Theorem Corollary Definition Lemma

Typing Multi-Staged Programs and Beyond

Kwangkeun Yi

Research on Software Analysis for Error-free Computing Center
Seoul National University

12/3/2010 @ Tsinghua Univ., Beijing

(co-work with Iksoon Kim, Cristiano Calcagno, Wontai Choe, Baris Aktemur, Makoto Tatsuda)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

R & center
%ﬁﬁ?@ R&SAEC cent

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

We want to help reduce/eliminate errors in software.
e statically: before execution, before sell/embed
@ automatically: against explosive sw size
@ to find bugs or verify their absence

Our approach:
@ “semantics-based static analysis”

@ and lots of engineering

R R%SAE C center
T Research On Software Analysis for Error-free Computing
AT E | 24 A4

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

R&D of static software analysis tools:

“SW MRI" “SW fMRI" “SW PET"

ftware Analysis for Error-free Computing
L,sno«q-mem At

sen® %‘ center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Activities

We publicize our works in:

° POPL('O6, '11), C/—\V('OS), VMCAI('IO, '11), ICSE('ll), SAS,
OOPSLA, FSE, etc.

o ACM TOPLAS, TCS, JFP, SP&E, Acta Informatica, etc.

A commercialization:
[N
CS/Od[‘[‘OW‘

Research areas: static analysis, abstract interpreation,
programming languge theory, type system, theorem proving, model
checking, & whatever relevant (don't care: orthodox or
unorthodox) _
%&s@ R%SAE Ccenter

AZEQo| 27 P

Sl

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-staged Programming
. Typing Multi-Staged Programs
. Static Analysis of Multi-Staged Programs

O

. Conclusion

R R%SAE C center
T Research On Software Analysis for Error-free Computing
| L AT E | 24 A4

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming (1/2)

program texts (code) as first class objects
“meta programming”

A general concept that subsumes
@ macros
e Lisp/Scheme’s quasi-quotation
@ partial evaluation
@ runtime code generation

Common in mainstream pgm’'ng: Lisp/Scheme, C's macros, C++'s
templates, C#, JavaScript, PHP, Python, etc.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming (2/2)

@ divides a computation into stages
@ program at stage 0: conventional program

@ program at stage n + 1: code as data at stage n

Stage | Computation Value
0 | usual 4+ code + eval | usual + code
> (0 | code substitution code

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming Examples (1/2)

In examples, we will use Lisp-style staging constructs + only 2
stages

, € code substitution

| ‘e code as data
| evale execute code

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming Examples (1/2)

In examples, we will use Lisp-style staging constructs + only 2

stages
e u=
| ‘e code as data
| e code substitution
| evale execute code
Code as data
let NULL = ‘O
let body = ‘(if e = ,NULL then abort() ...)

in eval body

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming Examples (2/2)

Specializer/Partial evaluator
power(x,n) = if n=0 then 1 else x * power(x,n-1)
V.S. power (x,3) = x*x*x

prepared as

let spower(n) = if n=0 then ‘1 else ‘(x*,(spower (n-1)))
let fastpower10 = eval ‘(Ax.,(spower 10))
in fastpowerl0O 2

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

AEC centfer

DN
%&E Features of Lisp/Scheme’s quasi-quotation Rsysta% « A o Erorree Compung

Slol 224 B Atef

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

@ open code

“(x+1)
%‘&@ Features of Lisp/Scheme’s quasi-quotation Rsys}%%AEf(‘; Cfepmt?g
ST

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

@ open code
“(x+1)

@ intentional variable-capturing substitution at stages > 0

“(Ax., (spower 10))

AEC centfer

DN
%&E Features of Lisp/Scheme’s quasi-quotation &ys‘é&% « A o Erorree Compung

o] 2243 ALAE

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

@ open code
“(x+1)

@ intentional variable-capturing substitution at stages > 0
“(Ax., (spower 10))
@ capture-avoiding substitution

“(*x., (spower 10) + x)

AEC centfer

DN
%&E Features of Lisp/Scheme’s quasi-quotation Rsys‘ée% « A o Erorree Compung

o] 2743 ALAE

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

@ open code
“(x+1)

@ intentional variable-capturing substitution at stages > 0
“(Ax., (spower 10))
@ capture-avoiding substitution
“(*x., (spower 10) + x)
@ imperative operations with open code
cell := “(x+1); --- cell := ‘(y 1);

AEC centfer

DN
%&E Features of Lisp/Scheme’s quasi-quotation Rsys‘ée% « A o Erorree Compung

o] 2743 ALAE

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Challenge |

A static type system that supports the practice.

Should allow programmers both
@ type safety and

@ the expressivenss of fully-fledged multi-staging operators

Existing type systems support only part of the practice.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Challenge Il

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze
@ are dynamic entities, which
@ are only estimated by static analysis

@ breaking the basic assumption of conventional static analysis

No general static analysis method yet.

Research On Software Analysis for Error-free Computing
! AzEgo] 224 THAE]
Sl

%&@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Response |

A type system for ML + Lisp’s quasi-quote system

@ supports multi-staged programming practice
@ open code: ‘(x+1)
e unrestricted imperative operations with open code
e intentional var-capturing substitution at stages > 0
e capture-avoiding substitution at stages > 0

@ conservative extension of ML's let-polymorphism

@ principal type inference algorithm

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Response Il

A static analysis framework = unstaging-translate; analyze; project
apply an unstaging translation;
apply conventional static analysis techniques;

cast the analysis result back in terms of multi-staged programs
Theory

@ the unstaing translation is “correct”

@ a safe condition for the projection operation

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

A Let-Polymorphic Modal Type System for Lisp-style MSP [Kim,
Yi, Calcagno: POPL'06]

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Comparison

(1) closed code and eval (2) open code

(3) imperative operations (4) type inference

(5) var-capturing subst. (6) capture-avoiding subst.

(7) polymorphism
Our system +1 +2 +3 +4 +5 +6 +7
[Rhiger 2005] +1 42 43 —4 45 —6 —7
[Calcagno et al. 2004] +1 2 -3 +4 -5 +6 +7
[Ancona & Moggi 2004] +1 42 +3 -4 -5 46 —7
[Taha & Nielson 2003] +1 2 -3 -4 -5 +6 47
[Chen & Xi 2003] +1 243 -4 +5 —6 +7
[Nanevsky & Pfenning 2002] +1 +2 3 -4 -5 +6 -7
MetaML/Ocaml[2000,2001] +1 42 -3 +4 -5 +6 +7
[Davies 1996] -1 2 -3 -4 -5+46 —7

[Davies & Pfenning 1996,2001] +1 —2 3 4 —5 +6 —7

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Ideas

@ code's type: parameterized by its expected context
O(I > int)
@ view the type environment I" as a record type
I'={xz:int, y:int— int,---}
@ stages by the stack of type environments (modal logic S4)
IgTpte: A

o with “due” restrictions
o let-polymorphism for syntactic values
e monomorphic I' in code type O(T" > int)
e monomorphic store types
R& SAEC center

DN N
%&?@ ‘ Natural ideas worked. ‘ e on o A o e e Compng
e} Ameio] 224 el

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Language

e = clx|Are|ee
] box e code as data ‘e
| unboxy € code substitution ,...,¢e
] eval e execute code
| Nz.e gensym
|
Evaluation
Erer

where
&: value environment

n: a stage number

%E&?é r: a value or err R%Z‘SAECcen’rer

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Operational Semantics (stage n > 0)

o at stage 0: normal evaluation + code + eval

@ at stage > 0: code substitution

Ere™y

(EBOX) =

£ Fboxe — boxv

Ere L boxv k>0
(EUNBOX) o

£ F unboxi e — v

0 o

Ere—boxv EFv—w

(EEVAL)

Sl—evaleimj’

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Simple Type System (1/2)

Type A,B == |A—B|OI>A)
code type
‘(x+1): O({z: int,--- } > int)
typing judgment
To-TyFe: A

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

R & center
@&%@?@ R&SAEC cent

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Simple Type System (1/2)

Type A,B == |A—B|OI>A)
code type
‘(x+1): O({z: int,--- } > int)

typing judgment
To-TyFe: A

I'p-T','Fe: A

TSBOX
() Ty Ty Fboxe: O(I'>A)
Lo Ty b e: O(Tnsn b A)
TSUNBOX
¢) Lo Ty Tk F unboxge : A
T'og-T,Fe:O0(@> A)
(TSEVAL) 0 c:D(@>A) (for alpha-equiv. at stage 0)

I'pT,,Feval e: A

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Simple Type System (2/2)

(TSCON) TpTh ket
I,(z)=A
(TSABS) o (Tp+2z:A)Fe:B

I'pT,,FXxe:A— B
FO(Fn+wA)|—[xnbﬁ>w]€B fresh w
I'p-TpFXNzxe:A— B

F()-"Fnl—eltA%B F()-"Fnl—egtA
F()Fn F €1€9 B

(TSGENSYM)

(TSAPP)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (1/4)

A combination of
o ML's let-polymorphism
e syntactic value restriction + multi-staged “expansive”(e)”
e expansive”(e) = False
= e never expands the store during its eval. at Vstages< n

eg.) ‘(Az.,e) : can be expansive
‘(Ax.evaly) : unexpansive

@ Rémy’s record types [Rémy 1993]

e type environments as record types with field addition
e record subtyping + record polymorphism

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (2/4)

e if e then ‘(x+1) else ‘1: ‘D({x : int}pbint)‘

e then-branch: O({z : int}p’ > int)
o else-branch: O(p” > int)

@ let x = ‘yin ‘(,x + w); ‘((,x 1) + z)
X: Van.D({y:a}pDa)‘

o first x: O({y : int, w: int}p' > int)
o second x: O({y : int — int, z : int}p” > int — int)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (3/4)

typing judgment
AgAptFe: A

AgA,T'Fe: A
A+ A, Fboxe: O[> A)
ApbFe:OT>A) Appp =T k>0
Ag Ay Apyg - unboxge: A
Ag A, Fe: 0@ A)
Ag-A,Feval e: A

(TBOX)

cronox) 20

(TEVAL)

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (4/4)

Ag- A, Fx: A
Ao (Ap+z:A)Fe: B
(TABS) Ag A, FAxe: A— B
Ao---Anl_eliA%B Ao"-An'_eQZA
(TAPP) AO An F €e1€9 B
expansive”(ey)
AgA,Fer: A Ag-A,+r:AFey: B
TLETIMP
() Ap A, Flet(ze)es: B
—expansive” (e1)
A()"'An F €1 . A
Ao A, : GEN4 (A Ay) Fex: B
(TLETAPP) 0 rr A(0) ©

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

)] AorBnFlet(we) 2B R@SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Type Inference Algorithm

@ Unification:

e Rémy’s unification for record type I
e usual unification for new type terms such as O(I'> A) and A ref

@ Type inference algorithm:

o the same structure as top-down version M [Lee and Yi 1998]
of the W
e usual on-the-fly instantiation and unification

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Type Inference Algorithm

@ Unification:

e Rémy’s unification for record type I
e usual unification for new type terms such as O(I'> A) and A ref

@ Type inference algorithm:

o the same structure as top-down version M [Lee and Yi 1998]
of the W

e usual on-the-fly instantiation and unification

Sound If infer(f,e,a) = S then ;0 e : Sa.
Complete If @;0 e : Ra then infer(d,e,a) =S and R =TS for some

Research On Software Analysis for Error-free Computing
! ! AzEgo] 224 THAE]
Sl

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part I: Conclusion

A type system for multi-staged programming practice (ML + Lisp’s
quasi-quote)

@ conservative extension to ML's let-polymorphism

@ principal type inference algorithm

Exact details, lemmas, proof sketchs, and embedding relations in
the POPL'06 paper; full proofs in its companion technical report.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part I: Conclusion

A type system for multi-staged programming practice (ML + Lisp’s
quasi-quote)

@ conservative extension to ML's let-polymorphism

@ principal type inference algorithm

Exact details, lemmas, proof sketchs, and embedding relations in
the POPL'06 paper; full proofs in its companion technical report.

’Staged programming “practice” has a sound static type system. ‘

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part |l

Static Analysis of Multi-Staged Programs via Unstaging
Translation [Choi, Aktemur, Yi, Tatsuda: POPL'11]

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Challenge (rephrase)

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze
@ are dynamic entities, which
@ are only estimated by static analysis
@ breaking the basic assumption of conventional static analysis

How to statically analyze the semantics of code generated-and-run
by the program?

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

xr := ‘0;
repeat
z = ‘(,x + 2)
until cond;
run x

@ The set of possible code for x:
{0, € (0+2), € (0+2+2),--- }.
must first be finitely approximated, e.g., by a grammar:

S — 0| S+2.

%‘&‘é @ analyzing “run x" requires every code implieng‘%@AEccemer
e

grammar m ust be exp osed first!? Research On Software Analyss for Error-free Computing

AZEQo| 27 P

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Solution

a three-step approach: translate, analyze, and project.
1. unstaging translation
e proof of semantic-preserving
2. conventional static analysis
e can apply all existing static analysis techniques
3. cast the result back in terms of original staged programs

e a sound condition for the projection
e i.e., to be aligned with the correspondence induced by the
translation.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Unstaging Translation

The previous example is translated as

T = Ap.0;
repeat

z = (M. (p.(h p)+2)) =
until cond;

(x {P

@ Code into env-taking function:
‘0 — Ap.0O
@ The run expression into an application:
run ‘0 — (A\p.O){}
o Free variables in a code into record accesses. ‘x —— Ap.p-x
@ Code composition ¢ (,z + 2) into a ftn-generating app.
whose actual param. is the part for the code-to-be-plugged

(4 (s xr + 2) ()\h) ()\p . (h p) +2)) TET::ngz:i;v;iir‘;Ana\vswsforError#reecamputmg

S e & center
iﬁ?@ P R& SAEC cent

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

[

box (...unbox (-)...unbox (+)...)

()\hl.()\hg.()\p. hl P th))())()

Illustration of the translation of a box expression with two unboxes.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Theorem

(Simulation) Let e be a stage-n \s expression with no free
variables such that e — ¢'. Let R+ e — (e, K) and

RF ¢ v (¢, K"). Then K(e) ¥2% K'(¢).

n /
—_—

g

[<—®
<~
|
b
=
[

I

R & center
%ﬁﬁ%@?@ R&SAEC cent

Research On Software Analysis for Error-free Computing
! AzEgo] 224 THAE]
Sl

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Inversion

Theorem

(Inversion) Let e be a \s expression and R be an environment
stack. If R+ e (e, K), then H \- e — e for any H such that

KCH.
e e/
n
R;A* ;
e ¢

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

R & center
@&%@?@ R&SAEC cent

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Analysis and Projection

~ R A
[e] € Ds == Ds > [€]

™ T

[®<—10

T .
[e] € Dr = Dg > []

Theorem

(Safe Projection) Let e and e be, respectively, a staged program
and its translated unstaged version. If [e] C w[e] and
aomoyC# then afe] C #[e].

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

After translation:

z = Ap1.0;
repeat

z = (Ah.(Apa.(h p2)1 + 2)) x

until cond;

(z {Pa2

Analysis: collecting/resolving constraints

Ve
Ve
Vi
Vi
Vi
Vi
Vi
Va
Va

then the analysis may conclude

%&3}? V1—>0‘V1+2

VW uwuwuwwuwuwuw

)\p1
)\pg
Ve
)\p1
Ap2
0
V1+2
0
V1+2

Vo —0 ‘ Vi+2

R& SAEC center

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Example (2/2)

Projection: cast the analysis results back in terms of the original
staged program

r := ‘0;
repeat
xz = ‘(,x + 2)
until cond;
run T

@ V},'s values Ap; and Aps are projected to code exprs. ‘0 and
‘(o + 2).

@ i.e., code to be plugged into the place of “,x
recursively, ‘(,x + 2).

@ Underlying projections satisfy the safety conditions.

can be ‘0 and,

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part IlI: Conclusion

A static analysis method for multi-staged programs
@ semantic-preserving unstaging translation

@ sound projection of conventional analysis for unstaged
program back in terms of original, staged program

Exact details, lemmas, proof sketchs in the POPL’'11 paper; full
proofs in its companion technical report.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part IlI: Conclusion

A static analysis method for multi-staged programs
@ semantic-preserving unstaging translation

@ sound projection of conventional analysis for unstaged
program back in terms of original, staged program

Exact details, lemmas, proof sketchs in the POPL’'11 paper; full
proofs in its companion technical report.

Thank you.

Research On Software Analysis for Error-free Computing
AzEgo] 224 THAE]

%&?@ R& SAEC center

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

