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Challenge in Static Analysis
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?

“bug-finders”

“verifiers”

Soundness

Scalability Precision
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Our Long-term Goal
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Soundness

Scalability Precision

General Sparse 
Analysis Framework

[PLDI’12]

Selective X-Sensitivity 
Approach

[PLDI’14]
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Message
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• Towards Sound, Precise, Scalable Analysis

• Sparse Analysis: “right part at right moment”

• Selective X-Sensitive Analysis: “right part at right moment”

• by Pre-Analysis

• Frameworks

• Precision-preserving Sparse Analyses 

• Effective X-Sensitive Analyses
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Our story

• In 2007, we commercialized
• memory-bug-finding tool for full C

• designed in the abstract interpretation framework

• sound in design, unsound yet scalable in reality (non-
global)

• Realistic workbench available

• “let’s try to achieve sound, precise, yet scalable global 
version”
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Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.
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The Challenge in Reality
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nethack-2.1.1 (211KLoC)
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The Challenge in Reality
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Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

(2007, sound-&-global version)

35KLoC
context-insensitive
non-relational, etc
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Scalability: time-mem sparsity

8

Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

(2012, sound-&-global version)

1 Million LoC

General Sparse 
Analysis Framework

[PLDI’12]
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Precision: selective sensitivity
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Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

(2014, sound-&-global version)

1 Million LoC context-sensitivity

Selective X-Sensitivity 
Approach

[PLDI’14]

General Sparse 
Analysis Framework

[PLDI’12]
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Our Scalability Improvement
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Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

sound-&-global version
• < 1.4M in 10hrs (intrvls)

• < 0.14M in 20hrs (octgns)
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Our Precision Improvement
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24%  /  28%

vs. context-insensitivity

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

sound-&-global version

reduction of false alarms increase of analysis time
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Contents

• Sparrow System

• Scalability by Sparsity

• Precision by Selectivity
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• Designed in the abstract interpretation framework

• To find memory safety violations in C

• buffer-overrun, memory leak, null deref., etc.

• flow-sensitive values analysis for int & ptrs 
(static + dynamic)

• for the full set of C

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.
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Abstract Semantics

• Abstract semantic function

• One abstract state        that subsumes all reachable 
states at each program point

: abstract semantics at point c

c

c0c0

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z  {�⌃,+⌃} ⌦ l ⇤ u}  {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10
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Computing  
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Naive fixpoint algorithm Worklist algorithm

W ⇥ Worklist = 2C

X̂ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

W := C
X̂ := �c.⇧
repeat

c := choose(W )

ŝ := f̂c(
�

c���cX(c⇥))

if ŝ ⇤� X̂(c)

W := W ⌃ {c⇥ ⇥ C | c ⇥� c⇥}
X̂(c) := X̂(c) ⌥ ŝ

until W = ⌅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ ⇥ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

X̂ := X̂ ⇥ := �c.⇧
repeat

X̂ ⇥ := X̂

for all c ⇥ C do
X̂(c) := f̂c(

�
c���cX(c⇥))

until X̂ � X̂ ⇥

Figure 2.2: A naive fixpoint algorithm.
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The Algorithms Too Weak 
To Scale

less-382 (23,822 LoC)
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Improving Scalability

“Right Part at Right Moment”

Key Idea: Localization
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Spatial & Temporal 
Localizations
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Spatial Localization
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Spatial Localization
(“framing”, “abstract gc”)

f

call f

accessible store

return

non-accessible  store
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On average, 755 re-analysis per procedure

Vital in Analysis Practice

int g;
int f() { ... }
int main() { 
  g = 0;  f();
  g = 1;  f();
}

f does not access g

Wednesday, September 3, 14



But Existing Approach is 
Too Conservative

2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory
/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only di�erences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is ine⇥cient both in time and memory cost. This finding originates from
the di⇥culty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

average :  only 4%

huge room for localizations than reachability-
based technique

Wednesday, September 3, 14



Hurdle: Accessed  Locations 
Before Analysis?

• Yes, by yet another analysis

• The pre-analysis must be quick

• The pre-analysis must be safe

• over-estimating the accessed abstract locs

Wednesday, September 3, 14



Our Pre-analysis

• one further abstraction

• correct design

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂ )),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂ ) ⇧ ⇥(lfp(F̂p))

27
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Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)
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• abstract semantic function: flow-insensitive

For Safely Estimating the Accessed Abstract Locations
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Programs LOC Intervalvanilla Intervalbase Spd"1 Mem#1 Intervalsparse Spd"2 Mem#2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K 1 N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K 1 N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K 1 N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K 1 N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K 1 N/A 1 N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K 1 N/A 1 N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K 1 N/A 1 N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K 1 N/A 1 N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K 1 N/A 1 N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K 1 N/A 1 N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K 1 N/A 1 N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K 1 N/A 1 N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. 1 means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd"1 is
the speed-up of Intervalbase over Intervalvanilla. Mem#1 shows the memory savings of Intervalbase over Intervalvanilla. Spd"2 is the speed-up of Intervalsparse over Intervalbase.
Mem#2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis
Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion
Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.
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Temporal Localization
(and spatial localization automatically follows)
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Temporal Localization

• Don’t blindly follow the control flow of pgm text

• Follow the dependency of statement semantics

• from definition points directly to their use points less-382 (23,822 LOC )

W ⇥ Worklist = 2C

X̂ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

W := C
X̂ := �c.⇧
repeat

c := choose(W )

ŝ := f̂c(
�

c���cX(c⇥))

if ŝ ⇤� X̂(c)

W := W ⌃ {c⇥ ⇥ C | c ⇥� c⇥}
X̂(c) := X̂(c) ⌥ ŝ

until W = ⌅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ ⇥ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

X̂ := X̂ ⇥ := �c.⇧
repeat

X̂ ⇥ := X̂

for all c ⇥ C do
X̂(c) := f̂c(

�
c���cX(c⇥))

until X̂ � X̂ ⇥

Figure 2.2: A naive fixpoint algorithm.

14
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Temporal Localization

x

y

vs.

x = x+1

y = y-1

z = x

x = x+1

y = y-1

z = x
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Precision Preserving 
Sparse Analysis Framework
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Towards Sparse Version

 Analyzer computes the fixpoint of

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z  {�⌃,+⌃} ⌦ l ⇤ u}  {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).
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An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

• baseline non-sparse one

• unrealizable sparse version

î }

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;c

X̂(c0)|l).

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;ac

X̂(c0)|l).

1

• realizable sparse version

î }

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;c

X̂(c0)|l).

F̂a(X̂) = �c � C.f̂c(
G

c0
l
;ac

X̂(c0)|l).

1

-
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Unrealizable Sparse One

î }

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;c

X̂(c0)|l).

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;ac

X̂(c0)|l).

1

Data Dependency

Def-Use Sets

Precision Preserving
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Realizable Sparse One 

î }

F̂s(X̂) = �c � C.f̂c(
G

c0
l
;c

X̂(c0)|l).

F̂a(X̂) = �c � C.f̂c(
G

c0
l
;ac

X̂(c0)|l).

1

Realizable Data Dependency

Precision Preserving

If the following conditions hold
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 Conditions on     &  

• over-approximation

• spurious definitions should be also included in uses
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Why the Conditions of      &    

x:=&y *p:=&z y:=x

Def

Use

{x}

ɸ

{y}{v, w}

{p, v, w} {x}

x

{v, w, x}

x

{p, v, w, x}

x
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Hurdle:     &     Before 
Analysis?

• Yes, by yet another analysis with further abstraction

• correct design 

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂ )),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂ ) ⇧ ⇥(lfp(F̂p))

27
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ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂ ) ⇧ ⇥(lfp(F̂p))

27

• abstract semantic function: flow-insensitive
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Programs LOC Intervalvanilla Intervalbase Spd"1 Mem#1 Intervalsparse Spd"2 Mem#2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K 1 N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K 1 N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K 1 N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K 1 N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K 1 N/A 1 N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K 1 N/A 1 N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K 1 N/A 1 N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K 1 N/A 1 N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K 1 N/A 1 N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K 1 N/A 1 N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K 1 N/A 1 N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K 1 N/A 1 N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. 1 means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd"1 is
the speed-up of Intervalbase over Intervalvanilla. Mem#1 shows the memory savings of Intervalbase over Intervalvanilla. Spd"2 is the speed-up of Intervalsparse over Intervalbase.
Mem#2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis
Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion
Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.
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Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

• fail to preserve the original accuracy

• Not general for arbitrary analysis for full C

• tightly coupled with particular analysis (e.g. 
pointer analysis for “simple” subsets of C)

vs.
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Improving Precision

“X-sensitivity at Right Moment”

Key Idea: Selectivity
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Selective Context-Sensitivity

39

program 
states

error 
states

our method: 24% / 28%

program 
states

error 
states

vs.

3-CFA: 24% / 1300%

• context-sensitivity only when/where it matters
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Key Idea: Impact Pre-Analysis

40

• Estimate the impact of X-sensitivity on main analysis

• fully X-sensitive

• but, approximated in other precision aspects
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Impact 
Pre-analysis

Key Idea: Impact Pre-Analysis

41

Main AnalysisC
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te
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tiv

ity

Other precision aspects 
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Impact Realization

42

Main Analysis

Impact 
Pre-analysis

w
q

C
on

te
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-s
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tiv

ity

Other precision aspects 
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Two Instance Analyses

• Selective context-sensitivity

• Selective relational analysis

43
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Selective Context-Sensitivity
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Example Program

45

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

always holds

does not always hold
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int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

[-∞,+∞]int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

Context-Insensitivity

46

Context-insensitive interval analysis 
cannot prove Q1

c1:

c2:

c4:
c5:
c6:

c3:
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g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

Context-Sensitivity: 3-CFA
Separate analysis for each call-string 

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

value of n
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g

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c1

c1
fg

[4,4]

[8,8]

[8,8]

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Context-Sensitivity: 3-CFA
Separate analysis for each call-string 

h

h

h

c2

c2

c2

[-∞,+∞]

[-∞,+∞]

[-∞,+∞]
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g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

Problems of k-CFA
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g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

Problems of k-CFA

f
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h

h

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

m

c4

{c5,c6}
c3

c1

c1
fg

[4,4]

[8,8]

Our Selective Context-Sensitivity

h [-∞,+∞]

f

Our solution: Impact pre-analysis

Challenge: How to infer this 
selective context-sensitivity?

c2

c2
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Impact Pre-Analysis

• Approximate the interval domain

52

⊤

★

all intervals

non-negative intervals, e.g., [5,7], [0,∞]

• Full context-sensitivity
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Impact Pre-Analysis
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g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

value of n
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Impact Pre-Analysis

54

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

g

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c1

c1
fg

[4,4]

[8,8]

[8,8]

h

h

h

c2

c2

c2

★

★

★

⊤

⊤

⊤
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Impact Pre-Analysis
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int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

[-∞,+∞]

[-∞,+∞]

[-∞,+∞]
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1. Collect queries whose expressions 
are assigned with ★

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

★

⊤
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2. Find the program slice that contributes 
to the selected query

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤
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c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
  x = h(a);
  assert(x > 1);  // Q1
  y = h(input());
  assert(y > 1);  // Q2
}

void g() {f(8);}

void m() {
  f(4);
  g();
  g();
}

3. Collect contexts in the slice

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

=> Contexts for h: {c3·c1, c4·c1}
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24.4%

Pgm

Context-InsensitveContext-Insensitve OursOurs

LOC #alarms time(s) #alarms time(s)
spell
bc
tar
less
sed
make
grep
wget
a2ps
bison

2K 58 1 30 1
13K 606 14.0 483 16
20K 940 42 799 47
23K 654 123.0 562 166
27K 1,325 108 1,238 118
27K 1,500 88 1,028 106
32K 735 12 653 16
35K 1,307 69.0 942 82
65K 3,682 118 2,121 178

102K 1,894 136 1,742 173
TOTAL 346K 12,701 707.1 9,598 903.6

Selective Context-Sensitivity

Wednesday, September 3, 14



60

Selective Context-Sensitivity

Pgm

Context-InsensitveContext-Insensitve OursOurs

LOC #alarms time(s) #alarms time(s)
spell
bc
tar
less
sed
make
grep
wget
a2ps
bison

2K 58 1 30 1
13K 606 14.0 483 16
20K 940 42 799 47
23K 654 123.0 562 166
27K 1,325 108 1,238 118
27K 1,500 88 1,028 106
32K 735 12 653 16
35K 1,307 69.0 942 82
65K 3,682 118 2,121 178

102K 1,894 136 1,742 173
TOTAL 346K 12,701 707.1 9,598 903.6

27.8%
pre-analysis  : 14.7%
main analysis: 13.1%
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Summary
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The Second Goal: Precision

8

Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

(2014, sound-&-global version)

1 Million LoC
context-sensitivity,!
relational analysis

Selective X-Sensitivity 
Approach!
[PLDI’14]

General Sparse 
Analysis Framework!

[PLDI’12]

This
 Pa

pe
r

• Towards Sound, Precise, Scalable Analysis

• Access Pre-analysis + Sparse Analysis 

• Impact Pre-analysis + Selective X-Sensitive Analysis

• Frameworks

• Precision-preserving Sparse Analyses 

• Effective X-Sensitive Analyses

context-sensitive
relational analysis
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Thank you.

• References: ropas.snu.ac.kr/~kwang/publist.html

• Welcome: visits & collaboration

62
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