Course Outline

Collage of Static Analysis

- O.5hr: Static Analysis Overview
- 1.5hr: Static Analysis Design Framework
- 1.0hr: Static Analysis Engineering Framework
- 1.0hr: Static Analysis of Multi-Staged Programs

DQA

• How can we derive correct equations from program text?

- Does the equations capture all the execution dynamics?
- Non-obvious: pointers, heap structures, exceptions, high-order functions, typeless low-level hacks, etc.

Is there always a solution to the derived equations?

• How do we compute the solution in a finite time?

$$\begin{array}{rcl} x_1 & = & [-\infty, +\infty] \ or \ x_3 \\ x_2 & = & x_1 \ and \ [-\infty, 99] \\ x_3 & = & x_2 \ + 1 \\ x_4 & = & x_1 \ and \ [100, \infty] \end{array} \xrightarrow{\bow?} \begin{array}{rcl} x_1 & = & [-\infty, +\infty] \\ x_2 & = & [-\infty, 99] \\ x_3 & = & [-\infty, 99] \\ x_4 & = & [100, +\infty] \end{array}$$

• How can we derive correct equations from program text?

- Does the equations capture all the execution dynamics?
- Non-obvious: pointers, heap structures, exceptions, high-order functions, typeless low-level hacks, etc.

く 目 ト く ヨ ト く ヨ ト

< 🗆 🕨

• How can we derive correct equations from program text?

- Does the equations capture all the execution dynamics?
- Non-obvious: pointers, heap structures, exceptions, high-order functions, typeless low-level hacks, etc.

 x_1 and $[100,\infty]$ x4 =

 $[100, +\infty]$ =

< 🗆 🕨

(四) (三) (三)

x4

• How can we derive correct equations from program text?

- Does the equations capture all the execution dynamics?
- Non-obvious: pointers, heap structures, exceptions, high-order functions, typeless low-level hacks, etc.

< 🗆 🕨

(4) 国本 (日本)

• How can we derive correct equations from program text?

- Does the equations capture all the execution dynamics?
- Non-obvious: pointers, heap structures, exceptions, high-order functions, typeless low-level hacks, etc.

Trace Abstract Interpretation Framework

Semantics

 $fix(\lambda T.T_0 \cup Next T) \in 2^{State}$

Abstract Semantics

 $fix(\lambda \hat{T}.\alpha(T_0) \sqcup \hat{Next} \hat{T}) \in \Delta \to \hat{State}$

DQA

 $Next = \wp next$ $next \in State \rightarrow State$

 $\hat{Next} = (\wp \sqcup) \circ \hat{\pi} \circ (\wp \cup \hat{next})$ $\hat{next} \in \hat{State} \to 2^{\hat{State}}$

$$2^{State} \xrightarrow[\alpha]{\gamma} (\Delta \to State)$$

Static Analysis Engineering: global analysis of million lines of C

Kwangkeun Yi Seoul National University, Korea http://ropas.snu.ac.kr/~kwang

2/26/2012 - 3/2/2012 17th Estonian Winter School in Computer Science, Palmse, Estonia

(Co-work with Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee)

Reality

less-382 (23,822 LoC)

Static Analysis in Reality (3/3)

Sound, "semantically-deep", global analyzer for 1MLoC C program: a scalablility barrier knocked down (as of 2011)

Sound-&-global analyzer class:

Program	LOC	Base	eline	Loc	alize	$\mathbf{Spd}\uparrow$	Mem↓	
		Time	Mem	Time	Mem			
gzip-1.2.4a	7 K	772	240	3	63	$257\mathrm{x}$	74%	
bc-1.06	13 K	1,270	276	7	75	$181\mathrm{x}$	73%	
less-382	$23\mathrm{K}$	9,561	1,113	33	127	$289\mathrm{x}$	86 %	
make-3.76.1	$27\mathrm{K}$	24,240	1,391	21	114	$1,154\mathrm{x}$	92%	
wget-1.9	$35\mathrm{K}$	44,092	2,546	11	85	$4,008\mathrm{x}$	97%	
a2ps-4.14	$64\mathrm{K}$	∞	N/A	40	353	N/A	N/A	
sendmail-8.13.6	$130\mathrm{K}$	∞	N/A	744	678	N/A	N/A	
nethack-3.3.0	211 K	∞	N/A	16,373	5,298	N/A	N/A	
emacs-22.1	399 K	∞	N/A	37,830	7,795	N/A	N/A	
python-2.5.1	$435\mathrm{K}$	∞	N/A	11,039	5,535	N/A	N/A	
linux-3.0	710 K	∞	N/A	33,618	20,529	N/A	N/A	
gimp-2.6	959 K	∞	N/A	3,874	3,602	N/A	N/A	
ghostscript-9.00	$1,363\mathrm{K}$	∞	N/A	14,814	6,384	N/A	N/A	

Static Analysis Scalability Improvement

Sound-&-global analyzer class

Kwangkeun Yi Collage of Static Analysis

Contents

- Designing Sparrow
 - in the abstract interpretation framework
- Engineering Sparrow
 - by localizations in space and time
 - [PLDI'12, VMCAI'11, APLAS'11,'09]

- Designed in the abstract interpretation framework
- To find memory safety violations in C
 - such as buffer-overrun, memory leak, null dereference, etc.
 - for the full set of C

Program

- \mathbb{C} : set of program points
- $\hookrightarrow \subseteq \mathbb{C} \times \mathbb{C}$: control flow relation

 $c' \hookrightarrow c$ (c is a next control point of c')

Commands

 $lv := e \mid lv := \operatorname{alloc}(a) \mid \operatorname{assume}(x < e) \mid \operatorname{call}(f_x, e) \mid \operatorname{return}_f$ expression $e \rightarrow n \mid e + e \mid lv \mid \& lv$ l-value $lv \rightarrow x \mid *e \mid e [e] \mid e . x$ allocation $a \rightarrow [e]_l \mid \{x\}_l$

Semantics

• The set of all reachable states at each program point

$$\llbracket P \rrbracket \in \mathbb{C} \to 2^{\mathbb{S}} = \mathrm{lfp}F$$
$$\mathbb{S} = \mathbb{L} \to \mathbb{V}$$

• Semantic function

$$F \in (\mathbb{C} \to 2^{\mathbb{S}}) \to (\mathbb{C} \to 2^{\mathbb{S}}) \qquad \bigvee_{c' \to c} c' \circ c'$$
$$F(X) = \lambda c \in \mathbb{C}. f_c(\bigcup_{c' \to c} X(c')). \qquad \bigvee_{c' \to c} c' \circ c'$$

 $f_c \in 2^{\mathbb{S}} \to 2^{\mathbb{S}}$: semantic function at control point c

Abstract Semantics

abstract domain

$$\mathbb{C} \to 2^{\mathbb{S}} \xrightarrow{\gamma}{\alpha} \mathbb{C} \to \hat{\mathbb{S}} \qquad 2^{\mathbb{S}} \xrightarrow{\gamma_{\mathbb{S}}}{\alpha_{\mathbb{S}}} \hat{\mathbb{S}}$$
$$\hat{\mathbb{S}} = \hat{\mathbb{L}} \to \hat{\mathbb{V}}$$

 $\hat{\mathbb{L}} = Var + AllocSite + AllocSite \times FieldName$ $\hat{\mathbb{V}} = \hat{\mathbb{Z}} \times 2^{\hat{\mathbb{L}}} \times 2^{AllocSite \times \hat{\mathbb{Z}} \times \hat{\mathbb{Z}}} \times 2^{AllocSite \times 2^{FieldName}}$ $\hat{\mathbb{Z}} = \{[l, u] \mid l, u \in \mathbb{Z} \cup \{-\infty, +\infty\} \land l \leq u\} \cup \{\bot\}$

Abstract Semantics

abstract semantic function

$$\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$$
$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$$

 $\hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}}$: abstract semantics at each program point

Abstract Semantics

$$\hat{f}_{c}(\hat{s}) = \begin{cases} \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \hat{\mathcal{V}}(e)(\hat{s})] & \operatorname{cmd}(c) = lv := e \\ \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \langle \bot, \bot, \{\langle l, [0, 0], \hat{\mathcal{V}}(e)(\hat{s}).1 \rangle\}, \bot \rangle] & \operatorname{cmd}(c) = lv := \operatorname{alloc}([e]_{l}) \\ \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \langle \bot, \bot, \bot, \{\langle l, \{x\} \rangle\}\rangle] & \operatorname{cmd}(c) = lv := \operatorname{alloc}(\{x\}_{l}) \\ \hat{s}[x \mapsto \langle \hat{s}(x).1 \sqcap [-\infty, \mathsf{u}(\hat{\mathcal{V}}(e)(\hat{s}).1)], \hat{s}(x).2, \hat{s}(x).3, \hat{s}(x).4 \rangle] & \operatorname{cmd}(c) = \operatorname{assume}(x < e) \\ \hat{s}[x \mapsto \hat{\mathcal{V}}(e)(\hat{s})] & \operatorname{cmd}(c) = \operatorname{call}(f_{x}, e) \\ \hat{s} & \operatorname{cmd}(c) = \operatorname{return}_{f} \end{cases}$$

$$\begin{split} \hat{\mathcal{V}}(e) &\in \hat{\mathbb{S}} \to \hat{\mathbb{V}} \\ \hat{\mathcal{V}}(n)(\hat{s}) &= \langle [n,n], \bot, \bot, \bot \rangle \\ \hat{\mathcal{V}}(e_1 + e_2)(\hat{s}) &= \hat{\mathcal{V}}(e_1)(\hat{s}) + \hat{\mathcal{V}}(e_2)(\hat{s}) \\ \hat{\mathcal{V}}(lv)(\hat{s}) &= \bigsqcup\{\hat{s}(a) \mid a \in \hat{\mathcal{L}}(lv)(\hat{s})\} \\ \hat{\mathcal{V}}(klv)(\hat{s}) &= \langle \bot, \hat{\mathcal{L}}(lv)(\hat{s}), \bot, \bot \rangle \\ \end{split}$$

$$\begin{aligned} \hat{\mathcal{L}}(lv) &\in \hat{\mathbb{S}} \to 2^{\hat{\mathbb{L}}} \\ \hat{\mathcal{L}}(x)(\hat{s}) &= \{x\} \\ \hat{\mathcal{L}}(*e)(\hat{s}) &= \hat{\mathcal{V}}(e)(\hat{s}).2 \cup \{l \mid \langle l, o, s \rangle \in \hat{\mathcal{V}}(e)(\hat{s}).3\} \\ \cup \{\langle l, x \rangle \mid \langle l, \{x\} \rangle \in \hat{\mathcal{V}}(e)(\hat{s}).4\} \\ \hat{\mathcal{L}}(e_1[e_2])(\hat{s}) &= \{l \mid \langle l, o, s \rangle \in \hat{\mathcal{V}}(e_1)(\hat{s}).3\} \\ \hat{\mathcal{L}}(e.x)(\hat{s}) &= \{\langle l, x \rangle \mid \langle l, \{x\} \rangle \in \hat{\mathcal{V}}(e)(\hat{s}).4\} \end{split}$$

Computing
$$\bigsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\perp})$$

$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$$

$$\begin{split} \hat{X}, \hat{X}' \in \mathbb{C} \to \hat{\mathbb{S}} \\ \hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}} \\ \hat{X} &:= \hat{X}' := \lambda c. \bot \\ \textbf{repeat} \\ \hat{X}' &:= \hat{X} \\ \textbf{for all } c \in \mathbb{C} \textbf{ do} \\ \hat{X}(c) &:= \hat{f}_c(\bigsqcup_{c' \hookrightarrow c} X(c')) \\ \textbf{until } \hat{X} \sqsubseteq \hat{X}' \end{split}$$

Naive fixpoint algorithm

 $W \in Worklist = 2^{\mathbb{C}}$ $\hat{X} \in \mathbb{C} \to \hat{\mathbb{S}}$ $\hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}}$ $W := \mathbb{C}$ $\hat{X} := \lambda c. \bot$ repeat $c := \mathsf{choose}(W)$ $\hat{s} := \hat{f}_c(\bigsqcup_{c' \hookrightarrow c} X(c'))$ if $\hat{s} \not\sqsubseteq \hat{X}(c)$ $W := W \cup \{c' \in \mathbb{C} \mid c \hookrightarrow c'\}$ $\hat{X}(c) := \hat{X}(c) \sqcup \hat{s}$ until $W = \emptyset$

Worklist algorithm

The Algorithms Too Weak in Reality Less-382 (23,822 LoC)

Improving Scalability

Key Idea: Localization

"Right Part at Right Moment"

- Spatial localization [VMCAl'11,APLAS'11]
- Temporal localization [PLDI'12]

Computing
$$\bigsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\perp})$$

$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$$

$$\begin{split} \hat{X}, \hat{X}' \in \mathbb{C} \to \hat{\mathbb{S}} \\ \hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}} \\ \hat{X} &:= \hat{X}' := \lambda c. \bot \\ \textbf{repeat} \\ \hat{X}' &:= \hat{X} \\ \textbf{for all } c \in \mathbb{C} \textbf{ do} \\ \hat{X}(c) &:= \hat{f}_c(\bigsqcup_{c' \hookrightarrow c} X(c')) \\ \textbf{until } \hat{X} \sqsubseteq \hat{X}' \end{split}$$

Naive fixpoint algorithm

$$W \in Worklist = 2^{\mathbb{C}}$$
$$\hat{X} \in \mathbb{C} \to \hat{\mathbb{S}}$$
$$\hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}}$$
$$W := \mathbb{C}$$
$$\hat{X} := \lambda c. \bot$$
repeat
$$c := choose(W)$$
$$\hat{s} := \hat{f}_c(\bigsqcup_{c' \hookrightarrow c} X(c'))$$
$$if \ \hat{s} \not\subseteq \hat{X}(c)$$
$$W := W \cup \{c' \in \mathbb{C} \mid c \hookrightarrow c'\}$$
$$\hat{X}(c) := \hat{X}(c) \sqcup \hat{s}$$
until $W = \emptyset$

Worklist algorithm

Performance of sound & global Sparrow

benchmark programs

Program	LOC	Functions	Statements	Blocks	maxSCC	AbsLocs
gzip-1.2.4a	7K	132	6,446	4,152	2	1,784
bc-1.06	13K	132	10,368	4,731	1	1,619
tar-1.13	20K	221	12,199	8,586	13	3,245
less-382	23K	382	23,367	9,207	46	3,658
make-3.76.1	27K	190	14,010	9,094	57	4,527
wget-1.9	35K	433	28,958	14,537	13	6,675
screen-4.0.2	45K	588	39,693	29,498	65	12,566
a2ps-4.14	64K	980	86,867	27,565	6	17,684
bash-2.05a	105K	955	107,774	27,669	4	17,443
lsh-2.0.4	111K	1,524	137,511	27,896	13	31,164
sendmail-8.13.6	130K	756	76,630	52,505	60	19,135
nethack-3.3.0	211K	2,207	237,427	157,645	997	54,989
vim60	227K	2,770	150,950	107,629	1,668	40,979
emacs-22.1	399K	3,388	204,865	161,118	1,554	66,413
python-2.5.1	435K	2,996	241,511	99,014	723	51,859
linux-3.0	710K	13,856	345,407	300,203	493	139,667
gimp-2.6	959K	11,728	1,482,230	286,588	2	190,806
ghostscript-9.00	1,363K	12,993	2,891,500	342,293	39	201,161

Performance of sound & global Sparrow The Early Bird

									4		and to be the state of the se	K					
Programs	LOC	Interva	I _{vanilla}	Interv	al _{base}	$\mathbf{Spd}\uparrow_1$	Mem ↓ ₁			Interva	Interval _{sparse}			$\mathbf{Spd}\uparrow_2$	Mem \downarrow_2		
		Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$				
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %		
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %		
tar-1.13	20K	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %		
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %		
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %		
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %		
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %		
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %		
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %		
1sh-2.0.4	111K	∞	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %		
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A		
nethack-3.3.0	211K	∞	N/A	∞	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A		
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A		
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A		
python-2.5.1	435K	∞	N/A 🟅	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A		
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A		
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A		
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A		
							\frown				an aire ar shear fra		$\overline{\mathbf{M}}$				
													ks, /				
	atial a											mp					
		sparation /															
		atial in									:12th						
		\sim									(spiae calle						

spatial+tempora localization

Spatial Localization

Memory Localization (spatial localization)

Benefits

Vital in Practice

Vital in Practice

less-382 (23,822 LOC)

Huge Room for Localization

conventional reachability-based technique is too conservative

Program	LOC	accessed memory
		/ reachable memory
spell-1.0	2,213	5 / 453 (1.1%)
barcode-0.96	4,460	19 / 1175 (1.6%)
httptunnel-3.3	6,174	10 / 673 (1.5%)
gzip-1.2.4a	7,327	22 / 1002 (2.2%)
jwhois-3.0.1	9,344	28 / 830 (3.4%)
parser	10,900	75 / 1787 (4.2%)
bc-1.06	$13,\!093$	24 / 824 (2.9%)
less-290	18,449	86 / 1546 (5.6%)

average : 4%

Access-based Localization

Access-based Localization

Our Pre-analysis

• abstract domain

$$\mathbb{C} \to \hat{\mathbb{S}} \xrightarrow[\alpha]{\gamma} \hat{\mathbb{S}}$$

$$\alpha = \lambda \hat{X}. \bigsqcup_{c \in \mathbb{C}} \hat{X}(c)$$
$$\gamma = \lambda \hat{s}. \lambda c \in \mathbb{C}.\hat{s}$$

abstract semantic function

$$\hat{F}_p = \lambda \hat{s}.(\bigsqcup_{c \in \mathbb{C}} \hat{f}_c(\hat{s}))$$
$$\hat{s}_{pre} = \mathbf{fix} \hat{F}_p$$

$$\hat{f}_{c}(\hat{s}) = \begin{cases} \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \hat{\mathcal{V}}(e)(\hat{s})] & \text{cmd}(c) = lv := e \\ \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \langle \bot, \bot, \{\langle l, [0, 0], \hat{\mathcal{V}}(e)(\hat{s}).1 \rangle\}, \bot \rangle] & \text{cmd}(c) = lv := alloc([e]_{l}) \\ \hat{s}[\hat{\mathcal{L}}(lv)(\hat{s}) \stackrel{w}{\mapsto} \langle \bot, \bot, \{\langle l, \{x\} \rangle\} \rangle] & \text{cmd}(c) = lv := alloc(\{x\}_{l}) \\ \hat{s}[x \mapsto \langle \hat{s}(x).1 \sqcap [-\infty, u(\hat{\mathcal{V}}(e)(\hat{s}).1], \hat{s}(x).2, \hat{s}(x).3, \hat{s}(x).4]] & \text{cmd}(c) = assume(x < e) \\ \hat{s}[x \mapsto \hat{\mathcal{V}}(e)(\hat{s})] & \text{cmd}(c) = call(f_{x}, e) \\ \hat{s} & \text{cmd}(c) = return_{f} \end{cases}$$

$$\hat{f}_c(\hat{s}) = \hat{s}'|_{\operatorname{access}(f)} \text{ where } \hat{s}' = \hat{s}[x \mapsto \hat{\mathcal{V}}(e)(\hat{s})]$$
$$\operatorname{access}(f) = \bigcup_{g \in \operatorname{callees}(f)} (\bigcup_{c \in \operatorname{control}(g)} \mathcal{A}(c)(\hat{s}_{pre}))$$

Performance of sound & global Sparrow The Early Bird

									4		and to be the state of the se	K					
Programs	LOC	Interva	I _{vanilla}	Interv	al _{base}	$\mathbf{Spd}\uparrow_1$	Mem ↓ ₁			Interva	Interval _{sparse}			$\mathbf{Spd}\uparrow_2$	Mem \downarrow_2		
		Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$				
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %		
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %		
tar-1.13	20K	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %		
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %		
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %		
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %		
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %		
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %		
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %		
1sh-2.0.4	111K	∞	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %		
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A		
nethack-3.3.0	211K	∞	N/A	∞	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A		
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A		
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A		
python-2.5.1	435K	∞	N/A 🟅	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A		
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A		
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A		
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A		
							\frown				an aire ar shear fra		$\overline{\mathbf{M}}$				
													ks, /				
	atial a											mp					
		sparation /															
		atial in									:12th						
		\sim									(spiae calle						

spatial+tempora localization

Temporal Localization

Sparse Analysis Framework

For a general class of abstract interpretation,

Baseline Non-sparse Analyzer

• abstract domain

$$\mathbb{C} \to 2^{\mathbb{S}} \xrightarrow{\gamma} \mathbb{C} \to \hat{\mathbb{S}}$$
$$\hat{\mathbb{S}} = \hat{\mathbb{L}} \to \hat{\mathbb{V}}$$

• analyzer computes the fixpoint of

$$\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$$
$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}. \hat{f}_c(\bigsqcup_{c' \to c} \hat{X}(c')).$$

"Obvious" Sparse Version

$$\hat{F}_s(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim l \\ \sim c'}} \hat{X}(c')|_l).$$

Lemma 2 (Correctness). Let S and S_s be $lfp\hat{F}$ and $lfp\hat{F}_s$. Then, $\forall c \in \mathbb{C}. \forall l \in dom(S_s(c)).S_s(c)(l) = S(c)(l).$

"Obvious" Data Dependency

Definition 3 (Data dependency). Let c_d and c_u be control points and l be an abstract location. Data dependency is ternary relation $\sim \rightarrow$ defined as follows:

Realizable Sparse Version

And still as precise as the original

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ c' \sim a}} \hat{X}(c')|_l).$$

Lemma 3 (Correctness of Safe Approximation). Suppose sparse abstract semantic function \hat{F}_a is derived by the safe approximation \hat{D} and \hat{U} . Let S and S_a be $\mathbf{lfp}\hat{F}$ and $\mathbf{lfp}\hat{F}_a$. Then,

 $\forall c \in \mathbb{C}. \forall l \in \mathsf{dom}(\mathcal{S}_a(c)). \mathcal{S}_a(c)(l) = \mathcal{S}(c)(l).$

Realizable Data Dependency

Prepare def/use set using yet another safe pre-analysis

Definition 4 (Approximated Data Dependency). Let c_d and c_u be control points and l be an abstract location. Approximated data dependency is ternary relation \rightsquigarrow_a defined as follows:

$$\begin{array}{rcl} c_d \stackrel{l}{\leadsto}_a c_u & \triangleq & c_d \hookrightarrow^+ c_u \\ & & \wedge & l \in \hat{\mathsf{D}}(c_d) \cap \hat{\mathsf{U}}(c_u) \\ & & \wedge & \forall c_i.c_d \hookrightarrow^+ c_i \hookrightarrow^+ c_u \implies l \notin \hat{\mathsf{D}}(c_i) \end{array}$$

Condition

To be safe, approximated def/use should satisfy two conditions:

- over-approximation
- spurious definitions should be also included in uses

Definition 5. Set $\hat{D}(c)$ and $\hat{U}(c)$ are a safe approximation of definition set D(c) and use set U(c), respectively, if and only if

(1) $\hat{\mathsf{D}}(c) \supseteq \mathsf{D}(c) \land \hat{\mathsf{U}}(c) \supseteq \mathsf{U}(c)$; and (2) $\hat{\mathsf{D}}(c) - \mathsf{D}(c) \subseteq \hat{\mathsf{U}}(c)$.

Performance of sound & global Sparrow The Early Bird

									4		and to be the state of the se	K						
Programs	LOC	Interva	I _{vanilla}	Interv	al _{base}	$\mathbf{Spd}\uparrow_1$	Mem ↓ ₁			Interva	Interval _{sparse}			$\mathbf{Spd}\uparrow_2$	Mem \downarrow_2			
		Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$					
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %			
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %			
tar-1.13	20K	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %			
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %			
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %			
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %			
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %			
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %			
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %			
1sh-2.0.4	111K	∞	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %			
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A			
nethack-3.3.0	211K	∞	N/A	∞	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A			
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A			
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A			
python-2.5.1	435K	∞	N/A 🟅	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A			
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A			
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A			
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A			
							\frown				an aire ar shear fra		$\overline{\mathbf{M}}$					
													ks, /					
	atial a											mp						
		sparation it ter in																
		diza rial									:12th							
		\sim	1000								(spial calle							

spatial+tempora localization

Conclusion

Localization techniques enables detailed, sound, and also scalable global static analysis for million lines of C.