

Define a Semantics Function

Define a Semantics Function

Define a Semantics Function

Compute an UB of

Define a Semantics Function

Compute an UB of

Static Analysis Engineering:
global analysis of
 million lines of C

Kwangkeun Yi
Seoul National University, Korea

http://ropas.snu.ac.kr/~kwang

2/26/2012 - 3/2/2012
17th Estonian Winter School in Computer Science,

Palmse, Estonia

(Co-work with Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee)

http://ropas.snu.ac.kr/~kwang
http://ropas.snu.ac.kr/~kwang

Reality
less-382 (23,822 LoC)

Contents

• Designing Sparrow

• in the abstract interpretation framework

• Engineering Sparrow

• by localizations in space and time

• [PLDI’12, VMCAI’11, APLAS’11,’09]

Design of

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

• Designed in the abstract interpretation framework

• To find memory safety violations in C

• such as buffer-overrun, memory leak, null
dereference, etc.

• for the full set of C

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Program

• : set of program points

• : control flow relation

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

assign(lv , e) | alloc(lv , a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command assign(lv , e) assigns the
value of e into the location of lv . Command alloc(lv , a) allocates an array [e]l or
a structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

(c is a next control point of c’)

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

lv := e | lv := alloc(a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command lv := e assigns the value
of e into the location of lv . Command lv := alloc(a) allocates an array [e]l or a
structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

Commands

X is a tuple, X.n indicates the nth component of the tuple. We write R+ and R�

for the transitive and reflexive-transitive closure of binary relation R. Finally, N
represents the set of natural numbers {0, 1, 2, . . .}.

2.2 Programs

A program is a tuple �C, �→� where C is a finite set of control points and �→⊆ C×C
is a relation that denotes control dependencies of the program; c� �→ c indicates
that c is a next control point of c�. Each control point c is associated with com-
mand cmd(c). Command c has one of the following five types:

lv := e | lv := alloc(a) | assume(x < e) | call(fx , e) | returnf

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv

l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-
value expression (lv), or an address-of expression (&lv). An l-value may be a vari-
able (x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables, in-
cluding formal parameters, have unique names. Command lv := e assigns the value
of e into the location of lv . Command lv := alloc(a) allocates an array [e]l or a
structure {x}l, where e is the size of the array, x is the field name, and the sub-
script l is the label for the allocation site. For simplicity, we consider structures
with one field only. Each call-site for a procedure is represented by two control
points: a call-point and its corresponding return-point. A call-point is associated
with command call(fx, e), which indicates that procedure f , whose formal param-
eter is x, is called with actual parameter e. When c is a call-point (resp., return-
point), callof(c) (resp., rtnof(c)) denotes the corresponding return-point (resp., call-

8

Semantics

• The set of all reachable states at each program point

• Semantic function

point). For simplicity, we assume that there are no function pointers1 and consider
procedures with one parameter only. Command returnf denotes the return state-
ment of procedure f .

2.3 Collecting Semantics

Collecting semantics of program P is an invariant [[P]] ∈ C → 2S that represents a
set of reachable states at each control point, where the concrete domain of states,
S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer
(Z) or location (L). The collecting semantics is characterized by the least fixpoint
of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (2.1)

where fc ∈ 2S → 2S is a semantic function at control point c. We leave out the
standard definition of the concrete semantic function.

2.4 Abstract Semantics

2.4.1 Abstract Domain

We abstract the collecting semantics of program P by the following Galois connec-
tion:

C → 2S −→←−
α

γ
C → Ŝ (2.2)

1 In implemetation, we prior resolve all function pointers with a pre-analysis.

9

point). For simplicity, we assume that there are no function pointers1 and consider
procedures with one parameter only. Command returnf denotes the return state-
ment of procedure f .

2.3 Collecting Semantics

Collecting semantics of program P is an invariant [[P]] ∈ C → 2S that represents a
set of reachable states at each control point, where the concrete domain of states,
S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer
(Z) or location (L). The collecting semantics is characterized by the least fixpoint
of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (2.1)

where fc ∈ 2S → 2S is a semantic function at control point c. We leave out the
standard definition of the concrete semantic function.

2.4 Abstract Semantics

2.4.1 Abstract Domain

We abstract the collecting semantics of program P by the following Galois connec-
tion:

C → 2S −→←−
α

γ
C → Ŝ (2.2)

1 In implemetation, we prior resolve all function pointers with a pre-analysis.

9

point). For simplicity, we assume that there are no function pointers1 and consider
procedures with one parameter only. Command returnf denotes the return state-
ment of procedure f .

2.3 Collecting Semantics

Collecting semantics of program P is an invariant [[P]] ∈ C → 2S that represents a
set of reachable states at each control point, where the concrete domain of states,
S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer
(Z) or location (L). The collecting semantics is characterized by the least fixpoint
of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (2.1)

where fc ∈ 2S → 2S is a semantic function at control point c. We leave out the
standard definition of the concrete semantic function.

2.4 Abstract Semantics

2.4.1 Abstract Domain

We abstract the collecting semantics of program P by the following Galois connec-
tion:

C → 2S −→←−
α

γ
C → Ŝ (2.2)

1 In implemetation, we prior resolve all function pointers with a pre-analysis.

9

point). For simplicity, we assume that there are no function pointers1 and consider
procedures with one parameter only. Command returnf denotes the return state-
ment of procedure f .

2.3 Collecting Semantics

Collecting semantics of program P is an invariant [[P]] ∈ C → 2S that represents a
set of reachable states at each control point, where the concrete domain of states,
S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer
(Z) or location (L). The collecting semantics is characterized by the least fixpoint
of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (2.1)

where fc ∈ 2S → 2S is a semantic function at control point c. We leave out the
standard definition of the concrete semantic function.

2.4 Abstract Semantics

2.4.1 Abstract Domain

We abstract the collecting semantics of program P by the following Galois connec-
tion:

C → 2S −→←−
α

γ
C → Ŝ (2.2)

1 In implemetation, we prior resolve all function pointers with a pre-analysis.

9

point). For simplicity, we assume that there are no function pointers1 and consider
procedures with one parameter only. Command returnf denotes the return state-
ment of procedure f .

2.3 Collecting Semantics

Collecting semantics of program P is an invariant [[P]] ∈ C → 2S that represents a
set of reachable states at each control point, where the concrete domain of states,
S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer
(Z) or location (L). The collecting semantics is characterized by the least fixpoint
of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (2.1)

where fc ∈ 2S → 2S is a semantic function at control point c. We leave out the
standard definition of the concrete semantic function.

2.4 Abstract Semantics

2.4.1 Abstract Domain

We abstract the collecting semantics of program P by the following Galois connec-
tion:

C → 2S −→←−
α

γ
C → Ŝ (2.2)

1 In implemetation, we prior resolve all function pointers with a pre-analysis.

9

: semantic function at control point c

= lfpF

c

c�c�

Abstract Semantics

• abstract domain

point). For simplicity, we assume that there are no function pointers1 and consider
procedures with one parameter only. Command returnf denotes the return state-
ment of procedure f .

2.3 Collecting Semantics

Collecting semantics of program P is an invariant [[P]] ∈ C → 2S that represents a
set of reachable states at each control point, where the concrete domain of states,
S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer
(Z) or location (L). The collecting semantics is characterized by the least fixpoint
of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (2.1)

where fc ∈ 2S → 2S is a semantic function at control point c. We leave out the
standard definition of the concrete semantic function.

2.4 Abstract Semantics

2.4.1 Abstract Domain

We abstract the collecting semantics of program P by the following Galois connec-
tion:

C → 2S −→←−
α

γ
C → Ŝ (2.2)

1 In implemetation, we prior resolve all function pointers with a pre-analysis.

9

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

4.2 Sparse Analysis Framework

4.2.1 Baseline Abstraction

Our framework considers a particular family of abstractions.

Program As in Chapter 2, a program is a tuple �C, �→� where C is a finite set

of control points and �→⊆ C×C is a relation that denotes control dependencies of

the program; c� �→ c indicates that c is a next control point of c�.

Collecting Semantics Collecting semantics of program P is an invariant [[P]] ∈
C → 2S that represents a set of reachable states at each control point, where the

concrete domain of states, S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer

(Z) or location (L). The collecting semantics is characterized by the least fixpoint

of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

cp�→c

X(cp)). (4.1)

where fc ∈ 2S → 2S is a semantic function at control point c.

Abstract Semantics We abstract the collecting semantics of program P by the

following Galois connection

C → 2S −→←−
α

γ
C → Ŝ (4.2)

where α and γ are a pointwise lifting of abstract and concretization function αS

and γS (such that 2S −→←−
αS

γS Ŝ), respectively.

We consider a particular, but general and practical, family of abstract domains

where abstract state Ŝ is map L̂ → V̂ where L̂ is a finite set of abstract loca-

50

Abstract Semantics

• abstract semantic function

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

where f̂c ∈ Ŝ → Ŝ is a semantic function at control point c.

f̂c(ŝ) =

ŝ[L̂(lv)(ŝ) w�→ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥, {�l, [0, 0], V̂(e)(ŝ).1�},⊥�] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥,⊥, {�l, {x}�}�] cmd(c) = lv := alloc({x}l)

ŝ[x �→ �ŝ(x).1 � [−∞, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4�] cmd(c) = assume(x < e)

ŝ[x �→ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-
stract locations for lv , respectively, under ŝ. The effect of node lv := e is to
(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-
ray allocation command lv := alloc([e]l) creates a new array block with offset 0

and size e. The structure block command lv := alloc({x}l) creates a new structure
block. In both cases, we use the allocation site l as the base address, by which
many (possibly infinite) concrete locations are summarized by finite abstract loca-
tions. Assume assume(x < e) confines the value of x so that the resulting memory
state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the
formal parameter x to the value of actual parameter e. Note that the output of
the call node is the memory state that flows into the body of the called procedure,
not the memory state returned from the call. The abstract semantics for procedure
calls show that our analysis is context-insensitive: it ignores the calling context in
which procedures are invoked.3

Lemma 1 (Soundness) If α ◦ F � F̂ ◦ α, then, α(lfpF) � lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

: abstract semantics at each program point

Abstract Semantics
where f̂c ∈ Ŝ → Ŝ is a semantic function at control point c.

f̂c(ŝ) =

ŝ[L̂(lv)(ŝ) w�→ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥, {�l, [0, 0], V̂(e)(ŝ).1�},⊥�] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥,⊥, {�l, {x}�}�] cmd(c) = lv := alloc({x}l)

ŝ[x �→ �ŝ(x).1 � [−∞, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4�] cmd(c) = assume(x < e)

ŝ[x �→ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-
stract locations for lv , respectively, under ŝ. The effect of node lv := e is to
(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-
ray allocation command lv := alloc([e]l) creates a new array block with offset 0

and size e. The structure block command lv := alloc({x}l) creates a new structure
block. In both cases, we use the allocation site l as the base address, by which
many (possibly infinite) concrete locations are summarized by finite abstract loca-
tions. Assume assume(x < e) confines the value of x so that the resulting memory
state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the
formal parameter x to the value of actual parameter e. Note that the output of
the call node is the memory state that flows into the body of the called procedure,
not the memory state returned from the call. The abstract semantics for procedure
calls show that our analysis is context-insensitive: it ignores the calling context in
which procedures are invoked.3

Lemma 1 (Soundness) If α ◦ F � F̂ ◦ α, then, α(lfpF) � lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

We now define V̂ and L̂, which compute abstract values and locations, respec-
tively. Given expression e and abstract state ŝ, V̂(e)(ŝ) evaluates the abstract value
of e under ŝ.

V̂(e) ∈ Ŝ → V̂

V̂(n)(ŝ) = �[n, n],⊥,⊥,⊥�
V̂(e1 + e2)(ŝ) = V̂(e1)(ŝ)+̂V̂(e2)(ŝ)

V̂(lv)(ŝ) =
�
{ŝ(a) | a ∈ L̂(lv)(ŝ)}

V̂(&lv)(ŝ) = �⊥, L̂(lv)(ŝ),⊥,⊥�

V̂ is inductively defined for each type of expression. Integer n evaluates to its cor-
responding interval value [n, n]. Expressions involving binary expression are induc-
tively evaluated. For l-values lv , we first find the abstract locations that lv denotes
and then look up the abstract values associated with the locations. &lv evaluates
to the abstract locations that lv denotes. We skip the conventional definition of
the abstract binary (+̂) and join (�) operations.

Similarly, Given l-value expression lv and abstract memory state ŝ, L̂(lv)(ŝ)
evaluates the set of abstract locations that lv denotes under ŝ.

L̂(lv) ∈ Ŝ → 2L̂

L̂(x)(ŝ) = {x}
L̂(*e)(ŝ) = V̂(e)(ŝ).2 ∪ {l | �l, o, s� ∈ V̂(e)(ŝ).3}

∪{�l, x� | �l, {x}� ∈ V̂(e)(ŝ).4}
L̂(e1[e2])(ŝ) = {l | �l, o, s� ∈ V̂(e1)(ŝ).3}

L̂(e.x)(ŝ) = {�l, x� | �l, {x}� ∈ V̂(e)(ŝ).4}

The abstract location for variable x is represented by x. When *e is used as l-
value, it denotes all the abstract locations accessible from e, including arrays and
structure fields. Array access e1[e2] refers to the location of arrays e1 denotes.
In our analysis, all of the array elements are smashed into a single element, and
hence, the definition of L̂(e1[e2]) does not involve e2. The abstract location for
structure field e.x is represented by a pair of allocation site and field name.

12

We now define V̂ and L̂, which compute abstract values and locations, respec-
tively. Given expression e and abstract state ŝ, V̂(e)(ŝ) evaluates the abstract value
of e under ŝ.

V̂(e) ∈ Ŝ → V̂

V̂(n)(ŝ) = �[n, n],⊥,⊥,⊥�
V̂(e1 + e2)(ŝ) = V̂(e1)(ŝ)+̂V̂(e2)(ŝ)

V̂(lv)(ŝ) =
�
{ŝ(a) | a ∈ L̂(lv)(ŝ)}

V̂(&lv)(ŝ) = �⊥, L̂(lv)(ŝ),⊥,⊥�

V̂ is inductively defined for each type of expression. Integer n evaluates to its cor-
responding interval value [n, n]. Expressions involving binary expression are induc-
tively evaluated. For l-values lv , we first find the abstract locations that lv denotes
and then look up the abstract values associated with the locations. &lv evaluates
to the abstract locations that lv denotes. We skip the conventional definition of
the abstract binary (+̂) and join (�) operations.

Similarly, Given l-value expression lv and abstract memory state ŝ, L̂(lv)(ŝ)
evaluates the set of abstract locations that lv denotes under ŝ.

L̂(lv) ∈ Ŝ → 2L̂

L̂(x)(ŝ) = {x}
L̂(*e)(ŝ) = V̂(e)(ŝ).2 ∪ {l | �l, o, s� ∈ V̂(e)(ŝ).3}

∪{�l, x� | �l, {x}� ∈ V̂(e)(ŝ).4}
L̂(e1[e2])(ŝ) = {l | �l, o, s� ∈ V̂(e1)(ŝ).3}

L̂(e.x)(ŝ) = {�l, x� | �l, {x}� ∈ V̂(e)(ŝ).4}

The abstract location for variable x is represented by x. When *e is used as l-
value, it denotes all the abstract locations accessible from e, including arrays and
structure fields. Array access e1[e2] refers to the location of arrays e1 denotes.
In our analysis, all of the array elements are smashed into a single element, and
hence, the definition of L̂(e1[e2]) does not involve e2. The abstract location for
structure field e.x is represented by a pair of allocation site and field name.

12

Computing

�� ��(abstract interpretation)

�� ��: ����
�� �� �: ��
�� �� �: ��
�� �� �: Theorem�

Fixpoint Transfer Theorems

� �� ��� �� ��� ��� ���?

Theorem (fixpoint transfer)

D� D̂� �� CPO�� ��� ��� ����. �� F : D → D�
������ F̂ : D̂ → D̂� ������� ������. α ◦ F � F̂ ◦ α
��. ���,

α(lfpF) �
G

i∈N
F̂ i(⊥̂).

Theorem (fixpoint transfer2)

CPO D� D̂� ��� �� D −→←−α
γ

D̂ ����. F : D → D��

F̂ : D̂ → D̂ ��. α f � f̂ �� α(F f) � F̂ f̂ ��. ���,

α(lfpF) �
G

i∈N
F̂ i(⊥̂).

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Note 7

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

Naive fixpoint algorithm Worklist algorithm

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

The Algorithms Too Weak in Reality
less-382 (23,822 LoC)

Improving Scalability

Key Idea: Localization

• Spatial localization [VMCAI’11,APLAS’11]

• Temporal localization [PLDI’12]

“Right Part at Right Moment”

Computing

�� ��(abstract interpretation)

�� ��: ����
�� �� �: ��
�� �� �: ��
�� �� �: Theorem�

Fixpoint Transfer Theorems

� �� ��� �� ��� ��� ���?

Theorem (fixpoint transfer)

D� D̂� �� CPO�� ��� ��� ����. �� F : D → D�
������ F̂ : D̂ → D̂� ������� ������. α ◦ F � F̂ ◦ α
��. ���,

α(lfpF) �
G

i∈N
F̂ i(⊥̂).

Theorem (fixpoint transfer2)

CPO D� D̂� ��� �� D −→←−α
γ

D̂ ����. F : D → D��

F̂ : D̂ → D̂ ��. α f � f̂ �� α(F f) � F̂ f̂ ��. ���,

α(lfpF) �
G

i∈N
F̂ i(⊥̂).

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Note 7

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

Naive fixpoint algorithm Worklist algorithm

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

W ∈ Worklist = 2C

X̂ ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

W := C
X̂ := λc.⊥
repeat

c := choose(W)

ŝ := f̂c(
�

c��→cX(c�))

if ŝ �� X̂(c)

W := W ∪ {c� ∈ C | c �→ c�}
X̂(c) := X̂(c) � ŝ

until W = ∅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ � ∈ C → Ŝ
f̂c ∈ Ŝ → Ŝ

X̂ := X̂ � := λc.⊥
repeat

X̂ � := X̂

for all c ∈ C do
X̂(c) := f̂c(

�
c��→cX(c�))

until X̂ � X̂ �

Figure 2.2: A naive fixpoint algorithm.

14

Program LOC Functions Statements Blocks maxSCC AbsLocs

gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
bash-2.05a 105K 955 107,774 27,669 4 17,443
lsh-2.0.4 111K 1,524 137,511 27,896 13 31,164
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

Table 1: Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing and macro expansion. Functions reports the number of functions in source
code. Statements and Blocks report the number of statements and basic blocks in our intermediate representation of programs (after preprocessing). maxSCC reports the size of the
largest strongly connected component in the callgraph. AbsLocs reports the number of abstract locations that are generated during the analysis.

Programs Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 2: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

The results show that Intervalbase already has a competitive
performance: it is faster than Intervalvanilla by 8–55x, saving
peak memory consumption by 54–85%. Intervalvanilla scales to
35 KLOC before running out of time limit (24 hours). In con-
trast, Intervalbase scales to 111 KLOC. For the first six benchmarks
that they both complete, Intervalbase is on average 27x faster than
Intervalvanilla, and uses on average 71% less memory.

Intervalsparse is faster than Intervalbase by 5–110x and saves
memory by 3–92%. In particular, the analysis’ scalability has been
remarkably improved: Intervalsparse scales to 1.4M LOC, which is
an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time
for Intervalsparse does not strictly depend on program sizes. For ex-
ample, analyzing emacs-22.1 (399 KLOC) requires 10 hours, tak-
ing six times more than analyzing ghostscript-9.00 (1,363 KLOC).
This is mainly due to the fact that some real C programs have un-
expectedly large recursive call cycles [24, 42]. Column maxSCC

in Table 1 reports the sizes of the largest recursive cycle (precisely
speaking, strongly connected component) in programs. Note that
some programs (such as nethack-3.3.0, vim60, and emacs-22.1)
have a large cycle that contains hundreds or even thousands of pro-
cedures. Such non-trivial SCCs markedly increase analysis cost be-
cause the large cyclic dependencies among procedures make data
dependencies much more complex. Thus, the analysis for gimp-2.6

(959 KLOC) or ghostscript-9.00 (1,363 KLOC), which have few re-
cursion, is even faster than python-2.5.1 (435 KLOC) or nethack-
3.3.0 (211 KLOC), which have large recursive cycles.

Second, data dependency generation takes much longer time
than actual fixpoint computation. For example, data dependency
generation for ghostscript-9.00 takes 14,116 s but the fixpoint is
computed in 698 s. In fact, this phenomenon paradoxically shows
the effectiveness of our pre-analysis. Finding data dependencies
of programs is not an easy work but their exact computation re-
quires the full analysis (Intervalbase). Instead, the pre-analysis finds
an approximation with small cost (compared to Intervalbase). Our
pre-analysis is effective because the approximated data dependen-
cies are shown to be precise enough to make our sparse analysis
efficient. On the other hand, the seemingly unbalanced timing re-
sults are partly because of the uses of BDDs in dependency con-
struction. While BDD dramatically saves memory costs, set opera-
tions for BDDs such as addition and removal are noticeably slower
than usual set operations. Especially, large programs are more in-
fluenced by this characteristic because their data dependency gen-
eration is more complex and much more BDD-operations are in-
volved. However, thanks to the space-effectiveness of BDDs, our
sparse analysis does not steeply increase memory consumption as
program sizes increase.

8 2012/1/20

benchmark programs

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis

Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion

Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

spatia
l

locali
zat

ion
none

spatia
l+tem

poral

locali
zat

ion

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Spatial Localization

Memory Localization
(spatial localization)

f

call f

local (accessible)

return

global
(non-accessible)

Benefits

int g;

int f() {...}

int main() {
 g = 0;
 f();

 g = 1;
 f();
}

f does not access g

Vital in Practice

26

less-382 (23,822 LOC)

Program LOC #Functions
less-382
bash-2.05a
vim60
emacs-22.1
linux-3.0
ghostscript-9.00

23K 382
105K 955
227K 2,770
399K 3,388
710K 13,856

1,363K 10,224

Vital in Practice

27

less-382 (23,822 LOC)

On average 755 re-analyses
per procedure

Program LOC #Functions
less-382
bash-2.05a
vim60
emacs-22.1
linux-3.0
ghostscript-9.00

23K 382
105K 955
227K 2,770
399K 3,388
710K 13,856

1,363K 10,224

Huge Room for Localization
2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory

/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only differences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is inefficient both in time and memory cost. This finding originates from
the difficulty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

average : 4%

conventional reachability-based technique is too
conservative

Access-based Localization

pre-analysis
conservative

access information
actual analysis

f
{a,b,c}Over-approximation of

actual access info.

{a,b}

∪

actual access info.

Access-based Localization

pre-analysis
conservative

access information
actual analysis

f
call f

non-accessible

{a,b,c}

Our Pre-analysis

• abstract domain

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) � γ(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) � γ(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c��→c X̂(c�) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more efficient way. We

do this by computing X̂ �
that is more approximate than X̂, i.e., X̂ � X̂ �

.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ �(� X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C → Ŝ and semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C → Ŝ −→←−
α

γ
Ŝ

such that,

α = λX̂.
�

c∈C X̂(c)

γ = λŝ.λc ∈ C.ŝ

The semantic function F̂p : Ŝ → Ŝ is defined as follows:

F̂p = λŝ.(
�

c∈C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) � γ(lfp(F̂p))

27

• abstract semantic function

ŝpre = fixF̂p

Implementation on Sparrow
(modifying semantic function)

where f̂c ∈ Ŝ → Ŝ is a semantic function at control point c.

f̂c(ŝ) =

ŝ[L̂(lv)(ŝ) w�→ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥, {�l, [0, 0], V̂(e)(ŝ).1�},⊥�] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥,⊥, {�l, {x}�}�] cmd(c) = lv := alloc({x}l)

ŝ[x �→ �ŝ(x).1 � [−∞, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4�] cmd(c) = assume(x < e)

ŝ[x �→ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-
stract locations for lv , respectively, under ŝ. The effect of node lv := e is to
(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-
ray allocation command lv := alloc([e]l) creates a new array block with offset 0

and size e. The structure block command lv := alloc({x}l) creates a new structure
block. In both cases, we use the allocation site l as the base address, by which
many (possibly infinite) concrete locations are summarized by finite abstract loca-
tions. Assume assume(x < e) confines the value of x so that the resulting memory
state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the
formal parameter x to the value of actual parameter e. Note that the output of
the call node is the memory state that flows into the body of the called procedure,
not the memory state returned from the call. The abstract semantics for procedure
calls show that our analysis is context-insensitive: it ignores the calling context in
which procedures are invoked.3

Lemma 1 (Soundness) If α ◦ F � F̂ ◦ α, then, α(lfpF) � lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

where f̂c ∈ Ŝ → Ŝ is a semantic function at control point c.

f̂c(ŝ) =

ŝ[L̂(lv)(ŝ) w�→ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥, {�l, [0, 0], V̂(e)(ŝ).1�},⊥�] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w�→ �⊥,⊥,⊥, {�l, {x}�}�] cmd(c) = lv := alloc({x}l)

ŝ[x �→ �ŝ(x).1 � [−∞, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4�] cmd(c) = assume(x < e)

ŝ[x �→ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-
stract locations for lv , respectively, under ŝ. The effect of node lv := e is to
(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-
ray allocation command lv := alloc([e]l) creates a new array block with offset 0

and size e. The structure block command lv := alloc({x}l) creates a new structure
block. In both cases, we use the allocation site l as the base address, by which
many (possibly infinite) concrete locations are summarized by finite abstract loca-
tions. Assume assume(x < e) confines the value of x so that the resulting memory
state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the
formal parameter x to the value of actual parameter e. Note that the output of
the call node is the memory state that flows into the body of the called procedure,
not the memory state returned from the call. The abstract semantics for procedure
calls show that our analysis is context-insensitive: it ignores the calling context in
which procedures are invoked.3

Lemma 1 (Soundness) If α ◦ F � F̂ ◦ α, then, α(lfpF) � lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

call-point c (such that cmd(c) = call(fx, e)), the semantic function f̂c for the call
statement is changed as follows:

f̂c(ŝ) = ŝ�|access(f) where ŝ� = ŝ[x �→ V̂(e)(ŝ)]

After parameter bound (ŝ�), the memory state is restricted to the set of accessed
locations access(f) that represents the set of abstract locations that are accessed
by procedure f :

access(f) =
�

g∈callees(f)(
�

c∈control(g)A(c)(ŝpre))

where callees(f) denotes the set of procedures, including f , that are reachable from
f via the call-graph and control(f) the set of control points in procedure f , and
ŝpre is the analysis result from the pre-analysis. The following theorem ensures the
safety of the localization.

Theorem 1 (Safety of Access-based Localization) For all procedure f , access(f)

conservatively estimates abstract locations that are accessed during the original anal-

ysis of f .

Proof Abstract location a is accessed inside procedure f if and only if it is ac-
cessed either in the body of f or in the bodies of procedures that are called by
(reachable via call-graph from) f , which is the definition of access. Moreover, be-
cause ŝpre conservatively approximates the abstract memories of all program points
(lemma 6) and A is monotone (lemma 4), A(n)(ŝpre) contains all the abstract lo-
cations that would be accessed in actual analysis. Thus, access is a safe estimation
of accessed locations.

�

Access-based localization can be used in combination with the reachability-based
approach to localize memory states more aggressively. Given an input memory
state ŝ to a call point c such that cmd(c) = call(fx, e), reachable locations R(fx, ŝ),

30

call-point c (such that cmd(c) = call(fx, e)), the semantic function f̂c for the call
statement is changed as follows:

f̂c(ŝ) = ŝ�|access(f) where ŝ� = ŝ[x �→ V̂(e)(ŝ)]

After parameter bound (ŝ�), the memory state is restricted to the set of accessed
locations access(f) that represents the set of abstract locations that are accessed
by procedure f :

access(f) =
�

g∈callees(f)(
�

c∈control(g)A(c)(ŝpre))

where callees(f) denotes the set of procedures, including f , that are reachable from
f via the call-graph and control(f) the set of control points in procedure f , and
ŝpre is the analysis result from the pre-analysis. The following theorem ensures the
safety of the localization.

Theorem 1 (Safety of Access-based Localization) For all procedure f , access(f)

conservatively estimates abstract locations that are accessed during the original anal-

ysis of f .

Proof Abstract location a is accessed inside procedure f if and only if it is ac-
cessed either in the body of f or in the bodies of procedures that are called by
(reachable via call-graph from) f , which is the definition of access. Moreover, be-
cause ŝpre conservatively approximates the abstract memories of all program points
(lemma 6) and A is monotone (lemma 4), A(n)(ŝpre) contains all the abstract lo-
cations that would be accessed in actual analysis. Thus, access is a safe estimation
of accessed locations.

�

Access-based localization can be used in combination with the reachability-based
approach to localize memory states more aggressively. Given an input memory
state ŝ to a call point c such that cmd(c) = call(fx, e), reachable locations R(fx, ŝ),

30

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis

Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion

Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

spatia
l

locali
zat

ion
none

spatia
l+tem

poral

locali
zat

ion

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Temporal Localization

Temporal Localization

y:=x

t:=1

z:=y

y:=x

t:=1

z:=y

x

y

t

Sparse Analysis Framework

F̂ : D̂ → D̂ F̂s : D̂ → D̂

lfpF̂ lfpF̂s=

For a general class of abstract interpretation,

Baseline Non-sparse
Analyzer

• abstract domain

point). For simplicity, we assume that there are no function pointers1 and consider
procedures with one parameter only. Command returnf denotes the return state-
ment of procedure f .

2.3 Collecting Semantics

Collecting semantics of program P is an invariant [[P]] ∈ C → 2S that represents a
set of reachable states at each control point, where the concrete domain of states,
S, is defined as follows:

S = L → V

Concrete state s ∈ S is a map from locations to values, and a value is either integer
(Z) or location (L). The collecting semantics is characterized by the least fixpoint
of semantic function F ∈ (C → 2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

c��→c

X(c�)). (2.1)

where fc ∈ 2S → 2S is a semantic function at control point c. We leave out the
standard definition of the concrete semantic function.

2.4 Abstract Semantics

2.4.1 Abstract Domain

We abstract the collecting semantics of program P by the following Galois connec-
tion:

C → 2S −→←−
α

γ
C → Ŝ (2.2)

1 In implemetation, we prior resolve all function pointers with a pre-analysis.

9

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

• analyzer computes the fixpoint of

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

where α and γ are pointwise liftings of abstract and concretization function αS and
γS (such that 2S −→←−

αS

γS Ŝ), respectively. That is, we abstract the set of reachable
states by a single abstract state. Abstract memory state

Ŝ = L̂ → V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite × FieldName

V̂ = Ẑ× 2L̂ × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location may be a program variable (Var), an allocation site (AllocSite),
or a structure field (AllocSite ×FieldName). All elements of an array allocated at
allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by �l, x�. An abstract value is a quadru-
ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is
kept by the second component (2L̂): it indicates pointer targets an abstract loca-
tions may point to. Allocated arrays of memory locations are represented by array
blocks (2AllocSite×Ẑ×Ẑ): an array block �l, o, s� consists of abstract base address (l),
offset (o), and size (s). A structure block �l, {x}� ∈ 2AllocSite×2FieldName abstracts
structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-
tion F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (2.3)

10

“Obvious” Sparse Version

abstract location l defined at control point cd is used at control
point cu, there is a data dependency between cd and cu on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Let cd and cu be control points
and l be an abstract location. Data dependency is ternary relation
� defined as follows:

cd
l� cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ D(ci).

The definition means that if control point cu is reachable from
control point cd, a value of abstract location l can be defined at
cu and used at cd, and there is no intermediate control point ci that
can change the value of l, then we can directly propagate the value
of l from cd to cu.

Example 2. In the program presented Example 1, we can find two
data dependencies, 10 x� 11 and 11

x� 12.

Comparison with Def-use Chains Note that our notion of data
dependency is different from the conventional notion of def-use
chains. If we want to conservatively collect all the possible def-
use chains of the given definition set and use set, we should exclude
only the paths from definition points to use points when there exists
a point that always kills the definition. However, data dependency
in Definition 3 excludes a path even when there exists a point that
might, but not always, kill the definition. We can slightly modify
Definition 3 to express def-use chain relation �du as follows:

cd
l�du cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ Dmust(ci)

where Dmust(c)�{l∈ L̂ | ∀ŝ �
�

c��→c(lfpF̂)(c�).f̂c(ŝ)(l) �= ŝ(l)}.
The relation contains the comprehensive set of def-use chains that
appear during the analysis. For example, we can find three def-use
chains, 10 x�du 11, 10 x�du 12, and 11

x�du 12 in Example 1.
The reason why we use our notion of data dependencies instead

of def-use chains becomes evident in Section 2.8, where we discuss
the approximations of them.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not to control dependency:

F̂s(X̂) = λc ∈ C.f̂c(
�

cd
l�c

X̂(cd)|l).

As this definition is only different in that it is defined over data
dependency (�), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 2 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ dom(Ss(c)).Ss(c)(l) = S(c)(l).

Proof. (Sketch) We prove the lemma by showing that the fixpoint
equation of F̂s is equivalent to the one of F̂ up to the domain of
Ss(c) for each c ∈ C. Let c1, · · · , cn be control points and x and
y be abstract locations such that c1 �→ · · · �→ cn, c1

x� cn. For

brevity, we only consider the case with the following assumptions:
D(cn) = U(cn) = {x}, c1

x� cn is the only data dependency on
cn, and ci is the only predecessor of ci+1 for all 1 ≤ i < n (we
can easily extend this proof to the general case). Then, the fixpoint
equations of F̂ are as follows:

S(c2) = f̂c2 (S(c1)) · · · S(cn) = f̂cn (S(cn−1)). (4)

We can transform these into the fixpoint equation of F̂s as follows:

S(cn)(x) = f̂cn (S(cn−1))(x) (∵ (4))

= f̂cn (S(cn−1)|x)(x) (∵ Def. of U and U(cn) = {x})

= f̂cn (S(c1)|x)(x) (∵ Def. of � and c1
x� cn)

Note that c1
x� cn ⇒ S(ci)(x) = f̂ci(S(ci−1))(x) = S(ci−1)(x)

where 1 < i < n. The fixpoint equation of F̂s is Ss(cn)(x) =
f̂cn(Ss(c1)|x)(x) and this is equivalent to the one derived above.

∴ S(cn)(x) = Ss(cn)(x)

Note that dom(Ss(cn)) = D(cn) ∪ U(cn) = {x}.

The lemma guarantees that the sparse analysis result is identical
to the original result only up to the entries that exist in the sparse
analysis result. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using an approximated definition set D̂ and use set Û.

Definition 4 (Approximated Data Dependency). Let cd and cu be
control points and l be an abstract location. Approximated data
dependency is ternary relation �a defined as follows:

cd
l�a cu � cd �→+ cu

∧ l ∈ D̂(cd) ∩ Û(cu)
∧ ∀ci.cd �→+ ci �→+ cu =⇒ l �∈ D̂(ci)

The definition is the same except that it is defined using D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

cd
l�ac

X̂(cd)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.

Example 3. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10) = {x} U(10) = ∅
D(11) = {y} U(11) = ∅
D(12) = {y} U(12) = {x}.

3 2012/1/18

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

“Obvious”
Data Dependencyabstract location l defined at control point cd is used at control

point cu, there is a data dependency between cd and cu on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Let cd and cu be control points
and l be an abstract location. Data dependency is ternary relation
� defined as follows:

cd
l� cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ D(ci).

The definition means that if control point cu is reachable from
control point cd, a value of abstract location l can be defined at
cu and used at cd, and there is no intermediate control point ci that
can change the value of l, then we can directly propagate the value
of l from cd to cu.

Example 2. In the program presented Example 1, we can find two
data dependencies, 10 x� 11 and 11

x� 12.

Comparison with Def-use Chains Note that our notion of data
dependency is different from the conventional notion of def-use
chains. If we want to conservatively collect all the possible def-
use chains of the given definition set and use set, we should exclude
only the paths from definition points to use points when there exists
a point that always kills the definition. However, data dependency
in Definition 3 excludes a path even when there exists a point that
might, but not always, kill the definition. We can slightly modify
Definition 3 to express def-use chain relation �du as follows:

cd
l�du cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ Dmust(ci)

where Dmust(c)�{l∈ L̂ | ∀ŝ �
�

c��→c(lfpF̂)(c�).f̂c(ŝ)(l) �= ŝ(l)}.
The relation contains the comprehensive set of def-use chains that
appear during the analysis. For example, we can find three def-use
chains, 10 x�du 11, 10 x�du 12, and 11

x�du 12 in Example 1.
The reason why we use our notion of data dependencies instead

of def-use chains becomes evident in Section 2.8, where we discuss
the approximations of them.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not to control dependency:

F̂s(X̂) = λc ∈ C.f̂c(
�

cd
l�c

X̂(cd)|l).

As this definition is only different in that it is defined over data
dependency (�), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 2 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ dom(Ss(c)).Ss(c)(l) = S(c)(l).

Proof. (Sketch) We prove the lemma by showing that the fixpoint
equation of F̂s is equivalent to the one of F̂ up to the domain of
Ss(c) for each c ∈ C. Let c1, · · · , cn be control points and x and
y be abstract locations such that c1 �→ · · · �→ cn, c1

x� cn. For

brevity, we only consider the case with the following assumptions:
D(cn) = U(cn) = {x}, c1

x� cn is the only data dependency on
cn, and ci is the only predecessor of ci+1 for all 1 ≤ i < n (we
can easily extend this proof to the general case). Then, the fixpoint
equations of F̂ are as follows:

S(c2) = f̂c2 (S(c1)) · · · S(cn) = f̂cn (S(cn−1)). (4)

We can transform these into the fixpoint equation of F̂s as follows:

S(cn)(x) = f̂cn (S(cn−1))(x) (∵ (4))

= f̂cn (S(cn−1)|x)(x) (∵ Def. of U and U(cn) = {x})

= f̂cn (S(c1)|x)(x) (∵ Def. of � and c1
x� cn)

Note that c1
x� cn ⇒ S(ci)(x) = f̂ci(S(ci−1))(x) = S(ci−1)(x)

where 1 < i < n. The fixpoint equation of F̂s is Ss(cn)(x) =
f̂cn(Ss(c1)|x)(x) and this is equivalent to the one derived above.

∴ S(cn)(x) = Ss(cn)(x)

Note that dom(Ss(cn)) = D(cn) ∪ U(cn) = {x}.

The lemma guarantees that the sparse analysis result is identical
to the original result only up to the entries that exist in the sparse
analysis result. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using an approximated definition set D̂ and use set Û.

Definition 4 (Approximated Data Dependency). Let cd and cu be
control points and l be an abstract location. Approximated data
dependency is ternary relation �a defined as follows:

cd
l�a cu � cd �→+ cu

∧ l ∈ D̂(cd) ∩ Û(cu)
∧ ∀ci.cd �→+ ci �→+ cu =⇒ l �∈ D̂(ci)

The definition is the same except that it is defined using D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

cd
l�ac

X̂(cd)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.

Example 3. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10) = {x} U(10) = ∅
D(11) = {y} U(11) = ∅
D(12) = {y} U(12) = {x}.

3 2012/1/18

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}{x,y}

{p,x,y} {x}

x x

Realizable Sparse Version

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10) = {x} Û(10) = ∅
D̂(11) = {x, y} Û(11) = ∅
D̂(12) = {y} Û(12) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11 is not included in approximated use set Û(11).
With this approximation, abstract value of x at 10 is not propagated

to 12, while it is propagated in the original analysis (10
x� 12, but

10 � x�a 12). However, if {x} ⊆ Û(11), then the abstract value

will be propagated through two data dependency, 10
x�a 11 and

11
x�a 12. Note that x is not defined at 11, thus the propagated

abstract value for x is not modified at 11.

We can formally define safe approximation of definition set and
use set as follows:

Definition 5. Set D̂(c) and Û(c) are a safe approximation of

definition set D(c) and use set U(c), respectively, if and only if

(1) D̂(c) ⊇ D(c) ∧ Û(c) ⊇ U(c); and

(2) D̂(c)− D(c) ⊆ Û(c).

The remaining things is to prove that the safe approximation D̂
and Û yields the correct sparse analysis, which the following lemma
states:

Lemma 3 (Correctness of Safe Approximation). Suppose sparse

abstract semantic function F̂a is derived by the safe approximation

D̂ and Û. Let S and Sa be lfpF̂ and lfpF̂a. Then,

∀c ∈ C.∀l ∈ dom(Sa(c)).Sa(c)(l) = S(c)(l).

Proof. (Sketch) We can prove the lemma by showing the equiva-
lence of the fixpoint equations up to the domain of Sa(c) for each
c ∈ C, as we did for Lemma 2. We make the same assumptions
as in the proof of Lemma 2 (we can generalize the proof easily).
Consider the case when x ∈ D̂(cm)−D(cm) for some m such that
1 < m < n. By the definition of the safe approximation, x ∈ Û(x)
and we now have two data dependencies c1

x�a cm and cm
x�a cn

instead of c1
x� cn. The fixpoint equations of F̂a are as follows:

Sa(cm)(x) = f̂cm (Sa(c1)|x)(x)

Sa(cn)(x) = f̂cn (Sa(cm)|x)(x).

The fixpoint equations of F̂ we derived in the proof of Lemma 2
are as follows:

S(ci)(x) = S(ci−1)(x) where 1 < i < n

S(cn)(x) = f̂cn (S(c1)|x)(x).

Since x is spurious definition at cm, we have S(cm)(x) =
S(cm−1)(x) = f̂cm(S(cm−1))(x) = f̂cm(S(c1)|x)(x), which
proves that two sets of fixpoint equations are equivalent. Therefore,
Sa(cn)(x) = S(cn)(x).

Precision Loss with Conservative Def-use Chains While ap-
proximated data dependency does not degrade the precision of an
analysis, conservative def-use chains from approximated definition
set and use set make the analysis less precise even if the approxi-
mation is safe. The following example illustrates the case of impre-
cision.

Example 4. Consider the same setting of Example 3. Approxi-

mated definition set and use set establish the following three def-

use chains: 10
x�du 11, 11

x�du 12, and 10
x�du 12 (we assume

here that relation �du is similarly modified as in Definition 5). With

these conservative def-use chains, the points-to set of x propagated

to control point 12 is {y} ∪ {z}, which is bigger set than {y}, the

one that appears in the original analysis.

2.9 Designing Sparse Analysis Steps in the Framework
In summary, the design of sparse analysis within our framework is
done in the following two steps:

(1) Design a static analysis based on abstract interpretation frame-
work [9]. Note that the abstract domain should be a member of
the family explained in Section 2.3.

(2) Design a method to find a safe approximation D̂ and Û of
definition set D and use set U (Definition 5).

Once the safe approximation is found in step (2), our framework
guarantees that the derived sparse analysis is correct; that is, the
sparse analysis is sound and has the same precision as the original
analysis designed in step (1).

3. Designing Sparse Non-Relational Analysis
As a concrete example, we show how to design sparse non-
relational analyses within our framework. Following Section 2.9,
we proceed in two steps: (1) We design a conventional non-
relational analysis based on abstract interpretation. Relying on the
abstract interpretation framework [9, 10], we can flexibly design a
static analysis of our interest with soundness guaranteed. However,
the analysis is not yet sparse. (2) We design a method to find D̂ and
Û and prove that they are safe approximations (Definition 5).

For brevity, we restrict our presentation to the following simple
subset of C, where a variable has either an integer value or a pointer
(i.e. V = Z+ L):

x := e | ∗x := e | {{x < n}}
where e → n | x | &x | ∗x | e+e

Assignment x := e corresponds to assigning the value of expres-
sion e to variable x. Store ∗x := e performs indirect assignments;
the value of e is assigned to the location that x points to. Assume
command {{x < n}} makes the program continues only when the
condition evaluates to true.

3.1 Step 1: Designing Non-sparse Analysis
Abstract Domain From the baseline abstraction (in Section 2.3),
we consider a family of state abstractions 2S −−−→←−−−

αS

γS Ŝ such that,
(Because it is standard, we omit the definition of αS.)

Ŝ = L̂ → V̂ L̂ = Var V̂ = Ẑ× P̂ P̂ = 2 L̂

An abstract location is a program variable. An abstract value is a
pair of an abstract integer Ẑ and an abstract pointer P̂. A set of
integers is abstracted to an abstract integer (2Z −−−→←−−−

αZ

γZ Ẑ). Note
that the abstraction is generic so we can choose any non-relational
numeric domains of our interest, such as intervals (Ẑ = {[l, u] |
l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}⊥) or constant propagation
domain (Ẑ = {⊥, . . . ,−1, 0, 1, . . . ,�}). For simplicity, we do
not abstract pointers (because they are finite): pointer values are
kept by a points-to set (P̂ = 2L̂). Other pointer abstractions are also
orthogonally applicable.

Abstract Semantics The abstract semantics is defined by the least
fixpoint of semantic function (3), F̂ , where the abstract semantic
function f̂c ∈ Ŝ → Ŝ is defined as follows:
f̂c(ŝ) =

ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e

ŝ[ŝ(x).P̂ w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e
ŝ[x �→�ŝ(x).Ẑ�ẐαZ({z∈Z|z<n}), ŝ(x).P̂�] cmd(c) = {{x < n}}

4 2012/1/18

And still as precise as the original

� �

F̂s(X̂) = λc ∈ C.f̂c(
�

c�
l
❀c

X̂(c�)|l).

F̂a(X̂) = λc ∈ C.f̂c(
�

c�
l
❀ac

X̂(c�)|l).

1

Realizable
Data Dependency

abstract location l defined at control point cd is used at control
point cu, there is a data dependency between cd and cu on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Let cd and cu be control points
and l be an abstract location. Data dependency is ternary relation
� defined as follows:

cd
l� cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ D(ci).

The definition means that if control point cu is reachable from
control point cd, a value of abstract location l can be defined at
cu and used at cd, and there is no intermediate control point ci that
can change the value of l, then we can directly propagate the value
of l from cd to cu.

Example 2. In the program presented Example 1, we can find two
data dependencies, 10 x� 11 and 11

x� 12.

Comparison with Def-use Chains Note that our notion of data
dependency is different from the conventional notion of def-use
chains. If we want to conservatively collect all the possible def-
use chains of the given definition set and use set, we should exclude
only the paths from definition points to use points when there exists
a point that always kills the definition. However, data dependency
in Definition 3 excludes a path even when there exists a point that
might, but not always, kill the definition. We can slightly modify
Definition 3 to express def-use chain relation �du as follows:

cd
l�du cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ Dmust(ci)

where Dmust(c)�{l∈ L̂ | ∀ŝ �
�

c��→c(lfpF̂)(c�).f̂c(ŝ)(l) �= ŝ(l)}.
The relation contains the comprehensive set of def-use chains that
appear during the analysis. For example, we can find three def-use
chains, 10 x�du 11, 10 x�du 12, and 11

x�du 12 in Example 1.
The reason why we use our notion of data dependencies instead

of def-use chains becomes evident in Section 2.8, where we discuss
the approximations of them.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not to control dependency:

F̂s(X̂) = λc ∈ C.f̂c(
�

cd
l�c

X̂(cd)|l).

As this definition is only different in that it is defined over data
dependency (�), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 2 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ dom(Ss(c)).Ss(c)(l) = S(c)(l).

Proof. (Sketch) We prove the lemma by showing that the fixpoint
equation of F̂s is equivalent to the one of F̂ up to the domain of
Ss(c) for each c ∈ C. Let c1, · · · , cn be control points and x and
y be abstract locations such that c1 �→ · · · �→ cn, c1

x� cn. For

brevity, we only consider the case with the following assumptions:
D(cn) = U(cn) = {x}, c1

x� cn is the only data dependency on
cn, and ci is the only predecessor of ci+1 for all 1 ≤ i < n (we
can easily extend this proof to the general case). Then, the fixpoint
equations of F̂ are as follows:

S(c2) = f̂c2 (S(c1)) · · · S(cn) = f̂cn (S(cn−1)). (4)

We can transform these into the fixpoint equation of F̂s as follows:

S(cn)(x) = f̂cn (S(cn−1))(x) (∵ (4))

= f̂cn (S(cn−1)|x)(x) (∵ Def. of U and U(cn) = {x})

= f̂cn (S(c1)|x)(x) (∵ Def. of � and c1
x� cn)

Note that c1
x� cn ⇒ S(ci)(x) = f̂ci(S(ci−1))(x) = S(ci−1)(x)

where 1 < i < n. The fixpoint equation of F̂s is Ss(cn)(x) =
f̂cn(Ss(c1)|x)(x) and this is equivalent to the one derived above.

∴ S(cn)(x) = Ss(cn)(x)

Note that dom(Ss(cn)) = D(cn) ∪ U(cn) = {x}.

The lemma guarantees that the sparse analysis result is identical
to the original result only up to the entries that exist in the sparse
analysis result. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using an approximated definition set D̂ and use set Û.

Definition 4 (Approximated Data Dependency). Let cd and cu be
control points and l be an abstract location. Approximated data
dependency is ternary relation �a defined as follows:

cd
l�a cu � cd �→+ cu

∧ l ∈ D̂(cd) ∩ Û(cu)
∧ ∀ci.cd �→+ ci �→+ cu =⇒ l �∈ D̂(ci)

The definition is the same except that it is defined using D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

cd
l�ac

X̂(cd)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.

Example 3. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10) = {x} U(10) = ∅
D(11) = {y} U(11) = ∅
D(12) = {y} U(12) = {x}.

3 2012/1/18

 Prepare def/use set using
yet another safe pre-analysis

 Condition

• over-approximation

• spurious definitions should be also included in uses

To be safe, approximated def/use should satisfy two
conditions:

Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10) = {x} Û(10) = ∅
D̂(11) = {x, y} Û(11) = ∅
D̂(12) = {y} Û(12) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11 is not included in approximated use set Û(11).
With this approximation, abstract value of x at 10 is not propagated

to 12, while it is propagated in the original analysis (10
x� 12, but

10 � x�a 12). However, if {x} ⊆ Û(11), then the abstract value

will be propagated through two data dependency, 10
x�a 11 and

11
x�a 12. Note that x is not defined at 11, thus the propagated

abstract value for x is not modified at 11.

We can formally define safe approximation of definition set and
use set as follows:

Definition 5. Set D̂(c) and Û(c) are a safe approximation of

definition set D(c) and use set U(c), respectively, if and only if

(1) D̂(c) ⊇ D(c) ∧ Û(c) ⊇ U(c); and

(2) D̂(c)− D(c) ⊆ Û(c).

The remaining things is to prove that the safe approximation D̂
and Û yields the correct sparse analysis, which the following lemma
states:

Lemma 3 (Correctness of Safe Approximation). Suppose sparse

abstract semantic function F̂a is derived by the safe approximation

D̂ and Û. Let S and Sa be lfpF̂ and lfpF̂a. Then,

∀c ∈ C.∀l ∈ dom(Sa(c)).Sa(c)(l) = S(c)(l).

Proof. (Sketch) We can prove the lemma by showing the equiva-
lence of the fixpoint equations up to the domain of Sa(c) for each
c ∈ C, as we did for Lemma 2. We make the same assumptions
as in the proof of Lemma 2 (we can generalize the proof easily).
Consider the case when x ∈ D̂(cm)−D(cm) for some m such that
1 < m < n. By the definition of the safe approximation, x ∈ Û(x)
and we now have two data dependencies c1

x�a cm and cm
x�a cn

instead of c1
x� cn. The fixpoint equations of F̂a are as follows:

Sa(cm)(x) = f̂cm (Sa(c1)|x)(x)

Sa(cn)(x) = f̂cn (Sa(cm)|x)(x).

The fixpoint equations of F̂ we derived in the proof of Lemma 2
are as follows:

S(ci)(x) = S(ci−1)(x) where 1 < i < n

S(cn)(x) = f̂cn (S(c1)|x)(x).

Since x is spurious definition at cm, we have S(cm)(x) =
S(cm−1)(x) = f̂cm(S(cm−1))(x) = f̂cm(S(c1)|x)(x), which
proves that two sets of fixpoint equations are equivalent. Therefore,
Sa(cn)(x) = S(cn)(x).

Precision Loss with Conservative Def-use Chains While ap-
proximated data dependency does not degrade the precision of an
analysis, conservative def-use chains from approximated definition
set and use set make the analysis less precise even if the approxi-
mation is safe. The following example illustrates the case of impre-
cision.

Example 4. Consider the same setting of Example 3. Approxi-

mated definition set and use set establish the following three def-

use chains: 10
x�du 11, 11

x�du 12, and 10
x�du 12 (we assume

here that relation �du is similarly modified as in Definition 5). With

these conservative def-use chains, the points-to set of x propagated

to control point 12 is {y} ∪ {z}, which is bigger set than {y}, the

one that appears in the original analysis.

2.9 Designing Sparse Analysis Steps in the Framework
In summary, the design of sparse analysis within our framework is
done in the following two steps:

(1) Design a static analysis based on abstract interpretation frame-
work [9]. Note that the abstract domain should be a member of
the family explained in Section 2.3.

(2) Design a method to find a safe approximation D̂ and Û of
definition set D and use set U (Definition 5).

Once the safe approximation is found in step (2), our framework
guarantees that the derived sparse analysis is correct; that is, the
sparse analysis is sound and has the same precision as the original
analysis designed in step (1).

3. Designing Sparse Non-Relational Analysis
As a concrete example, we show how to design sparse non-
relational analyses within our framework. Following Section 2.9,
we proceed in two steps: (1) We design a conventional non-
relational analysis based on abstract interpretation. Relying on the
abstract interpretation framework [9, 10], we can flexibly design a
static analysis of our interest with soundness guaranteed. However,
the analysis is not yet sparse. (2) We design a method to find D̂ and
Û and prove that they are safe approximations (Definition 5).

For brevity, we restrict our presentation to the following simple
subset of C, where a variable has either an integer value or a pointer
(i.e. V = Z+ L):

x := e | ∗x := e | {{x < n}}
where e → n | x | &x | ∗x | e+e

Assignment x := e corresponds to assigning the value of expres-
sion e to variable x. Store ∗x := e performs indirect assignments;
the value of e is assigned to the location that x points to. Assume
command {{x < n}} makes the program continues only when the
condition evaluates to true.

3.1 Step 1: Designing Non-sparse Analysis
Abstract Domain From the baseline abstraction (in Section 2.3),
we consider a family of state abstractions 2S −−−→←−−−

αS

γS Ŝ such that,
(Because it is standard, we omit the definition of αS.)

Ŝ = L̂ → V̂ L̂ = Var V̂ = Ẑ× P̂ P̂ = 2 L̂

An abstract location is a program variable. An abstract value is a
pair of an abstract integer Ẑ and an abstract pointer P̂. A set of
integers is abstracted to an abstract integer (2Z −−−→←−−−

αZ

γZ Ẑ). Note
that the abstraction is generic so we can choose any non-relational
numeric domains of our interest, such as intervals (Ẑ = {[l, u] |
l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}⊥) or constant propagation
domain (Ẑ = {⊥, . . . ,−1, 0, 1, . . . ,�}). For simplicity, we do
not abstract pointers (because they are finite): pointer values are
kept by a points-to set (P̂ = 2L̂). Other pointer abstractions are also
orthogonally applicable.

Abstract Semantics The abstract semantics is defined by the least
fixpoint of semantic function (3), F̂ , where the abstract semantic
function f̂c ∈ Ŝ → Ŝ is defined as follows:
f̂c(ŝ) =

ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e

ŝ[ŝ(x).P̂ w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e
ŝ[x �→�ŝ(x).Ẑ�ẐαZ({z∈Z|z<n}), ŝ(x).P̂�] cmd(c) = {{x < n}}

4 2012/1/18

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis

Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion

Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

spatia
l

locali
zat

ion
none

spatia
l+tem

poral

locali
zat

ion

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

Conclusion

Localization techniques enables
detailed, sound, and also scalable

global static analysis for
million lines of C.

