Static Analysis Scalability X Precision X Soundness by Sparsity and Selectivity

Kwangkeun Yi

Seoul National University, Korea

9/2/2014@TASE 2014, Changsha, China

co-work with Hakjoo Oh, Wonchan Lee, Woosuk Lee, Kihong Heo, Hongseok Yang, Jihoon Kang

Wednesday, September 3, 14

Challenge in Static Analysis

Our Long-term Goal

Soundness Scalability Precision **Selective X-Sensitivity General Sparse Analysis Framework** Approach [PLDI'14] [PLDI'12]

Message

- Towards Sound, Precise, Scalable Analysis
 - Sparse Analysis: "right part at right moment"
 - Selective X-Sensitive Analysis: "right part at right moment"
 - by Pre-Analysis
- Frameworks
 - Precision-preserving Sparse Analyses
 - Effective X-Sensitive Analyses

Our story

• In 2007, we commercialized

- memory-bug-finding tool for full C
- designed in the abstract interpretation framework
- sound in design, unsound yet scalable in reality (nonglobal)
- Realistic workbench available
 - "let's try to achieve sound, precise, yet scalable global version"

The Challenge in Reality

The Challenge in Reality

Our Scalability Improvement

Sparrow

sound-&-global version

• < 1.4M in 10hrs (intrvls)</p>

Our Precision Improvement

Sparrow

sound-&-global version

24% / **28%** reduction of false alarms increase of analysis time

vs. context-insensitivity

Contents

- Sparrow System
- Scalability by Sparsity
- Precision by Selectivity

- Designed in the *abstract interpretation* framework
- To find memory safety violations in C
 - buffer-overrun, memory leak, null deref., etc.
 - flow-sensitive values analysis for int & ptrs (static + dynamic)
 - for the full set of C

Abstract Semantics

• One abstract state $\in \hat{S}$ that subsumes all reachable states at each program point

$$\begin{bmatrix} \hat{P} \end{bmatrix} \in \mathbb{C} \to \hat{\mathbb{S}} = fix\hat{F} \\ \hat{\mathbb{S}} = \hat{\mathbb{L}} \to \hat{\mathbb{V}}$$

$$\hat{\mathbb{L}} = Var + AllocSite + AllocSite \times FieldName \\ \hat{\mathbb{V}} = \hat{\mathbb{Z}} \times 2^{\hat{\mathbb{L}}} \times 2^{AllocSite \times \hat{\mathbb{Z}} \times \hat{\mathbb{Z}}} \times 2^{AllocSite \times 2^{FieldName}} \\ \hat{\mathbb{Z}} = \{[l, u] \mid l, u \in \mathbb{Z} \cup \{-\infty, +\infty\} \land l \le u\} \cup \{\bot\}$$

• Abstract semantic function $\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$ $\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \to c} \hat{X}(c'))$

 $\hat{f}_c \in \hat{\mathbb{S}} \to \hat{\mathbb{S}}$: abstract semantics at point c

$$\begin{array}{ll} \begin{array}{l} \textbf{Computing} \quad fix \hat{F} = \bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\bot}) \\ i \in \mathbb{N} \end{array} \\ \hat{F}(\hat{X}) = \lambda c \in \mathbb{C} \cdot \hat{f}_{c}(\bigsqcup_{c' \to c} \hat{X}(c')). \\ \hat{F}(\hat{X}) = \lambda c \in \mathbb{C} \cdot \hat{f}_{c}(\bigsqcup_{c' \to c} \hat{X}(c')). \\ \hat{X}, \hat{X}' \in \mathbb{C} \to \hat{\mathbb{S}} \\ \hat{f}_{c} \in \hat{\mathbb{S}} \to \hat{\mathbb{S}} \\ \hat{f}_{c} \in \hat{\mathbb{S}} \to \hat{\mathbb{S}} \\ \hat{X} := \hat{X}' := \lambda c. \bot \\ \textbf{repeat} \\ \hat{X}' := \hat{X} \\ \textbf{for all } c \in \mathbb{C} \text{ do} \\ \hat{X}(c) := \hat{f}_{c}(\bigsqcup_{c' \to c} X(c')) \end{array} \\ \begin{array}{l} \hline W \in Worklist = 2^{\mathbb{C}} \\ \hat{X} \in \mathbb{C} \to \hat{\mathbb{S}} \\ \hat{f}_{c} \in \hat{\mathbb{S}} \to \hat{\mathbb{S}} \\ W := \mathbb{C} \\ \hat{X} := \lambda c. \bot \\ \textbf{repeat} \\ c := \text{choose}(W) \\ \hat{s} := \hat{f}_{c}(\bigsqcup_{c' \to c} X(c')) \\ \textbf{if } \hat{s} \not\subseteq \hat{X}(c) \\ W := W \cup \{c' \in \mathbb{C} \mid c \\ \hat{X}(c) := \hat{X}(c) \sqcup \hat{s} \end{array} \end{array}$$

until $W = \emptyset$

Worklist algorithm

 $\hookrightarrow c'\}$

until $\hat{X} \sqsubseteq \hat{X}'$

The Algorithms Too Weak To Scale

less-382 (23,822 LoC)

Improving Scalability

Key Idea: Localization

"Right Part at Right Moment"

Spatial Localization

Vital in Analysis Practice

On average, 755 re-analysis per procedure

But Existing Approach is Too Conservative

huge room for localizations than reachabilitybased technique

Program	LOC	accessed memory
		/ reachable memory
spell-1.0	2,213	5 / 453 (1.1%)
barcode-0.96	4,460	$19 \ / \ 1175 \ (1.6\%)$
httptunnel-3.3	6,174	$10 \ / \ 673 \ \ (1.5\%)$
gzip-1.2.4a	7,327	22 / 1002 (2.2%)
jwhois-3.0.1	9,344	28 / 830 (3.4%)
parser	10,900	75 / 1787 (4.2%)
bc-1.06	13,093	24 / 824 (2.9%)
less-290	18,449	$86 \ / \ 1546 \ (5.6\%)$

average : only 4%

Hurdle: Accessed Locations Before Analysis?

- Yes, by yet another analysis
- The pre-analysis must be quick
- The pre-analysis must be safe
 - over-estimating the accessed abstract locs

Our Pre-analysis

For Safely Estimating the Accessed Abstract Locations

- one further abstraction
- correct design

$$\mathbb{C} \to \hat{\mathbb{S}} \xrightarrow[\alpha]{\gamma} \hat{\mathbb{S}}$$

• abstract semantic function: flow-insensitive

$$\hat{F}_p = \lambda \hat{s}.(\bigsqcup_{c \in \mathbb{C}} \hat{f}_c(\hat{s}))$$

Performance of sound & global Sparrow

		a Santania di Indian	an in Batting		a an a a that is				4			2			
Programs	LOC	Interva	l _{vanilla}	Interv	al _{base}	$\mathbf{Spd}\uparrow_1$	Mem ↓ ₁			Interval _{sparse}				$\mathbf{Spd}\uparrow_2$	Mem \downarrow_2
	i Lyr	Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$	_	
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %
tar-1.13	20K	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78~%
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %
lsh-2.0.4	111K	∞	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A
nethack-3.3.0	211K	∞	N/A	$\int \infty$	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A
python-2.5.1	435K	∞	N/A	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A
			and the shear free							hanananana			$\overline{\mathbf{M}}$		
	r.		\sim		and and a second second	\sim					N		(s,)		
			e.)	/	atian	n					mp			
		(^	(none) space				0'.				1+1	er in	n /		
		()	aliza					rial in ation							
		\smile							(<	p^{α}					
										$^{\circ}$ $^{\circ}$					

Temporal Localization (and spatial localization automatically follows)

Wednesday, September 3, 14

Temporal Localization

- Don't blindly follow the control flow of pgm text
- Follow the dependency of statement semantics
 - from definition points directly to their use points

Precision Preserving Sparse Analysis Framework

Towards Sparse Version

Analyzer computes the fixpoint of $\hat{F} \in (\mathbb{C} \to \hat{\mathbb{S}}) \to (\mathbb{C} \to \hat{\mathbb{S}})$

• baseline non-sparse one

$$\hat{F}(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \hookrightarrow c} \hat{X}(c')).$$

unrealizable sparse version

$$\hat{F}_s(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim c}} \hat{X}(c')|_l).$$

• realizable sparse version

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ \sim a \\ c' \sim a \\ c'$$

Unrealizable Sparse One

$$\hat{F}_s(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{c' \sim c} \hat{X}(c')|_l).$$

Data Dependency

$$c_0 \stackrel{l}{\rightsquigarrow} c_n \triangleq \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}.$$
$$l \in \mathsf{D}(c_0) \cap \mathsf{U}(c_n) \land \forall i \in (0, n). l \notin \mathsf{D}(c_i)$$

Def-Use Sets

$$\mathsf{D}(c) \triangleq \{l \in \hat{\mathbb{L}} \mid \exists \hat{s} \sqsubseteq \bigsqcup_{c' \hookrightarrow c} \mathcal{S}(c').\hat{f}_{c}(\hat{s})(l) \neq \hat{s}(l)\}$$
$$\mathsf{U}(c) \triangleq \{l \in \hat{\mathbb{L}} \mid \exists \hat{s} \sqsubseteq \bigsqcup_{c' \hookrightarrow c} \mathcal{S}(c').\hat{f}_{c}(\hat{s})|_{\mathsf{D}(c)} \neq \hat{f}_{c}(\hat{s} \setminus l)|_{\mathsf{D}(c)}\}$$

Precision Preserving

$$fix\hat{F} = fix\hat{F}_s \mod D$$

Realizable Sparse One

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c' \sim a \\ \sim a \\ c' \sim a \\ c'$$

Realizable Data Dependency

$$\begin{array}{rcl} c_0 \stackrel{l}{\rightsquigarrow}_a c_n & \triangleq & \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}. \\ & l \in \hat{\mathsf{D}}(c_0) \cap \hat{\mathsf{U}}(c_n) \land \forall i \in (0,n). l \not\in \hat{\mathsf{D}}(c_i) \end{array}$$

Precision Preserving

$$fix\hat{F} = fix\hat{F}_a \mod \hat{D}$$

If the following conditions hold

Conditions on $\hat{D} \& \hat{U}$

• over-approximation

$$\hat{\mathsf{D}}(c) \supseteq \mathsf{D}(c) \land \hat{\mathsf{U}}(c) \supseteq \mathsf{U}(c)$$

• spurious definitions should be also included in uses

 $\hat{\mathsf{D}}(c) - \mathsf{D}(c) \subseteq \hat{\mathsf{U}}(c)$

Why the Conditions of $\hat{D} \& \hat{U}$

Hurdle: D& Û Before Analysis?

- Yes, by yet another analysis with further abstraction
- correct design

$$\mathbb{C} \to \hat{\mathbb{S}} \xrightarrow[\alpha]{\gamma} \hat{\mathbb{S}}$$

abstract semantic function: flow-insensitive

$$\hat{F}_p = \lambda \hat{s}.(\bigsqcup_{c \in \mathbb{C}} \hat{f}_c(\hat{s}))$$

Performance of sound & global Sparrow

		a Santania di Indian	an in Batting		a an a a that is				4			2			
Programs	LOC	Interva	l _{vanilla}	Interv	al _{base}	$\mathbf{Spd}\uparrow_1$	$Mem{\downarrow_1}$			Interval _{sparse}				$\mathbf{Spd}\uparrow_2$	Mem \downarrow_2
	i Lyr	Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$	_	
gzip-1.2.4a	7K	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %
bc-1.06	13K	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %
tar-1.13	20K	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %
less-382	23K	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %
make-3.76.1	27K	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %
wget-1.9	35K	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78~%
screen-4.0.2	45K	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %
a2ps-4.14	64K	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %
bash-2.05a	105K	∞	N/A	1,683	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %
lsh-2.0.4	111K	∞	N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %
sendmail-8.13.6	130K	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A
nethack-3.3.0	211K	∞	N/A	∞	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A
vim60	227K	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A
emacs-22.1	399K	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A
python-2.5.1	435K	∞	N/A	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A
linux-3.0	710K	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A
gimp-2.6	959K	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A
ghostscript-9.00	1,363K	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A
			Ches ar spear fire	-						hanananana			$\overline{\mathbf{M}}$		
	r.		\sim		and and a second second	\sim					N		(s,)		
			e.)	/	atian	n					mp			
		(^	(none) space				0'.				1+1	er in	n /		
		()	aliza					rial in ation							
		\smile							(<	p^{α}					
										$^{\circ}$ $^{\circ}$					

Existing Sparse Techniques (developed mostly in dfa community)

Different notion of data dependency

 $c_0 \stackrel{l}{\leadsto}_{\mathsf{du}} c_n \triangleq \exists c_0 \dots c_n \in \mathsf{Paths}, l \in \hat{\mathbb{L}}.$ $l \in \mathsf{D}(c_0) \cap \mathsf{U}(c_n) \land \forall i \in (0, n). l \notin \mathsf{D}_{\mathsf{always}}(c_i)$

• fail to preserve the original accuracy

- Not general for arbitrary analysis for full C
 - tightly coupled with particular analysis (e.g. pointer analysis for "simple" subsets of C)

Improving Precision

Key Idea: Selectivity

"X-sensitivity at Right Moment"

Selective Context-Sensitivity

context-sensitivity only when/where it matters

Key Idea: Impact Pre-Analysis

- Estimate the impact of X-sensitivity on main analysis
 - fully X-sensitive
 - but, approximated in other precision aspects

Key Idea: Impact Pre-Analysis

Other precision aspects

Impact Realization

Other precision aspects

Two Instance Analyses

- Selective context-sensitivity
- Selective relational analysis

Selective Context-Sensitivity

Example Program

```
int h(n) {ret n;}
   void f(a) {
c1: x = h(a);
    assert(x > 1); // Q1  always holds
c2: y = h(input());
     assert(y > 1); // Q2 does not always hold
   }
c3: void g() {f(8);}
   void m() {
c4: f(4);
c5: g();
c6: g();
```


Context-Sensitivity: 3-CFA

Separate analysis for each call-string

Problems of k-CFA

```
int h(n) {ret n;}
   void f(a) {
   x = h(a);
c1:
     assert(x > 1); // Q1
                                   c4
     y = h(input());
c2:
     assert(y > 1); // Q2
    }
                             m
                                     g
                                 c5
c3: void g() {f(8);}
                                c6
   void m() {
c4: f(4);
                                     g
   g();
c5:
   g();
c6:
    }
```


Problems of k-CFA

Our Selective Context-Sensitivity

Challenge: How to infer this int h(n) {ret n;} selective context-sensitivity? void f(a) { [4,4] x = h(a);c1: assert(x > 1); // **Q1** y = h(input());c2: c4 assert(y > 1); // Q2 } m c3: void g() {f(8);} с3 C $\{c5, c6\}$ [8,8] g void m() { c4: f(4); c2 g(); c5: g(); c6: c2 **Our solution:** Impact pre-analysis [-∞,+∞]

- Full context-sensitivity
- Approximate the interval domain

non-negative intervals, e.g., [5,7], $[0,\infty]$

int h(n) {ret n;}
void f(a) {
c1: x = h(a);
 assert(x > 1); // Q1
c2: y = h(input());
 assert(y > 1); // Q2
}

```
c3: void g() {f(8);}
```

```
void m() {
c4: f(4);
c5: g();
c6: g();
}
```



```
int h(n) {ret n;}
   void f(a) {
    x = h(a);
c1:
     assert(x > 1); // Q1
     y = h(input());
c2:
     assert(y > 1); // Q2
   }
c3: void g() {f(8);}
   void m() {
   f(4);
c4:
   g();
c5:
   g();
c6:
    }
```


 Collect queries whose expressions are assigned with ★

int h(n) {ret n;}

```
void f(a) {
c1: ★ x = h(a);
    assert(x > 1); // Q1
c2: T y = h(input());
    assert(y > 1); // Q2
    }
```

```
c3: void g() {f(8);}
```

```
void m() {
c4: f(4);
c5: g();
c6: g();
}
```


2. Find the program slice that contributes to the selected query

```
int h(n) {ret n;}
```

```
void f(a) {
c1: x = h(a);
    assert(x > 1); // Q1
c2: y = h(input());
    assert(y > 1); // Q2
}
```

```
c3: void g() {f(8);}
```

```
void m() {
c4: f(4);
c5: g();
c6: g();
}
```


3. Collect contexts in the slice

```
int h(n) {ret n;}
                                                      c1
    void f(a) {
    \mathbf{x} = \mathbf{h}(\mathbf{a});
c1:
      assert(x > 1); // Q1
                                       c4
    y = h(input());
c2:
      assert(y > 1); // Q2
                                                      c1,
    }
                                 m
                                          g
c3: void g() {f(8);}
    void m() {
                                                     c1.
c4: f(4);
                                          g
   g();
c5:
    g();
c6:
    }
                = Contexts for h: {c3 · c1, c4 · c1}
```

Selective Context-Sensitivity

		Context-In	sensitve	Ours			
Pgm	LOC	#alarms	time(s)	#alarms	time(s)		
spell	2K	58	1	30	1		
bc	13K	606	14.0	483	16		
tar	20K	940	42	799	47		
less	23K	654	123.0	562	166		
sed	27K	1,325	108	1,238	118		
make	27K	1,500	88	1,028	106		
grep	32K	735	12	653	16		
wget	35K	1,307	69.0	942	82		
a2ps	65K	3,682	118	2,121	178		
bison	102K	1.894	136	1.742	173		
TOTAL	346K	12,701	707.1	9,598	903.6		

24.4%

Selective Context-Sensitivity

		Context-In	sensitve	Ours			
Pgm	LOC	#alarms	time(s)	#alarms	time(s)		
spell	2K	58	1	30	1		
bc	13K	606	14.0	483	16		
tar	20K	940	42	799	47		
less	23K	654	123.0	562	166		
sed	27K	1,325	108	1,238	118		
make	27K	1,500	88	1,028	106		
grep	32K	735	12	653	16		
wget	35K	1,307	69.0	942	82		
a2ps	65K	3,682	118	2,121	178		
bison	102K	1,894	136	1,742	173		
TOTAL	346K	12,701	707.1	9,598	903.6		

pre-analysis : 14.7% main analysis: 13.1%

27.8%

Summary

- Towards Sound, Precise, Scalable Analysis
 - Access Pre-analysis + Sparse Analysis
 - Impact Pre-analysis + Selective X-Sensitive Analysis
- Frameworks
 - Precision-preserving Sparse Analyses
 - Effective X-Sensitive Analyses

Thank you.

- References: ropas.snu.ac.kr/~kwang/publist.html
- Welcome: visits & collaboration