulation

Theorem

(Simulation) Let e be a stage-n λS expression with no free
variables such that e

n−→ e′. Let R ` e 7→ (e,K) and

R ` e′ 7→ (e′,K ′). Then K(e)
R;A∗
−→ K ′(e′).

e n //
_

��

e′_

��
e e′

=⇒ e
R;A∗

// e′

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Inversion

Theorem

(Inversion) Let e be a λS expression and R be an environment
stack. If R ` e 7→ (e,K), then H ` e 7→ e for any H such that
K ⊆ H.

e n // e′ =⇒

e_

��

e′OO

_
e
R;A∗

// e′

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Analysis and Projection

e_

��

[[e]] ∈ DS −→←−α
γ

D̂S 3 ˆ[[e]]

e [[e]] ∈ DR

π

OO

−→←−α
γ

D̂R 3 ˆ[[e]]

π̂

OO

Theorem

(Projection) Let e and e be, respectively, a staged program and its
translated unstaged version. If [[e]] v π[[e]] and α ◦ π ◦ γ v π̂ then

α[[e]] v π̂ ˆ[[e]].

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (1/5): [[e]] staged collecting semantics

x := ‘0;

repeat

x := ‘(,x + 2)
until cond;
run x

Collecting semantics [[e]] =

x has {‘0, ‘(0+2), ‘(0+2+2), · · · }
run x has {0, 2, 4, 6, · · · }

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (2/5): [[e]] unstaged collecting semantics

x := λρ1.0;
repeat

x := (λh.(λρ2.(h ρ2)+2)) x
until cond;
x {}

Collecting semantics [[e]] =

x, h has {〈λρ1.0, ∅〉, 〈λρ2.(h ρ2)+2, {h 7→ 〈λρ1.0〉}〉, · · · }
ρ1, ρ2 has {}
x {} has {0, 2, 4, 6, · · · }

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (3/5): π projection of collecting semantics

Collecting semantics are aligned:

[[e]] v π[[e]]

x, h has {〈λρ1.0, ∅〉,
〈λρ2.(h ρ2)+2,
{h 7→ 〈λρ1.0〉}〉,
· · · }

ρ1, ρ2 has {}

π7−→ x has {‘0, ‘(0+2),
‘(0+2+2), · · · }

π = inverse translation + removing admin stuff
intuition

“λρ”
π7−→ “code indexed as ρ”

“h ρ”
π7−→ “code-filling by h”

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (4/5): ˆ[[e]] unstaged conventional analysis

x := λρ1.0;
repeat

x := (λh.(λρ2.(h ρ2)+2)) x
until cond;
x {}

0-CFA analysis ˆ[[e]] in set-constraint style

x has λρ1.0
x has λρ2.(h ρ2)+2 (h ρ1) has V1 → 0 | V1+2
h has λρ1.0 x {} has V2 → 0 | V1+2
h has λρ2.(h ρ2)+2

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Example (5/5): π̂ projection of analysis

x has λρ1.0
x has λρ2.(h ρ2)+2
h has λρ1.0
h has λρ2.(h ρ2)+2

x {} has V → 0 | V +2

π̂7−→
x has S1 → ρ1
x has S2 → ρ2(S)

S → ρ1 | ρ2(S)
run x has V → 0 | V +2

intuition

“λρ”
π̂7−→ “code indexed as ρ”

“h ρ”
π̂7−→ “code-filling by h”

π̂ satisfies the safety condition: α ◦ π ◦ γ v π̂
and was [[e]] v π[[e]]

Hence, by the projection theoreom, correct:

α[[e]] v π̂ ˆ[[e]]

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Part II: Conclusion

semantic-preserving unstaging translation

sound static analysis framework using the translation

e_

��

[[e]]∈ DS −→←−α
γ

D̂S 3 ˆ[[e]]

e [[e]]∈ DR

π

OO

−→←−α
γ

D̂R 3 ˆ[[e]]

π̂

OO

unstaging + usual static analysis + projection are sufficient.

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

Things to Do

extend to “string-based”(unstructured) multi-staged
programming

realistic static analyses: e.g. static malware detection

program logic (e.g. separation logic) for multi-staging

and any topic ∼ multi-staging

Kwangkeun Yi Typing & Static Analysis of Multi-Staged Programs

