
Theorem Corollary Definition Lemma

Typing Multi-Staged Programs and Beyond

Kwangkeun Yi

Research on Software Analysis for Error-free Computing Center
Seoul National University

12/3/2010 @ Tsinghua Univ., Beijing

(co-work with Iksoon Kim, Cristiano Calcagno, Wontai Choe, Baris Aktemur, Makoto Tatsuda)

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

About Us

We want to help reduce/eliminate errors in software.

statically: before execution, before sell/embed

automatically: against explosive sw size

to find bugs or verify their absence

Our approach:

“semantics-based static analysis”

and lots of engineering

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Goals

R&D of static software analysis tools:

“SW MRI” “SW fMRI” “SW PET”

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Activities

We publicize our works in:

POPL(’06, ’11), CAV(’08), VMCAI(’10, ’11), ICSE(’11), SAS,
OOPSLA, FSE, etc.

ACM TOPLAS, TCS, JFP, SP&E, Acta Informatica, etc.

A commercialization:

Research areas: static analysis, abstract interpreation,
programming languge theory, type system, theorem proving, model
checking, & whatever relevant (don’t care: orthodox or
unorthodox)

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Outline

1. Multi-staged Programming

2. Typing Multi-Staged Programs

3. Static Analysis of Multi-Staged Programs

4. Conclusion

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming (1/2)

program texts (code) as first class objects
“meta programming”

A general concept that subsumes

macros

Lisp/Scheme’s quasi-quotation

partial evaluation

runtime code generation

Common in mainstream pgm’ng: Lisp/Scheme, C’s macros, C++’s
templates, C#, JavaScript, PHP, Python, etc.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming (2/2)

divides a computation into stages

program at stage 0: conventional program

program at stage n+ 1: code as data at stage n

Stage Computation Value

0 usual + code + eval usual + code

> 0 code substitution code

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming Examples (1/2)

In examples, we will use Lisp-style staging constructs + only 2
stages

e ::= · · ·
| ‘ e code as data
| , e code substitution
| eval e execute code

Code as data

let NULL = ‘0

let body = ‘(if e = ,NULL then abort() ...)

in eval body

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming Examples (1/2)

In examples, we will use Lisp-style staging constructs + only 2
stages

e ::= · · ·
| ‘ e code as data
| , e code substitution
| eval e execute code

Code as data

let NULL = ‘0

let body = ‘(if e = ,NULL then abort() ...)

in eval body

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Programming Examples (2/2)

Specializer/Partial evaluator

power(x,n) = if n=0 then 1 else x * power(x,n-1)

v.s. power(x,3) = x*x*x

prepared as

let spower(n) = if n=0 then ‘1 else ‘(x*,(spower (n-1)))

let fastpower10 = eval ‘(λx.,(spower 10))

in fastpower10 2

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Challenge I

A static type system that supports the practice.

Should allow programmers both

type safety and

the expressivenss of fully-fledged multi-staging operators

Existing type systems support only part of the practice.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Challenge II

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze

are dynamic entities, which

are only estimated by static analysis

breaking the basic assumption of conventional static analysis

No general static analysis method yet.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Response I

A type system for ML + Lisp’s quasi-quote system

supports multi-staged programming practice

open code: ‘(x+1)

unrestricted imperative operations with open code
intentional var-capturing substitution at stages > 0
capture-avoiding substitution at stages > 0

conservative extension of ML’s let-polymorphism

principal type inference algorithm

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Response II

A static analysis framework = unstaging-translate; analyze; project

apply an unstaging translation;

apply conventional static analysis techniques;

cast the analysis result back in terms of multi-staged programs
Theory

the unstaing translation is “correct”

a safe condition for the projection operation

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part I

A Let-Polymorphic Modal Type System for Lisp-style MSP [Kim,
Yi, Calcagno: POPL’06]

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Comparison

(1) closed code and eval (2) open code
(3) imperative operations (4) type inference
(5) var-capturing subst. (6) capture-avoiding subst.
(7) polymorphism

Our system +1 +2 +3 +4 +5 +6 +7
[Rhiger 2005] +1 +2 +3 −4 +5 −6 −7
[Calcagno et al. 2004] +1 +2 −3 +4 −5 +6 +7
[Ancona & Moggi 2004] +1 +2 +3 −4 −5 +6 −7
[Taha & Nielson 2003] +1 +2 −3 −4 −5 +6 +7
[Chen & Xi 2003] +1 +2 +3 −4 +5 −6 +7
[Nanevsky & Pfenning 2002] +1 +2 +3 −4 −5 +6 −7
MetaML/Ocaml[2000,2001] +1 +2 −3 +4 −5 +6 +7
[Davies 1996] −1 +2 −3 −4 −5 +6 −7
[Davies & Pfenning 1996,2001] +1 −2 +3 +4 −5 +6 −7

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Ideas

code’s type: parameterized by its expected context

2(Γ . int)

view the type environment Γ as a record type

Γ = {x : int, y : int→ int, · · · }

stages by the stack of type environments (modal logic S4)

Γ0···Γn ` e : A

with “due” restrictions
let-polymorphism for syntactic values
monomorphic Γ in code type 2(Γ . int)
monomorphic store types

Natural ideas worked.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Multi-Staged Language

e ::= c | x | λx.e | e e
| box e code as data ‘ e
| unboxk e code substitution , . . . ,e
| eval e execute code
| λ∗x.e gensym
| · · ·

Evaluation
E ` e n−→ r

where
E : value environment
n: a stage number
r: a value or err

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Operational Semantics (stage n ≥ 0)

at stage 0: normal evaluation + code + eval

at stage > 0: code substitution

(EBOX)
E ` e n+1−→ v

E ` box e n−→ box v

(EUNBOX)
E ` e 0−→ box v k > 0

E ` unboxk e
k−→ v

(EEVAL)
E ` e 0−→ box v E ` v 0−→ v′

E ` eval e
0−→ v′

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Simple Type System (1/2)

Type A,B ::= ι | A→ B | 2(Γ . A)

code type
‘(x+1): 2({x : int, · · · } . int)

typing judgment
Γ0···Γn ` e : A

(TSBOX)
Γ0···ΓnΓ ` e : A

Γ0···Γn ` box e : 2(Γ . A)

(TSUNBOX)
Γ0···Γn ` e : 2(Γn+k . A)

Γ0···Γn···Γn+k ` unboxke : A

(TSEVAL)
Γ0···Γn ` e : 2(∅ . A)

Γ0···Γn ` eval e : A
(for alpha-equiv. at stage 0)

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Simple Type System (1/2)

Type A,B ::= ι | A→ B | 2(Γ . A)

code type
‘(x+1): 2({x : int, · · · } . int)

typing judgment
Γ0···Γn ` e : A

(TSBOX)
Γ0···ΓnΓ ` e : A

Γ0···Γn ` box e : 2(Γ . A)

(TSUNBOX)
Γ0···Γn ` e : 2(Γn+k . A)

Γ0···Γn···Γn+k ` unboxke : A

(TSEVAL)
Γ0···Γn ` e : 2(∅ . A)

Γ0···Γn ` eval e : A
(for alpha-equiv. at stage 0)

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Simple Type System (2/2)

(TSCON) Γ0···Γn ` c : ι

(TSVAR)
Γn(x) = A

Γ0···Γn ` x : A

(TSABS)
Γ0··· (Γn + x : A) ` e : B

Γ0···Γn ` λx.e : A→ B

(TSGENSYM)
Γ0··· (Γn + w : A) ` [xn

n7→ w] e : B fresh w

Γ0···Γn ` λ∗x.e : A→ B

(TSAPP)
Γ0···Γn ` e1 : A→ B Γ0···Γn ` e2 : A

Γ0···Γn ` e1e2 : B

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (1/4)

A combination of

ML’s let-polymorphism

syntactic value restriction + multi-staged “expansiven(e)”
expansiven(e) = False
=⇒ e never expands the store during its eval. at ∀stages≤ n

e.g.) ‘(λx.,e) : can be expansive
‘(λx.eval y) : unexpansive

Rémy’s record types [Rémy 1993]

type environments as record types with field addition
record subtyping + record polymorphism

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (2/4)

if e then ‘(x+1) else ‘1: 2({x : int}ρ . int)
then-branch: 2({x : int}ρ′ . int)
else-branch: 2(ρ′′ . int)

let x = ‘y in ‘(,x + w); ‘((,x 1) + z)

x: ∀α∀ρ.2({y : α}ρ . α)

first x: 2({y : int, w : int}ρ′ . int)
second x: 2({y : int→ int, z : int}ρ′′ . int→ int)

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (3/4)

typing judgment
∆0···∆n ` e : A

(TBOX)
∆0···∆nΓ ` e : A

∆0···∆n ` box e : 2(Γ . A)

(TUNBOX)
∆0···∆n ` e : 2(Γ . A) ∆n+k � Γ k > 0

∆0···∆n···∆n+k ` unboxk e : A

(TEVAL)
∆0···∆n ` e : 2(∅ . A)

∆0···∆n ` eval e : A

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Polymorphic Type System (4/4)

(TVAR)
∆n(x) � A

∆0···∆n ` x : A

(TABS)
∆0··· (∆n + x : A) ` e : B

∆0···∆n ` λx.e : A→ B

(TAPP)
∆0···∆n ` e1 : A→ B ∆0···∆n ` e2 : A

∆0···∆n ` e1e2 : B

(TLETIMP)

expansiven(e1)
∆0···∆n ` e1 : A ∆0···∆n + x : A ` e2 : B

∆0···∆n ` let (x e1) e2 : B

(TLETAPP)

¬ expansiven(e1)
∆0···∆n ` e1 : A
∆0···∆n + x : GENA(∆0···∆n) ` e2 : B

∆0···∆n ` let (x e1) e2 : B

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Type Inference Algorithm

Unification:

Rémy’s unification for record type Γ
usual unification for new type terms such as 2(Γ .A) and A ref

Type inference algorithm:

the same structure as top-down version M [Lee and Yi 1998]
of the W
usual on-the-fly instantiation and unification

Sound If infer(∅, e, α) = S then ∅; ∅ ` e : Sα.
Complete If ∅; ∅ ` e : Rα then infer(∅, e, α) = S and R = TS for some

T .

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Type Inference Algorithm

Unification:

Rémy’s unification for record type Γ
usual unification for new type terms such as 2(Γ .A) and A ref

Type inference algorithm:

the same structure as top-down version M [Lee and Yi 1998]
of the W
usual on-the-fly instantiation and unification

Sound If infer(∅, e, α) = S then ∅; ∅ ` e : Sα.
Complete If ∅; ∅ ` e : Rα then infer(∅, e, α) = S and R = TS for some

T .

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part I: Conclusion

A type system for multi-staged programming practice (ML + Lisp’s
quasi-quote)

conservative extension to ML’s let-polymorphism

principal type inference algorithm

Exact details, lemmas, proof sketchs, and embedding relations in
the POPL’06 paper; full proofs in its companion technical report.

Staged programming “practice” has a sound static type system.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part I: Conclusion

A type system for multi-staged programming practice (ML + Lisp’s
quasi-quote)

conservative extension to ML’s let-polymorphism

principal type inference algorithm

Exact details, lemmas, proof sketchs, and embedding relations in
the POPL’06 paper; full proofs in its companion technical report.

Staged programming “practice” has a sound static type system.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part II

Static Analysis of Multi-Staged Programs via Unstaging
Translation [Choi, Aktemur, Yi, Tatsuda: POPL’11]

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Challenge (rephrase)

A general, static analysis method for multi-staged programs.

The objects (program texts) to analyze

are dynamic entities, which

are only estimated by static analysis

breaking the basic assumption of conventional static analysis

How to statically analyze the semantics of code generated-and-run
by the program?

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Problem

x := ‘0;

repeat

x := ‘(,x + 2)

until cond;
run x

The set of possible code for x:

{‘0, ‘(0+2), ‘(0+2+2), · · · }.

must first be finitely approximated, e.g., by a grammar:

S → 0 | S+2.

analyzing “run x” requires every code implied by the
grammar must be exposed first!?

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Our Solution

a three-step approach: translate, analyze, and project.

1. unstaging translation

proof of semantic-preserving

2. conventional static analysis

can apply all existing static analysis techniques

3. cast the result back in terms of original staged programs

a sound condition for the projection
i.e., to be aligned with the correspondence induced by the
translation.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Unstaging Translation

The previous example is translated as

x := λρ.0;
repeat

x := (λh.(λρ.(h ρ)+2)) x
until cond;
(x {})

Code into env-taking function:

‘0 7−→ λρ.0

The run expression into an application:
run ‘0 7−→ (λρ.0){}
Free variables in a code into record accesses. ‘x 7−→ λρ.ρ·x
Code composition ‘(,x + 2) into a ftn-generating app.
whose actual param. is the part for the code-to-be-plugged
expr.:

‘(,x + 2) 7−→ (λh.(λρ.(h ρ)+2)) x

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

box (. . . unbox (·) . . . unbox (·) . . .)︸ ︷︷ ︸
(λh1.(λh2.(λρ. . . . h1 ρ . . . h2 ρ . . .))(·))(·)

� �
?

� �
?

Illustration of the translation of a box expression with two unboxes.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Simulation

Theorem

(Simulation) Let e be a stage-n λS expression with no free
variables such that e

n−→ e′. Let R ` e 7→ (e,K) and

R ` e′ 7→ (e′,K ′). Then K(e)
R;A∗
−→ K ′(e′).

e n //
_

��

e′_

��
e e′

=⇒ e
R;A∗

// e′

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Inversion

Theorem

(Inversion) Let e be a λS expression and R be an environment
stack. If R ` e 7→ (e,K), then H ` e 7→ e for any H such that
K ⊆ H.

e n // e′ =⇒

e_

��

e′OO

_
e
R;A∗

// e′

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Analysis and Projection

e_

��

[[e]] ∈ DS −→←−α
γ

D̂S 3 ˆ[[e]]

e [[e]] ∈ DR

π

OO

−→←−α
γ

D̂R 3 ˆ[[e]]

π̂

OO

Theorem

(Safe Projection) Let e and e be, respectively, a staged program
and its translated unstaged version. If [[e]] v π[[e]] and

α ◦ π ◦ γ v π̂ then α[[e]] v π̂ ˆ[[e]].

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Example (1/2)

After translation:

x := λρ1.0;
repeat

x := (λh.(λρ2.(h ρ2)1 + 2)) x

until cond;
(x {})2

Analysis: collecting/resolving constraints

Vx 3 λρ1
Vx 3 λρ2
Vh 3 Vx
Vh 3 λρ1
Vh 3 λρ2
V1 3 0

V1 3 V1+2
V2 3 0

V2 3 V1+2

then the analysis may conclude

V1 → 0 | V1+2
V2 → 0 | V1+2

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Example (2/2)

Projection: cast the analysis results back in terms of the original
staged program

x := ‘0;

repeat

x := ‘(,x + 2)

until cond;
run x

Vh’s values λρ1 and λρ2 are projected to code exprs. ‘0 and
‘(,x + 2).
i.e., code to be plugged into the place of “,x” can be ‘0 and,
recursively, ‘(,x + 2).
Underlying projections satisfy the safety conditions.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part II: Conclusion

A static analysis method for multi-staged programs

semantic-preserving unstaging translation

sound projection of conventional analysis for unstaged
program back in terms of original, staged program

Exact details, lemmas, proof sketchs in the POPL’11 paper; full
proofs in its companion technical report.

Thank you.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

Part II: Conclusion

A static analysis method for multi-staged programs

semantic-preserving unstaging translation

sound projection of conventional analysis for unstaged
program back in terms of original, staged program

Exact details, lemmas, proof sketchs in the POPL’11 paper; full
proofs in its companion technical report.

Thank you.

Kwangkeun Yi Typing Multi-Staged Programs and Beyond

